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ABSTRACT

Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates.
Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitating
the development of more precise and efficient methodologies. To address this formidable challenge, we propose
an advanced approach for segmenting brain tumor Magnetic Resonance Imaging (MRI) images that harnesses the
formidable capabilities of deep learning and convolutional neural networks (CNNs). While CNN-based methods
have displayed promise in the realm of brain tumor segmentation, the intricate nature of these tumors, marked
by irregular shapes, varying sizes, uneven distribution, and limited available data, poses substantial obstacles to
achieving accurate semantic segmentation. In our study, we introduce a pioneering Hybrid U-Net framework that
seamlessly integrates the U-Net and CNN architectures to surmount these challenges. Our proposed approach
encompasses preprocessing steps that enhance image visualization, a customized layered U-Net model tailored
for precise segmentation, and the inclusion of dropout layers to mitigate overfitting during the training process.
Additionally, we leverage the CNN mechanism to exploit contextual information within brain tumor MRI images,
resulting in a substantial enhancement in segmentation accuracy. Our experimental results attest to the exceptional
performance of our framework, with accuracy rates surpassing 97% across diverse datasets, showcasing the
robustness and effectiveness of our approach. Furthermore, we conduct a comprehensive assessment of our
method’s capabilities by evaluating various performance measures, including the sensitivity, Jaccard-index, and
specificity. Our proposed model achieved 99% accuracy. The implications of our findings are profound. The
proposed Hybrid U-Net model emerges as a highly promising diagnostic tool, poised to revolutionize brain tumor
image segmentation for radiologists and clinicians.
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1 Introduction

Brain tumors are currently the most common factor in death worldwide. A brain tumor forms
when abnormal cells in the brain multiply and grow out of control. Major brain tissues are harmed,
and in certain cases, cancer might develop as a result [1]. It is dangerous to people, it kills, and it

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047917
https://www.techscience.com/doi/10.32604/cmc.2024.047917
mailto:smalebary@kau.edu.sa


1302 CMC, 2024, vol.79, no.1

drastically lowers people’s standard of living. The risk of acquiring brain cancer, however, is steadily
rising due to the unchecked growth of brain tumors. Due to the unchecked growth of the tumors,
brain cancer has a rising incidence rate and ranks as the tenth top cause of death worldwide. Gliomas,
meningiomas, and pituitary tumors are only a few of the malignancies that may affect the human brain
[2–6].

Recent studies have focused mostly on the subtypes and categorization of breast cancer, as well
as other malignancies, including those of the lung and colon. The processing of medical images is
closely related to the timely diagnosis of patients’ conditions and subsequent rehabilitation treatment.
Combining with convolutional neural networks (CNN), it can effectively enhance the accuracy of
image segmentation. Due to the small amount of medical image data and unbalanced categories, it
is very difficult to perform semantic segmentation of brain tumors. Moreover, the structure of brain
tissue is complex, tumors may exist in various regions of the brain, the boundaries between brain
tissues are difficult to distinguish, and the resolution of MRI images of brain tumors is low [7]. Many
problems will greatly affect the segmentation accuracy of brain tumors and an accurate diagnosis
would save the lives of many brain tumor patients.

The field of brain tumor segmentation has grown rapidly in recent years, with several segmentation
methods being developed on a wide range of datasets. Three types of recently created segmentation
models are clustering-based segmentation [8], supervised machine learning (ML) segmentation [9], and
DL segmentation [10]. The most popular technique in medical imaging is ML based picture semantic
segmentation, which is used to automatically separate and recognize different human organs and
pathologies. The algorithms fully-convolutional-network (FCN) [11], SegNet [12], U-Net, DeepLab
series [13], and DANet [14] are examples of common picture semantic segmentation methods. An
FCN learns features from all the combinations of the features of the previous layer, however, they are
incredibly computationally expensive. DeepLab cannot capture the boundaries of complex objects,
although it is computationally fast. DANet is computationally expensive and requires more robustness.
The U-Net network stands out among them because of its distinctive U-shaped design, which makes
it more suited for the task of segmenting medical images.

