
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047901

ARTICLE

YOLOv5ST: A Lightweight and Fast Scene Text Detector

Yiwei Liu1, Yingnan Zhao1,*, Yi Chen1, Zheng Hu1 and Min Xia2

1School of Computer and Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
2School of Automation, Nanjing University of Information Science and Technology, Nanjing, 210044, China

*Corresponding Author: Yingnan Zhao. Email: zh_yingnan@126.com

Received: 21 November 2023 Accepted: 20 February 2024 Published: 25 April 2024

ABSTRACT

Scene text detection is an important task in computer vision. In this paper, we present YOLOv5 Scene Text
(YOLOv5ST), an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text detection. Our primary
goal is to enhance inference speed without sacrificing significant detection accuracy, thereby enabling robust
performance on resource-constrained devices like drones, closed-circuit television cameras, and other embedded
systems. To achieve this, we propose key modifications to the network architecture to lighten the original backbone
and improve feature aggregation, including replacing standard convolution with depth-wise convolution, adopting
the C2 sequence module in place of C3, employing Spatial Pyramid Pooling Global (SPPG) instead of Spatial
Pyramid Pooling Fast (SPPF) and integrating Bi-directional Feature Pyramid Network (BiFPN) into the neck.
Experimental results demonstrate a remarkable 26% improvement in inference speed compared to the baseline,
with only marginal reductions of 1.6% and 4.2% in mean average precision (mAP) at the intersection over union
(IoU) thresholds of 0.5 and 0.5:0.95, respectively. Our work represents a significant advancement in scene text
detection, striking a balance between speed and accuracy, making it well-suited for performance-constrained
environments.

KEYWORDS
Scene text detection; YOLOv5; lightweight; object detection

1 Introduction

Scene text detection is an important application of object detection in computer vision. Tradi-
tionally, scene text detection methods tend to be characterized in terms of the text itself, such as
considering the text as connected components [1], or considering the sequential orientation of the
text [2]. However, due to the complex and diverse morphology of scene text, it is difficult to accurately
design a detection method on its characteristics. Therefore, it is more efficient to consider it as a general
objection detection task. In recent years, with the advancements in deep learning, significant progress
has been made in this field. Particularly, the advent of one-stage high-performance object detection
models like the you only look once (YOLO) model [3] has enabled lightweight, real-time, and efficient
scene text recognition networks.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047901
https://www.techscience.com/doi/10.32604/cmc.2024.047901
mailto:zh_yingnan@126.com


910 CMC, 2024, vol.79, no.1

Recently, numerous lightweight enhancement methods have been developed for YOLO, featuring
low parameter counts and floating-point operations (FLOPs), examples of which include MobileNet
[4], ShuffleNet [5], and GhostNet [6]. However, experiments show that lower parameter numbers
and FLOPs do not always lead to a higher inference speed [7]. Therefore, our main motivation is
to enable fast and practical scene text detection, and our work emphasizes the practical application of
lightweight scene text detection models, making inference speed the focal point.

In this paper, we take the recent v6.0 version of YOLOv5 [8] as the basis for lightweight
improvement. YOLOv5 series has various models with different sizes, the smallest is YOLOv5s, which
offers a small model size and fast inference speed. It is suitable for scenarios where computational
resources are limited. Therefore, we choose YOLOv5s for optimization, aiming at improving the
inference speed and keeping an acceptable detection accuracy to make the model more friendly to
low-performance devices. Our work mainly aims to reduce the computational cost by simplifying the
network architecture and implementing lightweight feature aggregation methods to keep accuracy
without increasing too much computational burden.

In our proposed YOLOv5ST (YOLOv5 Scene Text) model, the main contributions are as
follows:

• Introducing depth-wise convolution to reduce computational complexity and cost, and remov-
ing unnecessary parts of the network to achieve faster inference speed.

• Improving the feature aggregation in the network to keep the detection accuracy as much as
possible.

• Training the model with the SynthText scene text image dataset [9], and conducting detection
experiments on the RoadText scene text video dataset [10].

The experimental results demonstrate the model’s ability to attain high inference speed while
maintaining a relatively high level of accuracy. Additionally, we employ the Convolutional Recurrent
Neural Network (CRNN) [11] scene text recognition model to realize the comprehensive functionality
spanning efficient scene text detection through recognition.

2 Related Work

Traditional scene text detection methods are usually based on connected component analysis
[1]. This approach employs various properties, including color, edge, stylus (density calculation and
pixel gradient), and texture, to determine and examine the candidate areas of the text. Candidate
components are first detected by color clustering, edge clipping, or extra area extraction (text candidate
extraction). Then, non-text components are filtered through manual design rules or automated train
classifications (candidate correction by deleting non-candidate Text) [12]. For example, Stroke width
transform (SWT) [13] is a feature-extracting method that examines the density and thickness of
characters to determine the edges. Stroke feature transform (SFT) [14] extends SWT to enhance
performance on component separation and connection. Maximally stable extremal region (MSER)
[15] detects stable regions in an image by analyzing their stability under varying thresholds and
then extracting connected components. Those methods are efficient because number of connected
components are usually small. However, clutter and thickening of texts will change the connected
components, which reduces the accuracy and recall. To overcome this problem, the sliding window
method [16] detects texts by shifting a window to all locations at several different scales to achieve a
high recall; however, it has a high computational cost due to scanning all windows [12].



CMC, 2024, vol.79, no.1 911

In recent years, neural networks, especially Convolutional Neural Network (CNN)-based net-
works, have shown great power in object detection. Therefore, it is feasible to consider scene text
detection as a general object detection task. Object detection methods can be categorized into
two-stage and one-stage methods. Two-stage methods divide the object detection task into two
stages, where the first stage usually generates candidate object regions, and the second classifies and
validates the candidate regions. Although two-stage methods enhance accuracy and robustness with
the cooperation of two stages, they usually require more computational resources and time. On the
other hand, one-stage methods detect objects directly from the input image, which are generally simpler
and more efficient, but may have lower detection accuracy and recall in complex scenes.

Two-staged Regions with CNN features (R-CNN) series are typical early object detection models
based on neural networks. R-CNN [17] adopts selective search to select anchor boxes (candidate
regions), then extracts features for each anchor box using a CNN network and applies support vector
machines (SVM) to classify the objects. Fast R-CNN [18] directly extracts the feature of the whole
image, improving the efficiency. Faster R-CNN [19] introduces a region proposal network (RPN) to
generate anchor boxes, predict object bounds and objectness scores at each position, and lead to high-
quality region proposals. Mask R-CNN [20] proposes a fully convolutional network (FCN) for precise
pixel-to-pixel prediction manner, enabling finer alignment and more accurate segmentation. There are
also CNN-based methods designed for scene text detection [12], such as TextBoxes [2] and Rotational
Region CNN (R2CNN) [21]. To detect lined text, TextBoxes designs a series of text-box layers that
utilize convolution and pooling operations on multi-scale feature maps to predict text bounding boxes.
R2CNN generates axis-aligned bounding boxes for text using RPN. For each axis-aligned text box
proposed by RPN, R2CNN extracts its pooled features using different pooling sizes and employs
simultaneous prediction of text/non-text scores, axis-aligned boxes, and tilted minimum area boxes.
Finally, the detection candidates are post-processed using titled non-maximal suppression to obtain
the final detection results, achieving better performance with inclined anchor boxes. Nonetheless, these
detection methods still have relatively high computational costs and are difficult to achieve at high
speed.

Real-time performance is crucial in numerous practical object detection applications, such as
autonomous driving and real-time surveillance. Meanwhile, in terms of the trade-off between precision
and recall, two-stage methods usually have certain misdetections and omissions in the first stage
and need correction by the subsequent processing in the second stage. In contrast, through end-to-
end training, one-stage methods offer a better balance between precision and recall, which reduces
these issues. Therefore, the one-stage object detection methods have gained more popularity. One
typical example is SSD (Single Shot MultiBox Detector) [22], known for its fast speed, high accuracy,
and adaptability to various object sizes. It converts the bounding boxes into a set of default boxes
with different shapes and scales over different feature map locations, generates scores for each object
category in each default box, and adjusts the boxes to better match the object shapes. TextBoxes++
[23] specializes in detecting texts with arbitrary orientations, small sizes, and significantly variant
aspect ratios. This specialization is achieved through adaptations on SSD, including the generation
of arbitrarily oriented bounding boxes and the incorporation of multi-scale inputs.