Numerous researchers have made significant efforts to improve and enhance the U-Net model
for medical image segmentation. It has been successfully applied to various medical characterizations,
including the separation of bladder cancer cells, identification of skin lesions, gallstones, liver tumors,
and brain tumors. Despite its superior segmentation performance, several challenges still need to be
addressed, like the U-shaped network, which has shown promise; there is room for improvement in
its structure. Many scholars have introduced auxiliary modules like attention, residual, dropout, and
pyramid modules to enhance the segmentation process. However, extracting fine-grained details and
coarse-grained semantics efficiently from both the encoder and decoder remains a potential area for
further advancement. Moreover, the continuous improvement of the U-Net model and its variations
has led to a significant increase in network parameters. While this has improved the performance
of medical representation recognition, it comes at the cost of increased memory consumption and
higher hardware requirements. Another problem is that the large size of the network model weight file
also poses challenges in deployment, application, and upgrade on resource-limited devices like mobile
terminals or embedded systems. Achieving a balance between network identification effectiveness and
parameter quantity is crucial for realizing a lightweight network.

So, it is suitable to pay more attention to the actual capabilities of the U-shaped network with
fewer parameters, that is, learn from each other’s strengths in the network structure, compress the
parameters, and design a limited network without adding any other auxiliary modules. This study
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introduces the Hybrid U-Net model, which enhances MRI classification through the development of
a customized U-Net and the incorporation of feature fusion based on CNN. To achieve enhanced
segmentation results, a series of data preprocessing steps are employed, involving techniques such as
slicing, down-sampling, and channel distribution. We used two different MRI datasets throughout
the experimental phase to assess the performance of our implied model. The results of these tests
demonstrated our model’s superiority to all other current state-of-the-art procedures, including
cascaded and ensemble methods. This underscores the exceptional performance and effectiveness of
our proposed approach within the domain of MRI data analysis. The rest of the paper is organized as
follows: Section 2 briefly gives a literature review; the framework of our novel technique is shown in
Section 3. Section 4 presents experimental data, comments, and comparisons with existing techniques.
Finally, the article is wrapped up in Section 5.

2 Related Work

Traditional segmentation methods use various segmentation algorithms, such as the initial seg-
mentation algorithm, edge detection algorithm, landmark algorithm, and growing region algorithm.
The details are as follows: The initial segmentation algorithm [15] is used for the segmentation
process. Brain tumor MR image segmentation: Due to the signal intensity difference between brain
tissue and healthy tissue, after preliminary processes such as image enhancement, tumors can be
segmented according to initial measurements and morphological functions. Image segmentation
methods using initial segmentation algorithms are susceptible to pre- and post-processing procedures
such as homogenization and bias correction and have noise [16]. It is not easy to segment brain tumor
MRI images using only information obtained from local or international measurements. Researchers
often combine segmentation with other segmentation methods as a starting point. The segmentation
method uses an edge detection algorithm to identify tumor edge pixels in the image by detecting
changes in the image [17] and combining the pixels to obtain the area of the tumor in the final part
of the image. There are many image segmentation techniques using edge detection algorithms such
as Sobel, Prewitt, Roberts, and Canny [18,19], and these models have also been developed after many
improvements.

Based on the improved tumor health algorithm, Moradi et al. [20] combined the image-based
threshold segmentation algorithm with the Sobel operator to detect brain lesions, and then used the
closed contour algorithm and object-based segmentation to detect the edges of tumor cells. Remove
the tumor. Edge-based segmentation methods, although simple, sometimes produce open contours
and are sensitive to thresholding. In MRI images, the boundaries of brain tumors vary widely, so
boundary-based segmentation is difficult to achieve very good results. The region-growing algorithm-
based segmentation approach initially selects a few seed pixels, then merges nearby comparable pixels
or sub-regions into the same region in accordance with the predetermined requirements until all
regions are divided, and eventually the tumor tissue is segmented. Both manually and automatically
selecting the first seed are possible. A fuzzy knowledge-based seed region growth approach was put out
by Lin et al. [21] for multimodal MRI imaging. This method preprocesses the seed region to identify
the tumor’s original seed by exploiting fuzzy edges and similarities. The region-growing technique of
segmentation is susceptible to noise and seed point initialization; low segmentation accuracy will result
from choosing the wrong pixel seeds or from an image with excessive background noise [22,23].

The wavelet transform algorithm is used in the image segmentation method, which first transforms
the wavelet transform concept to convert the picture histogram into wavelet coefficients [24,25].
Next, the threshold is established using the segmentation conditions and wavelet coefficients, and the
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tumor area is then divided according to the threshold. Chen et al. proposed a CT/MRI segmentation
technology based on wavelet analysis and MRF [26] and determined the data area and data edge of the
object to be partitioned. Islam et al. [27] proposed a multi-modal MRI brain segmentation technology
based on wavelet analysis and machine learning, using features obtained from wavelet analysis,
combining with density, distinguishing variants, and unique features, and referring to classifiers such
as random forests. In general, the brain tumor MRI segmentation method based on the segmentation
model generally has simple models and slow segmentation speeds and alone cannot provide good and
accurate segmentation of brain tumor MRI images.

In recent years, brain tumor segmentation methods based on DL have become a popular research
direction in the field of brain tumor segmentation due to their advantages of fast, efficient, and
accurate extraction of tumor features. In the brain-tumor image segmentation task based on DL,
commonly used segmentation algorithms are mainly CNN-based algorithms and recurrent neural
networks (RNN)-based algorithms [28]. Single-path and multi-path neural network topologies are
used in CNN approaches for segmenting brain tumors [29]. Convolutional layers are used to sample
an input picture in a CNN, which is then followed by pooling and activation layers in a single-
path neural network. Many studies have successfully segmented MRI images of brain tumors by
employing single-path CNNs [30]. In contrast to single-path networks, multi-path CNNs may combine
or concatenate the information derived from many processing routes at multiple scales. For brain
tumor segmentation, the authors’ [31] developed a dual-channel 3D CNN with 11 layers that employs
multiple, fully connected multi-path CNNs. This is the first neural network to use 3D-convolutions.
After scaling the input picture, a fully linked conditional-random-field (CRF) is used to correct for
any remaining imperfections. By feeding in normal-resolution picture segments, the network can learn
local features of tumor images, such as texture and boundaries. Because networks are trained to learn
global spatial information (such as tumor location) using low-resolution fragments as input, their
segmentation performance for MRI images is poor from the standpoint of the global approach. The
reliability of segmentation declines in tandem with the growth in network complexity.

Although many enhancements have been made to the original CNN, the FCN remains a
masterwork of deep learning for image segmentation. Based on FCN, Badrinarayanan et al. [12]
suggested an enhancement. In the SegNet model, the maximum value coordinate is recorded during
the down-sampling pooling process, During the up-sampling process, the feature map values are
mapped to this coordinate, and the feature values in the new feature map are set to zero. It addresses
the issues of coarse segmentation and feature duplication caused by FCN’s skip connection. The
Deconv-Net proposed by Noh et al. [32] added two fully connected layers behind the SegNet to
make the segmentation results more accurate. The U-Net network is improved from the FCN network,
and the innovative use of the U-shaped network structure can make full use of the feature information
of the brain tumor image context.

U-Net has many different models, such as integration with ResNet, Dense-Net, and other mod-
ules. Increasing the number of layers in the design of neural networks can improve the performance
of the network, but more layers will cause gradients to disappear and overfitting to occur. Common
methods for addressing degradation issues include residual connections and dense connections. Res-U-
Net [33] optimizes the network topology by substituting the residual block for the original convolution
block in U-Net, albeit at the expense of segmentation accuracy. There appears to be no noticeable
improvement. For the semantic segmentation challenge, Zhao et al. [34] presented the attention
mechanism and developed the PSA-Net network, which learns to aggregate the contextual information
of each place through the prediction of the attention map. These attention-based methods, however,
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need the generation of massive attention maps to calculate the association between each pixel, which
is both computationally intensive and resource intensive on the GPU.

Most commonly, sequence models are processed using an RNN. Long-short-term-memory
(LSTM) network and gated-recurrent-unit (GRU) structure RNN are utilized to construct temporal
dependency of modulus in MRI image sequences [35] for application in brain tumor image segmen-
tation. To better segment tumors, researchers have combined recurrent-fully-convolutional-networks
(RFCN) and variational sets (VS) methods. In RFCN, the deconvolution process uses the output of
the previous convolution process as the input map, and the output of the deconvolution process is used
as the input of the next convolution layer. CRF based on RNN (CRF-RNN) [36] is used to process
the segmentation map, and FCN feedforward is used to generate the segmentation map for image
pixels. Using the original image and segmentation results as input, CRF-RNN creates an accurate
segmentation image based on the intensity and location of pixels. By combining FCN with CRF-
RNN, this method improves computational efficiency and shows high performance on the BraTS2015
dataset. However, deep learning-based brain segmentation still faces many challenges.