As a one-stage object detection model, YOLO is proposed in [3] with good accuracy and fast
speed. YOLO divides the input image into grids, with each grid cell responsible for detecting objects
within it. For each cell, YOLO predicts whether an object is contained and the bounding box
coordinates. It also predicts the class probability of the object for each bounding box. In contrast to
traditional two-stage methods, YOLO makes direct predictions on the whole image, greatly reducing
the computational cost. Additionally, YOLO benefits from global contextual information, improving



912 CMC, 2024, vol.79, no.1

detection accuracy. Over time, the YOLO model is continuously being optimized and improved.
YOLOv2 [24] introduces anchor boxes to increase recall and employs the Darknet-19 network to
improve accuracy, leading to faster speed and better performance. YOLOv3 [25] extracts features
from three different scales using a concept similar to feature pyramid networks (FPN) [26], enabling
more accurate detection of objects of various sizes, and replacing the feature extraction network
with Darknet-53 for better accuracy. YOLOv4 [27] combines numerous advanced features including
Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch
Normalization (CmBN), Self-adversarial-training (SAT), Mish activation, Mosaic data augmentation,
DropBlock regularization, and CIoU loss. For example, a CSPDarknet [28] backbone is utilized to
achieve a larger receptive field and better multi-scale detection capability. YOLOv5 [8] is more deeply
optimized in activation functions and optimizers and shows better performance. In the recent version
YOLOv5 v6.0, BottleneckCSP [28] modules have been replaced by C3 [14], the Focus module in
the backbone has been replaced by a Convolution-BatchNormalization-Sigmoid (CBS) block [29],
and Spatial Pyramid Pooling (SPP) [30] has been replaced by SPPF [8]. These modifications aim at
enhancing detection speed and accuracy, making YOLO more suitable for real-time object detection,
including scene text detection.

In recent research, most of the recent approaches are driven by deep network models [31].
For example, Fast convergence speed and Accurate text localization (FANet) [32] is a scene text
detection network that achieves fast convergence speed and accurate text localization. It combines
the transformer feature learning and normalized Fourier descriptor modeling. Despite this, we still
use YOLO in this paper because it is easy to use in real applications and can be extended to other
object detection tasks.

3 Methodology
3.1 Network Architecture

The overall network of YOLOv5ST is based on YOLOv5s, a small version in the YOLOv5 v6.0
series. As depicted in Fig. 1 (modifications are in red), with the main object of increasing detection
speed while maintaining detection accuracy as much as possible, four key modifications are made to
the original YOLOv5 network architecture:

(1) Replacing standard convolution with depth-wise convolution. This substitution significantly
reduces computational complexity by decreasing the count of convolution kernels.

(2) Adopting the C2 sequence module in place of C3. This streamlined module involves fewer
convolutional operations, incorporating depth-wise convolution, thereby amplifying detection speed.

(3) Employing SPPG instead of SPPF. SPPG is purposefully designed to fuse global features from
varying scales. Consequently, the backbone’s output incorporates global information for subsequent
stages in achieving higher accuracy.

(4) Integrates BiFPN into the neck. This integration facilitates the aggregation of a more extensive
array of features within the feature pyramid, ultimately contributing to a heightened level of accuracy.

The modification (1) and (4) are existing approaches, and modifications (2) and (3) are our
contributions in this research work. Meanwhile, we integrate these modifications into the specific
network architecture. Overall, the network architecture of our proposed YOLOv5ST model is depicted
in Fig. 1.



CMC, 2024, vol.79, no.1 913

Figure 1: Overall architecture of YOLOv5ST model

3.2 Depth-Wise Convolution

DWConv (Depthwise convolution) is used in our model to reduce computational cost in standard
convolutions.

In [33], the proposed convolutional operation, also known as DSC (depth-wise separable con-
volution), consists of two parts, depth-wise convolution and point-wise convolution. In depth-wise
convolution, the convolutional filters are divided into N groups that are equal to the number of input
channels, and point-wise convolution is a 1 × 1 convolution to connect previous output to output
channels.

In a convolution operation, we denote the input feature map size as DF × DF , kernel size as
Dk × Dk, number of input channels as Cin, and the number of output channels as Cout. For a standard
convolution, the computation cost is

Coststandardconv = D2
F × D2

k × Cin × Cout (1)

For depth-wise convolution, the computation cost is

Costdepth−wiseconv = D2
F × D2

k × Cin (2)



914 CMC, 2024, vol.79, no.1

For point-wise convolution, the computation cost is

Costpoint−wiseconv = D2
F × Cin × Cout (3)

Therefore, the overall computation cost of DSC is

CostDSC = D2
F × D2

k × Cin + D2
F × Cin × Cout (4)

Different from the depth-wise separable convolution, we can let N equal the greatest common
divisor of Cin, and Cout. Thus, the computation cost of DWConv is

CostDWConv = D2
F × D2

k × Cin

gcd(Cin, Cout)
+ D2

F × Cin × Cout (5)

DWConv can be applied in the CBS (Conv-BatchNorm-SiLU) block which consists of a convo-
lution layer, a batch norm layer, and a SiLU activation function [27] to form a DWCBS (DWConv-
BatchNorm-SiLU) block.