In medical literature, there is a difference between the distribution of test data and training
data, which can lead to prediction or modelling problems. Deep learning models, on the other hand,
focus relatively more on the distribution of pixels but ignore the differences between adjacent pixels.
results in unsatisfactory segmentation results. FCN, the first application of deep learning in image
semantic segmentation, incorporates end-to-end convolutional neural networks into image semantic
segmentation tasks [37]. The first time to use hop connection to improve the roughness of network up
sampling is proposed, images of any size can be input, based on the classical CNN network removing
the fully connected layer, the deconvolutional layer is used to up sample the feature map output of its
last pooling layer by 32 times, and the spatial information of the context is preserved. The output of
the fusion shallow network is 8/16× up sampling, whereas the VGG16 network is 8× up sampling,
but the disadvantage is that the output map obtained by the network is not fine enough and lacks the
connection between pixels.

On this basis, researchers carried out many network improvement designs, such as enlarging
the receptive field, extracting contextual information, introducing boundary information, adding
various attention modules, and using AutoML technology. Semantic segmentation models with
encoder-decoders emerged, first proposed by SegNet [38], which introduced decoders to map low-
resolution encoder features to full-input resolution features for pixel-level classification. The model
consists of five encoders, corresponding five decoders, and pixel-level classification layers, where each
encoder contains two to three convolutional layers (containing BN and ReLU layers) and a down
sampling layer [39]. Each decoder contains an up-sampling layer (with maximum pooled indexes)
and two or three convolutional layers. Conventional segmentation techniques prove inadequate
when confronted with the intricate nature of medical MRI images. Conversely, deep learning-based
segmentation methods exhibit notable efficiency but often grapple with accuracy issues. This paper
primarily concentrates on the enhancement of segmentation accuracy within the realm of brain tumor
segmentation, leveraging DL methodologies.

3 Methodology

This section is divided into several sections to explain the model step by step, where in Fig. 1 the
complete methodology is shown.
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Figure 1: Proposed methodology

3.1 Dataset

This study used one dataset for MRI segmentation purposes. The dataset utilized in this study
is comprised of MR images with manual fluid-attenuated-inversion-recovery (FLAIR) anomaly
segmentation masks from The-Cancer-Imaging-Archive. The dataset provides multi-modal images,
including T1-weighted, T2-weighted, T1-contrast-enhanced, and FLAIR-MRI sequences. Each image
in the dataset contains annotations of the tumor regions, providing ground truth for the training
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and evaluation of segmentation algorithms. There might be anything from 395 to 827 images in each
category. Images from both datasets are shown in Fig. 2.

Figure 2: (a) Image (b) Image mask (c) Image + mask (d) Image-2 (e) Image-2 mask

3.2 Pre-Processing

Image preprocessing is the first step of experimental verification and the basis of subsequent
experiments. The experiment’s findings are profoundly affected by the image quality. Images in the
datasets range in resolution and quality since they were captured using various equipment and
collection methods. Prior to conducting an experiment, picture preprocessing must be carried out
to lessen the variation between data samples and the impact of equipment noise. The goal is to
enhance segmentation findings by enhancing image clarity, image quality, facilitating the discovery
of previously unseen elements in the image, and so on.

The basic process of preprocessing is the conversion of the image format; afterwards, images are
normalized using pixel intensity modification and grayscale normalization; subsequently, contrast
enhancement is performed using channel modification; and finally, data augmentation is performed
using cropping, scaling, rotation, and slicing. To increase the convergence of the training network and
reduce the effect of the difference between images, this experiment normalized the original images
in the data set, including image size normalization and grayscale normalization. Size normalization
refers to uniformly adjusting the image resolution to 128 ∗ 128. This paper adopts the maximum and
minimum normalization method for image I with normalized image I norm, and its formula is shown
as:

Inorm = Imax − Imin (1)

Remove part of the black background area that does not participate in the segmentation operation
to obtain a brain tumor image with a size of 128 ∗ 128, increase the proportion of the tumor area in the
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image, and reduce the size of the tumor due to the small area. The problem of uneven data distribution
can improve the final segmentation score of the model. The image enhancement method used here
is to randomly flip the image in the left and right and front and back directions with a probability
of 50%, translate the image in the X or Y direction (or both), and finally increase the amount of
data in the image. Contrast-limited adaptive histogram-equalization (CLAHE) divides a given image
into multiple, non-overlapping size regions and applies histogram-equalization (HE) to each region of
the image to achieve an even grayscale distribution that obscures features that make images sharper
pictures. The advantages of CLAHE are low noise, simple calculation, good response across image
areas, preventing bright light from occurring, and making it easier to compare different areas of the
image.

3.3 Segmentation

U-Net has immediately gained the attention of academics because of its exceptional outcomes in
natural and medical picture segmentation, and it has since established itself as the industry standard.
Fig. 3 displays the U-Net model’s structural layout. The network is known as an “U-Net” because it is
symmetrical and resembles the letter “U” in shape. Three components make up the bulk of the model:
The contracting path, expanding path, and skip connection composition. A typical CNN structure
called the shrinking route, often referred to as the down sample path, consists of convolutional and
pooling layers. U-Net’s decreasing route is made up of four identical modules, each of which has a 2 ∗
2 max pooling layer and two 3 ∗ 3 convolutional layers. The size of the feature map is cut in half, and
the number of channels is doubled each time the shrinking route executes a pooling operation.

Figure 3: U-Net architecture

The resolution of a given map is to return to the highest possible level using the incremental
method, also called the expansion method or incremental method. Each of the four identical parts that
make up the dilation method has a 2 × 2 deconvolution-layer and two 3 × 3 convolution-layers, and
the dilation method is symmetrical with the contraction method. For each deconvolution operation,
the size of the feature map is doubled, and the number of channels is reduced by half. To enable depth
convolution in the detail method to obtain more detailed images, cross-concatenate the shallow image
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in the matching method with the image in the detail method. The U-Net model always uses the binary
classification function to segment cell images. A 2-channel 1 × 1 convolutional layer is connected to
the last layer of the network to output the classification result. Complete symmetry is maintained in
the U-Net model by the operations that map to the shrinkage route and the expansion path layer.

The U-Net model’s down sampling procedure doubles as input picture feature encoding. The most
important feature information of the input image is kept, while the spatial information is compressed.
The U-Net model is also known as a typical encoding-decoding network since its up-sampling method
is a decoding technique that maximizes the resolution of the feature map. The U-Net model differs
from conventional CNN models in that it has a deeper network structure and richer sampling layers,
enabling the network to rely on a smaller training set to attain picture quality. Accurate segmentation,
so it is very suitable for medical image segmentation tasks where datasets are scarce. Algorithm 1
defines the steps of the U-Net improved model. The model utilizes the Adam optimizer as well as
categorical cross-entropy; moreover, 250 epochs are utilized.

Algorithm 1: Improved U-Net model
Input: Grayscale images of size 256 × 256 (single channel)
Output: The final output is a segmentation mask for the input grayscale image, with the same spatial
dimensions (128 × 128) as the input.
1. Network Architecture:

Define the encoder (down-sampling) path:
Leaky-ReLU activation, 3 × 3 kernel size, and 164 filters per convolutional layer. Leaky-
ReLU activation, 3 × 3 kernel size, and convolutional layer with 164 filters. Maximum
pooling with stride 1 and pool size (4, 4).
Dropout-layer with a predetermined dropout rate (To avoid overfitting).
Leaky-ReLU activation, 3 × 3 kernel size, and 256 filters per convolutional layer. Leaky-
ReLU activation, 3 × 3 kernel size, and convolutional layer with 256 filters. Maximum
pooling with stride 2 and pool sizes (4, 4). Dropout-layer with a specified dropout-rate.

2. Continue this pattern, doubling the number of filters after each max pooling layer, until you reach
1024 filters.

Bottleneck (center) layer:
Leaky-ReLU activation, 1024-filter convolutional layer, and 3-by-3 kernel size. Leaky-
ReLU activation, 3 × 3 kernel size, and 1024 filters for the convolutional layer.

Define the decoder (up-sampling) path:
Transpose convolution (up-convolution) with 512 filters, kernel size (2, 2), and stride 2.
Concatenate the feature map from the corresponding encoder path.
Leaky-ReLU activation, kernel size of 3, and 512 filters are used in the convolutional
layer. Leaky-ReLU activation, 512 filters, and a convolutional layer with a kernel size of
(3, 3).
Dropout layer with a specified dropout rate.
Continue this pattern, halving the number of filters after each transpose convolution,
until you reach 64 filters.