3.3 C2 Sequence Module

The C2seq (C2 sequence) module is inspired by C2f [34] to simplify the original C3, these modules
are depicted in Fig. 2.

Figure 2: (a) Bottleneck module used in C3; (b) C3 module used in YOLOv5; (c) C2f module used in
YOLOv8; (d) Our proposed C2seq module with specific c_in and c_out parameters



CMC, 2024, vol.79, no.1 915

As shown in Fig. 2a, Bottleneck in C3 is designed to enhance feature extraction and information
flow across different stages or layers of the network. As shown in Fig. 2b, C3 is a CSP block with 3
CBS blocks that let the input pass through into two parallel halves. As shown in Fig. 2c, C2f decreases
the number of CBS blocks from 3 to 2 and uses split to do parallel computation. As shown in Fig. 2d,
we propose C2seq that further simplifies C2f. Experiments show that split operation in C2f has an
impact on the inference speed of the model, so we remove this operation. Then, to overcome the
disadvantage of not using residual connection [28], we keep some C3 in our network, as shown in
Fig. 1. In addition, we apply DWCBS to further simplify the module. In C2seq, the kernel size in 2 CBS
blocks in Bottleneck is set to 3. Since in C2seq, the number of input and output channels of Bottleneck
are set to different values, the shortcut in Bottleneck is not used, that is because C2seq modules are
mainly used in neck, where original C3 does not use shortcut as well; and at the same time, it can have
a higher channel compression ratio inside the Bottleneck to achieve better performance.

3.4 SPPG Module

In the YOLOv5s network, before feature aggregation in the neck, the output feature maps are sent
to the SPPF (Spatial Pyramid Pooling Fast) module [8] to increase the receptive field and separate the
most important features by pooling multi-scale versions of themselves [29].

However, multi-scale pooling can be applied not only on feature maps in a single scale. In the
feature extraction process in the backbone, we have a sequence of feature maps at different scales.
By considering those feature maps in one multi-scale pooling module, we can better aggregate global
features, which is beneficial for accuracy. Therefore, in our network, we propose the SPPG (Spatial
Pyramid Pooling Global) module, which is depicted in Fig. 3. In the PANet [35] of YOLOv5, there
are three scales, P3, P4 and P5. The output feature maps of P3, P4, and P5 in the backbone are sent
to SPPG simultaneously to fuse global features with different scales to take advantage of multiscale
features [36]. For each input feature map, a max pool operation and an average pool operation are
implemented simultaneously. Max pooling facilitates the extraction of salient features, while average
pooling retains background information. The collaborative use of max pooling and average pooling
ensures an accurate and seamless fusion of global features. The kernel size and padding for each
pooling operation are set at 3 (in contrast to 5 in Spatial Pyramid Pooling with Fusion [SPPF]),
as smaller kernels enhance the detection of smaller objects, thereby improving overall detection
performance [29]. The stride values for the two pooling operations on each input feature map are
4, 2, and 1, respectively. Meanwhile, CBS blocks that are used in SPPF are removed for simplification.

3.5 BiFPN Feature Aggregation

Based on the PANet [21] architecture in YOLOv5, there are 3 different scale features (P3, P4 and
P5). Multi-scale feature fusion aims to aggregate features at different resolutions [37]. To fuse more
features without adding much cost, we can implement BiFPN architecture by adding an extra jump
connection edge from the original input node to the output node if they are at the same level, thus
reusing the feature in the original input node [37]. Specifically, in YOLOv5, P4 output in the backbone
can be concatenated in the top-down process in the neck with a jump connection edge. As shown in
Fig. 4, the red edge represents the additional connection in BiFPN.



916 CMC, 2024, vol.79, no.1

Figure 3: (a) The SPPF module used in YOLOv5; (b) The proposed SPPG module

Figure 4: YOLOv5 with BiPFN feature aggregation



CMC, 2024, vol.79, no.1 917

4 Experiments
4.1 Data Set

We decide to use a large image dataset to train the model to achieve better precision and a video
dataset to test the scene text detection performance. Therefore, in our experiments, SynthText dataset
[9] and RoadText dataset [10] are used. The SynthText dataset is an image dataset, and the RoadText
dataset is a video dataset. SynthText is used as train data, because as a synthetic dataset, it has
notable advantages due to its abundant data volume and precise annotations, making it highly suitable
for training. RoadText serves as test data because it includes annotated ground truth information
concerning the texts found on the road, which demonstrates a genuine working environment of the
model.