3. Output layer:
Convolutional layer with a single filter, kernel size (2, 2), and Sigmoid activation (for binary
segmentation).
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3.3.1 Post-Segmentation Processing

Segmented images at the first level of model fusion were used in a CNN-based architecture for
MRI classification at the second level of the model. To improve the classification accuracy of the CNN
model, segmented images are used as input in the first stage. If the image is not segmented, the entire
background, including borders and textures, will be visible. As a result, unwanted features are removed
from low priority settings.

Convolution and max-pooling layers of the proposed CNN model, each using a different CB. For
this activity, there is no padding, and a typical stride length is used. By default, the stride is set to 1,
which means that for every pixel the filter is moved to the right, it will also be moved one pixel down.
The first phase yields an output picture of 1822562, which is then downsized to 27272. The suggested
CNN model takes the resized picture as input into the first convolution block (CB). The first CB
consists of one MP layer and one convolution. The first convolution layer consists of 32 5-by-5 filters,
and the MP layer is 2-by-2. The second CB is composed of two convolutional layers and one max
pooling (MP) layer. The MP layer includes 16 filters in a 5-by-5 configuration, compared to 8 filters in
a 5-by-5 configuration for each of the convolution layers. The third CB is composed of one MP layer
and two convolution layers once more. The filters in the MP layer are 3-by-3, while the filters in the
third convolution layer are 5-by-5, for a total of 16 filters. The third CB is followed by the flattening
layer, which “flattens” the features by condensing the feature space into a single feature vector. Finally,
feature vectors are classified into seven MRI illness classifications using three dense layers.

A typical loss function utilized in regression and machine-learning issues is mean-squared error
(MSE).

Measure the mean square difference between expected and actual. The equation for MSE is shown
as:

MSE = 1
n

×
∑

(predicted value − actual value)2 (2)

Here n are the total samples. MSE has several advantages: It is differentiable, which makes it easy
to optimize using gradient descent or other optimization techniques. It is well-behaved, meaning that it
is continuous, non-negative, and reaches a minimum value when the predicted values match the actual
values.

3.3.2 Performance Metrics

Dice-similarity-coefficient (DSC) is used to evaluate the similarity between the model segmenta-
tion result image and the label image. The larger the value, the higher the similarity. The number of
properly and wrongly identified test group samples may be seen in the confusion matrix. True-positive
(TP) samples are located along the main diagonal, while true-negative (TN), false positive (FP), and
false-negative (FN) samples are in the remaining cells. The value range is [0,1]. The equation is shown
in (3).

Dice = 2 × TP
TP + FP + TN + FN

(3)

The Jaccard-index is the ratio of the overlap between the anticipated and ground-truth segmen-
tations to the union of those two regions. This measure can take on values between 0 and 1, with 0
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denoting completely non-overlapping segmentation and 1 denoting totally overlapping segments.

Jack = TP
TP + FP + FN

(4)

One of the most crucial common measures of classification system effectiveness is the confusion
matrix. The confusion matrix is a square matrix with four rows and four columns that correspond
to the different categories in the data set. The following equations are used to evaluate the system’s
functionality: The variables in the equations are taken from the confusion matrix. Another statistic
used to judge the quality of a model is the balanced accuracy (BA), which is the ratio of correctly
predicted pixels to all pixels. Based on the confusion matrix, it can be expressed by the following
equation:

Accuracy = TP
TP + TN + FP + FN

(5)

Sensitivity = TP
TP + FN

(6)

Specificity = TN
TN + FP

(7)

Precision: Indicates the proportion of pixels correctly identified as tumors to the total number of
pixels identified as tumors.

Precision = TP
TP + FP

(8)

Kappa, like the AUC score, assesses the agreement induced by chance; it runs from −1 (worst) to
+1 (best), and a value of 0 (random classifier) represents the poorest possible performance.

AUC = FP
FP + TN

+ FN
FN + TP

(9)

Kappa = (TN + FN) (TN + FP) + (FP + TP) (FN + TP)

TP + TN + FN + FP
(10)

Additionally, the segmentation efficiency is evaluated using the area under the receiver operation
characteristic curve (AUC). If the AUC is very near to 1, then the segmentation technique is quite
reliable. At a value of 0.5, it is completely unreliable and has no practical use.

4 Results and Discussions

The experiments are performed on a GPU with a 4 GB NVIDIA Tesla graphics card and 32 GB
of RAM. The main tools and libraries that are utilized for performing experimentation are Python,
Keras, PyTorch, Tensorflow, and Matplotlib.