SynthText has synthetic text in diverse scene shapes and fonts, having 858,750 images, 7,266,866
word instances, and 28,917,487 characters in total. The images are in various resolutions but mostly
600 × 450 pixels. The synthetic dataset has notable advantages due to its abundant data volume and
precise annotations, making it highly suitable for training. Some examples are shown in Fig. 5.

Figure 5: Some examples of SynthText dataset

The RoadText dataset comprises 500 real-world driving videos. Each video is 30 FPS and is
approximately 10 s long, featuring a resolution of 1280 × 720 pixels. The dataset includes annotated
ground truth information concerning the texts found on the road. It demonstrates a genuine working
environment of the model, thus we chose this dataset for testing. Some examples are shown in Fig. 6.



918 CMC, 2024, vol.79, no.1

Figure 6: Some examples of RoadText dataset

RoadText dataset has text data in various complex application scenarios, which the model may
encounter in real applications, as shown in Fig. 7.

Figure 7: Some examples of RoadText datasets in different scenarios. (a) Light (normal) environment;
(b) Dark environment; (c) Raining environment

4.2 Implementation Details

Our detection network implementation is based on YOLOv5s v6.0 and the PyTorch framework.
The trains run 11 epochs with a batch size of 64, a learning rate of 0.01, a learning rate momentum of
0.937, and use SGD optimizer with decay of 0.0005. We implement ablation study to verify the validity
of each modification, as listed in Table 1. We also implement a series of lightweight detection networks
with the same settings, as listed in Table 2 for comparison. These tests are run on an NVIDIA GeForce
RTX 2060 GPU.



CMC, 2024, vol.79, no.1 919

Table 1: Ablation study results

Modification Params
(M)

FLOPs
(G)

mAP 0.5 mAP 0.5:
0.95

Inference
FPS

DWConv C2seq SPPG BiFPN

7.01 15.8 0.925 0.706 107.53√ 5.29↓ 11.8↓ 0.924↓ 0.707↑ 109.89 ↑√ 5.37↓ 13.4↓ 0.927↑ 0.709↑ 120.48↑√ 7.37↑ 15.3↓ 0.927↑ 0.717↑ 102.04↓√ 7.08↑ 16.0↑ 0.932↑ 0.723↑ 105.26↓√ √ 4.04↓ 9.6↓ 0.917↓ 0.685↓ 126.58↑√ √ √ 3.38↓ 9.1↓ 0.911↓ 0.677↓ 131.41↑√ √ √ 4.04↓ 9.6↓ 0.917↓ 0.686↓ 125.00↑√ √ √ √ 4.30↓ 9.1↓ 0.910↓ 0.676↓ 131.58↑

Table 2: Detection performance comparison

Model Backbone Params
(M)

FLOPs
(G)

mAP 0.5 mAP 0.5:
0.95

Inference
FPS

YOLOv5s [2] YOLOv5
backbone

7.01 15.8 0.925 0.706 107.53

YOLOv5s-GhostNet [23] GhostNet 5.08 10.5 0.918 0.693 101.01
YOLOv5s-MobileNetV3 [24] MobileNetV3 1.03 2.0 0.860 0.585 88.50
YOLOv5s-ShuffleNetV2 [25] ShuffleNetV2 0.84 1.8 0.821 0.531 123.46
YOLOv5s-CBAM [26] YOLOv5

backbone
7.03 15.8 0.926 0.706 86.21

YOLOv5s-GSConv [27] YOLOv5
backbone

6.57 15.2 0.933 0.724 98.04

YOLOv5ST YOLOv5ST
backbone

4.30 9.1 0.910 0.676 131.58

4.3 Ablation Study

In this section, we present the impact of various modifications applied to our proposed model.
The experimental environment and datasets remain consistent throughout. The performance of
the original YOLOv5s v6.0 model is listed in the first row of Table 1, and models with different
modifications are listed in other rows.

For DWConv and C2seq, the number of parameters (params) and Floating Point Operations
(FLOPs) decrease significantly, leading to a substantial increase in their inference speed. Particularly
noteworthy is the case of C2seq, which exhibits a slight increase in mean Average Precision (mAP). In
the case of SPPG and BiFPN, there is a notable increase in the number of parameters (params), FLOPs,



920 CMC, 2024, vol.79, no.1

and mAP. However, the drop in inference speed is insignificant. It can be seen that these improvements
have had the intended effect.