The robustness of brain tumor segmentation was meticulously evaluated through a comprehensive
comparison of the proposed hybrid U-Net model against other contemporary state-of-the-art models.
The validation results, as presented in Table 1, highlight the noteworthy performance of the proposed
model in various metrics compared to its counterparts. In terms of accuracy, the proposed model
exhibited a remarkable achievement, approaching nearly 99%, a result on par with the widely
recognized FCN. This signifies the effectiveness of the hybrid U-Net in accurately delineating brain
tumors from medical images. However, what sets the proposed model apart is its balanced accuracy,
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which surpasses other models, including FCN, U-Net, and Atten-U-Net, by almost 4%. This indicates
that the proposed model excels not only in overall accuracy but also in maintaining a balanced
performance across different classes or categories of brain tumors.

The evaluation metrics further substantiate the superiority of the hybrid U-Net. The Kappa coef-
ficient, a measure of the positive relationship between predicted and actual segmentations, showcased
a superior performance for U-Net. This implies a robust agreement between the Hybrid U-Net’s
predictions and the ground truth, emphasizing its efficacy in capturing nuanced patterns and structures
within the brain images. Notably, the area under the curve (AUC) metric, a key indicator of the
model’s ability to discriminate between tumor and non-tumor regions, demonstrated an outstanding
result of 0.99 for the proposed model. This outperforms FCN, CNN, U-Net, and Atten-U-Net, with
respective AUC values of 0.95. The higher AUC underscores the hybrid U-Net’s exceptional capability
to precisely identify and distinguish between normal and tumorous brain regions. Fig. 4 shows the
balanced accuracy visualization for the proposed hybrid model in comparison with the other models
and shows that the proposed model is far better than other models.

Table 1: Results of the performance matrices on the dataset using various techniques

Model Kappa DSC IoU Sen. Spec. Pre. Acc. Bal. Acc. AUC Jack

Hybrid 0.7610 0.7641 0.3767 0.9920 0.9935 0.6214 0.9935 0.9927 0.9927 0.9703
FCN 0.9269 0.9276 0.0449 0.9056 0.9995 0.9507 0.9985 0.9526 0.9526 0.9757
CNN 0.2701 0.2834 0.8334 0.9911 0.9462 0.1654 0.9466 0.9686 0.9686 0.2860
U-Net 0.9338 0.9345 0.0271 0.9014 0.9997 0.9700 0.9987 0.9506 0.9506 0.9634
Attention U-Net 0.1870 0.2025 0.8873 0.9994 0.9153 0.1127 0.9162 0.9573 0.9573 0.2026

Figure 4: Comparison of several algorithms on a dataset visually

Sensitivity, a pivotal metric in evaluating image segmentation algorithms, gauges the algorithm’s
ability to accurately detect true positive pixels within an image. True positive pixels represent those
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belonging to the target object or class, and a high sensitivity indicates that the algorithm can
proficiently identify a substantial proportion of these true positive pixels. Conversely, a low sensitivity
suggests that the algorithm is missing a considerable number of true positive pixels, indicating potential
shortcomings in its ability to capture essential features of the target object. However, it is crucial to rec-
ognize that sensitivity alone provides an incomplete assessment of an image segmentation algorithm’s
quality. High sensitivity can be achieved by erroneously classifying a surplus of pixels as belonging to
the target object, leading to an elevated false-positive rate. This over-segmentation issue underscores
the importance of employing multiple evaluation metrics to gain a more comprehensive understanding
of the algorithm’s performance. One such complementary metric is the Jaccard coefficient, also known
as the Intersection over Union (IoU).

The Jaccard coefficient assesses the accuracy of image segmentation algorithms by measuring the
overlap between the predicted segmentation and the ground truth. It is calculated as the intersection
of the true positive pixels divided by the union of the true positive, false positive, and false negative
pixels. A higher Jaccard coefficient indicates more accurate and precise segmentation, emphasizing
the algorithm’s capability to delineate the target object with fidelity. In interpreting the results, a high
sensitivity coupled with a high Jaccard coefficient would signify robust performance, indicating that
the algorithm not only identifies a significant portion of true positive pixels but also achieves a nuanced
and accurate delineation of the target object. Conversely, a scenario where sensitivity is high, but the
Jaccard coefficient is low would suggest potential issues with over-segmentation, emphasizing the need
for a more refined balance between sensitivity and specificity. The proposed algorithm is almost similar
in achieving the results of 0.97.

Fig. 4 displays a visual comparison of the proposed model with other algorithms; while the
segmentation in our suggested hybrid model is properly apparent, the ground trust portion of the
model is virtually extracted similarly to the other approaches.

The accuracy rate, a fundamental metric in assessing the efficacy of classification models, serves
as the average of sensitivity and specificity across all categories in a given sample. While sensitivity
and specificity focus on the true positive rate and true negative rate within individual classes,
accuracy offers a holistic perspective by considering the model’s performance across all categories
simultaneously. This is particularly pertinent in scenarios where the class distribution in the data
is imbalanced, with certain classes having significantly fewer instances than others. Balancing test
accuracy becomes crucial when faced with unequal class representation, where a minority class may
be overshadowed by the majority. Relying solely on accuracy can be deceptive, as a model may achieve
high accuracy by predicting the majority classes accurately but may perform poorly on the minority
classes. Hence, accuracy serves as a more comprehensive metric, providing insights into the model’s
overall performance by evaluating sensitivity and specificity across all categories. In the presented
study, the algorithm under consideration demonstrates equal accuracy across other methods for both
datasets, showcasing its robustness and effectiveness in handling diverse classes.

The improvement in classification accuracy by almost 99% is a remarkable feat, underscoring the
algorithm’s proficiency in making accurate predictions across multiple categories. Fig. 5 offers a visual
representation comparing the accuracy of the data, providing a clear illustration of how the proposed
algorithm outperforms other methods in achieving balanced accuracy. This figure serves as a valuable
visual aid for understanding the comparative performance of different algorithms. Furthermore,
Fig. 6, depicting the training accuracy curve, provides insights into the algorithm’s learning dynamics.
Analyzing the training accuracy curve over epochs allows for a deeper understanding of how the model
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refines its predictions over time. A consistent and steep increase in training accuracy suggests effective
learning and adaptation to the underlying patterns in the data.

The discussed method of brain tumor segmentation using a hybrid U-Net approach based on deep
learning technology demonstrates promising results for improving the accuracy of tumor segmentation
in MRI images. The method addresses several challenges associated with brain tumor segmentation,
such as complex tumor boundaries, shape variations, unequal distribution of tumor locations and
sizes, and limited availability of medical image samples. The research employs a customized layered
U-Net model, a widely used architecture for semantic segmentation, to perform the segmentation
task. Preprocessing techniques are applied to enhance the visibility of brain tumors in MRI images,
improving the quality of the input data. The inclusion of dropout layers after each convolution
block stack helps prevent over-fitting, which is essential for generalizing the model’s performance to
unseen data.

Figure 5: Intuitive comparison of various algorithms on datasets

Figure 6: Training accuracy curve

The CNN process incorporates the context of brain tumor MRI images to further refine the
model’s segmentation. By leveraging deep learning techniques and training on a diverse dataset, the
proposed method achieves high accuracy levels, surpassing state-of-the-art models in brain tissue
differentiation experiments. The reported accuracy of over 98% across all datasets, along with precision
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and Jaccard coefficient values exceeding 90%, indicates the effectiveness of the hybrid U-Net approach
in accurately segmenting brain tumors. Although this study showed good results, some limitations are
not necessary. The success of the plan depends on diversity and large enough data to train deep learning
models. Additionally, the generalization of this model to different cultures and artistic processes needs
to be further investigated. Future studies may focus on validating this approach on larger, more diverse
data sets, as well as exploring other strategies designed to address issues such as conflict that are
designed in the classroom and lead to fewer cancers. While the proposed hybrid U-Net model using
U-Net and CNN for brain segmentation demonstrates results, it is important to acknowledge the
limitations of this approach.

5 Conclusion

In contrast to healthy brain tissue, brain tumors may develop anywhere in the brain and take on a
variety of forms. Therefore, the most accurate and sensitive segmentation method should be used. This
study uses preprocessed data to improve MRI quality and then evaluates the effect of coupling the U-
Net learning model-based framework (i.e., MRI boundary) on the MRI of three types of brain tumors.
According to testing results, the proposed hybrid-UNet model fared better at segmenting brain tumors
than earlier models. Our segmentation findings were more accurate and exact than those from rival
algorithms, with better results for all performance metrics pertaining to brain tumors. The proposed
method achieved 99% accuracy. The main limitations of the given research are its post-processing and
pre-processing techniques, which increase the computational time.
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