4.4 Scene Text Detection

To compare the performance of scene text detection, we compare our proposed YOLOv5ST model
with other YOLO-based object detection models, the results are listed in Table 2.

From Table 2, it can be seen that among those listed models, our proposed YOLOv5ST model
has the best inference speed at 135.58 FPS, which increases by 26.09% compared to YOLOv5. As a
relatively small and light model, its number of parameters and FLOPS reduced by 38.66% and 42.41%
compared to YOLOv5s, respectively. Although there are other models like GhostNet, MobileNet
v3, and ShufflNet v2 that have fewer parameters and FLOPs than ours, they do not achieve an
inference speed as fast as ours. At the same time, our proposed YOLOv5ST model keeps a good
mAP accuracy, with an acceptable decrease by only 1.63% and 4.19% in mAP 0.5 and mAP 0.5:0.95
compared to YOLOv5s, respectively. In conclusion, our proposed YOLOv5ST model has better overall
performance in scene text detection. The performance comparison is also shown in Figs. 8 and 9. Since
YOLOv5ST is the closest to the upper left corner of Fig. 9, it has the best overall performance.

In addition, to implement a concrete application of an end-to-end scene text detection and
recognition system, YOLOv5ST integrates the CRNN [11] model to recognize the detected text. To
demonstrate the joint performance of our scene text detection model and CRNN scene text recognition
model in a practical application, some examples are shown in Fig. 10. The models can detect and
recognize most of the texts in the dataset, thus a lot of applications can be implemented based on our
models to achieve good performance, especially in performance-limited devices like drones, closed-
circuit television cameras, and other embedded devices.

Figure 8: Detection performance comparison



CMC, 2024, vol.79, no.1 921

Figure 9: Detection performance comparison

Figure 10: Some examples of scene text detection and recognition

Compared to the original YOLOv5, YOLOv5ST has fewer false detections, as shown in Fig. 11.
This is attributed to our model that optimizes the feature extraction and increases the feature
aggregation, thus leading to better accuracy.

Also, compared to the original YOLOv5, YOLOv5ST has better performance in handling various
complex scenarios. Fig. 7 shows different scenario examples in the RoadText dataset. In those
scenarios, precision and recall are shown in Table 3. In most scenarios, YOLOv5ST has better recall
and precision than YOLOv5s.



922 CMC, 2024, vol.79, no.1

Figure 11: Some examples of YOLOv5 and YOLOv5ST

Table 3: Detection performance comparison

Model Dark Light Raining weather

YOLOv5s
Precise (%) 45.9 55.7 50.6
Recall (%) 31.3 33.3 45.0

YOLOv5ST
Precise (%) 62.5 66.7 50.6
Recall (%) 35.4 39.0 45.7

However, the model still has some false detections, as shown in Fig. 12. For instance, the model
occasionally misclassifies crosswalks and other objects that have visual patterns similar to text as
textual elements. These misclassification cases show that the complexity of real-world scenes still
presents a challenge for the model. To solve this, we need a more precise approach to training
that specifically handles complex environments, by discovering deeper intrinsic connections of visual
features and using more training data. Furthermore, the current model still has the potential for
optimization and refinement through additional training.



CMC, 2024, vol.79, no.1 923

Figure 12: Some examples of false detections

5 Conclusion and Future Work

Fast real-time scene text detection is an important task in object detection. In this paper, we
propose a lightweight and fast scene text detection model based on the YOLOv5 v6.0 network. Our
proposed YOLOv5ST model implements four key modifications on the YOLOv5s to reduce the
computational cost, increase inference speed, and keep detection accuracy as much as possible. The
proposed model uses DWConv and C2seq to simplify and lightweight the network and uses SPPG and
BiFPN to enhance feature aggregation. We conduct experiments to demonstrate the feasibility of these
modifications, and compare YOLOv5ST with other YOLO-based lightweight object detection models,
the results show that we achieved a significant increase in inference speed of over 26% with less than 5%
mAP decrease, thus proving the validity of our model. We also combine the model with a CRNN model
to implement an end-to-end scene text detection and recognition system, so that practical applications
can be developed based on our models, especially in performance-limited devices like drones, closed-
circuit television cameras, and other embedded devices.

In summary, this paper makes improvements to the YOLOv5s network architecture to reduce the
burden on the original backbone network improve feature aggregation, and prove the performance by
experiments.

We believe our research will produce positive results and influence the object detection field. For
a long time, in various lightweight object detection tasks, how to better balance the accuracy and
inference speed is the key to research. This research shows a possibility to achieve both fast and
accurate text detection, and these optimizations can also be combined with other object detection
algorithms such as newer versions of YOLO, or applied to other object detection tasks.

In future work, we will attempt to further enhance both the accuracy and efficiency of our
model. One key direction is to consider more data scenarios. For example, considering different text
types and occlusion situations, as well as more kinds of weather conditions like foggy and snowy



924 CMC, 2024, vol.79, no.1

scenarios, to improve the robustness of the model in complex scenes. Another key direction is to
incorporate our approach with the latest versions of YOLO, building lighter models by optimizing the
network architecture, fine-tuning hyperparameters, and redesigning the backbone networks or feature
extractors to discover better performance of YOLO. Additionally, we will conduct more experiments to
investigate more suitable optimization algorithms and loss functions that best suit our specific problem
domain.

Acknowledgement: The authors would like to express their gratitude for the valuable feedback and
suggestions provided by all the anonymous reviewers and the editorial team.

Funding Statement: This work is supported in part by the National Natural Science Foundation of PR
China (42075130) and Nari Technology Co., Ltd. (4561655965).

Author Contributions: Study conceptualization, Yiwei Liu, Yi Chen and Yingnan Zhao; Data collec-
tion, Yiwei Liu and Yi Chen; Investigation, Yiwei Liu, Yi Chen, Zheng Hu and Min Xia; Methodology,
Yiwei Liu, Yi Chen and Yingnan Zhao; Model implementation and training, Yiwei Liu and Yi Chen;
Data analysis, Yiwei Liu and Yi Chen; Manuscript draft, Yiwei Liu and Yingnan Zhao; Manuscript
revision, Yiwei Liu and Yingnan Zhao. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: The code is available at https://github.com/lyw02/YOLOv5ST.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Q. Ye and D. Doermann, “Text detection and recognition in imagery: A survey,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 37, no. 7, pp. 1480–1500, Jul. 2015. doi: 10.1109/TPAMI.2014.2366765.
[2] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “TextBoxes: A fast text detector with a single deep neural

network,” in Proc. 2017 AAAI Conf. Artif. Intell., San Francisco, California, USA, Feb. 4–9, 2017, vol. 31,
no. 1. doi: 10.1609/aaai.v31i1.11196.

[3] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recogn. (CVPR), Honolulu, Hawaii, USA, 2017, pp. 7263–7271.

[4] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., Seoul, Korea,
2019, pp. 1314–1324.

[5] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient CNN architecture
design,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sept. 8–14, 2018, pp. 116–131.

[6] K. Han, Y. Wang, Q. Tian, J. Guo, C. J. Xu and C. Xu, “Ghostnet: More features from cheap operations,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recogn., 2020, pp. 1580–1589.

[7] F. Furlán, E. Rubio, H. Sossa, and V. Ponce, “CNN based detectors on planetary environments: A
performance evaluation,” Front Neurorobot., vol. 14, pp. 85, 2020. doi: 10.3389/fnbot.2020.590371.

[8] “Yolov5,” Accessed: Jun. 25, 2020. [Online]. Available: https://github.com/ultralytics/yolov5
[9] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text localisation in natural images,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recogn., Las Vegas, Nevada, USA, 2016, pp. 2315–2324.
[10] S. Reddy, M. Mathew, L. Gomez, M. Rusinol, D. Karatzas and C. V. Jawahar, “Roadtext-1k: Text detection

& recognition dataset for driving videos,” in 2020 IEEE Int. Conf. Robot. Autom. (ICRA), Paris, France,
2020, pp. 11074–11080. doi: 10.1109/ICRA40945.2020.9196577.

https://github.com/lyw02/YOLOv5ST
https://doi.org/10.1109/TPAMI.2014.2366765
https://doi.org/10.1609/aaai.v31i1.11196
https://doi.org/10.3389/fnbot.2020.590371
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/ICRA40945.2020.9196577


CMC, 2024, vol.79, no.1 925

[11] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based sequence recognition
and its application to scene text recognition,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 39, no. 11, pp.
2298–2304, 1 Nov. 2017. doi: 10.1109/TPAMI.2016.2646371.

[12] F. Naiemi, V. Ghods, and H. Khalesi, “Scene text detection and recognition: A survey,” Multimed. Tools
Appl., vol. 81, no. 14, pp. 20255–20290, 2022. doi: 10.1007/s11042-022-12693-7.

[13] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes with stroke width transform,” in 2010
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn., San Francisco, CA, USA, 2010, pp. 2963–2970.
doi: 10.1109/CVPR.2010.5540041.

[14] W. Huang, Z. Lin, J. Yang, and J. Wang, “Text localization in natural images using stroke feature
transform and text covariance descriptors,” in Proc. IEEE Int. Conf. Comput. Vis., Sydney, Australia, 2013,
pp. 1241–1248.

[15] L. Neumann and J. Matas, “A method for text localization and recognition in real-world images,” in
Comput. Vis., Berlin Heidelberg, Springer, 2011, pp. 770–783.

[16] H. Cho, M. Sung, and B. Jun, “Canny text detector: Fast and robust scene text localization algorithm,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recogn., Las Vegas, Nevada, 2016, pp. 3566–3573.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., Columbus, Ohio, USA,
2014, pp. 580–587.

[18] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015, pp. 1440–1448.
[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region

proposal networks,” in Adv. Neural Inf. Process. Syst., Montreal, Canada, 2015, pp. 28.
[20] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,

Venice, Italy, 2017, pp. 2961–2969.
[21] Y. Jiang et al., “R2CNN: Rotational region CNN for orientation robust scene text detection,” 2017. doi:

10.48550/arXiv.1706.09579.
[22] W. Liu et al., “SSD: Single shot multibox detector,” in Lecture Notes in Comput. Sci., Cham, Springer,

2016, vol. 9905. doi: 10.1007/978-3-319-46448-0_2.
[23] M. Liao, B. Shi, and X. Bai, “TextBoxes++: A single-shot oriented scene text detector,” IEEE Trans. Image

Process., vol. 27, no. 8, pp. 3676–3690, Aug. 2018. doi: 10.1109/TIP.2018.2825107.
[24] J. Redmon, and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recogn. (CVPR), Honolulu, Hawaii, USA, 2017, pp. 7263–7271.
[25] J. Redmon, and A. Farhadi, “Yolov3: An incremental improvement,” 2018. doi: 10.48550/arXiv.1804.0276.
[26] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature pyramid networks for

object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., Honolulu, Hawaii, USA, 2017,
pp. 2117–2125.

[27] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object
detection,” 2020. doi: 10.48550/arXiv.2004.10934.

[28] C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A new backbone
that can enhance learning capability of CNN,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recogn.
Works., 2020, pp. 390–391.

[29] D. Qi, W. Tan, Q. Yao, and J. Liu, “YOLO5Face: Why reinventing a face detector,” in ECCV 2022, Tel-Aviv.
Lecture Notes in Comput. Sci., Cham, Springer, 2022, vol. 13805. doi: 10.1007/978-3-031-25072-9_15.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual
recognition,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sept. 2015. doi:
10.1109/TPAMI.2015.2389824.

[31] T. Khan, R. Sarkar, and A. F. Mollah, “Deep learning approaches to scene text detection: A comprehensive
review,” Artif. Intell. Rev., vol. 54, no. 5, pp. 3239–3298, 2021. doi: 10.1007/s10462-020-09930-6.

[32] Y. Zhao, Y. Cai, W. Wu, and W. Wang, “Explore faster localization learning for scene text detec-
tion,” in 2023 IEEE Int. Conf. Multimed. Expo (ICME), Brisbane, Australia, 2023, pp. 156–161. doi:
10.1109/ICME55011.2023.00035.

https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1007/s11042-022-12693-7
https://doi.org/10.1109/CVPR.2010.5540041
https://doi.org/10.48550/arXiv.1706.09579
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TIP.2018.2825107
https://doi.org/10.48550/arXiv.1804.0276
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1007/978-3-031-25072-9_15
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1007/s10462-020-09930-6
https://doi.org/10.1109/ICME55011.2023.00035


926 CMC, 2024, vol.79, no.1

[33] A. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,”
2017. doi: 10.48550/arXiv.1704.04861.

[34] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object detection with YOLOv8,” 2023. doi:
10.48550/arXiv.2305.09972.

[35] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recogn., Salt Lake City, Utah, USA, 2018, pp. 8759–8768.

[36] R. Yan, L. Peng, S. Xiao, and G. Yao, “Primitive representation learning for scene text recognition,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recogn., 2021, pp. 284–293.

[37] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recogn., 2020, pp. 10781–10790.

https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.2305.09972

	YOLOv5ST: A Lightweight and Fast Scene Text Detector
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusion and Future Work
	References


