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ABSTRACT

The utilization of visual attention enhances the performance of image classification tasks. Previous attention-
based models have demonstrated notable performance, but many of these models exhibit reduced accuracy when
confronted with inter-class and intra-class similarities and differences. Neural-Controlled Differential Equations
(N-CDE’s) and Neural Ordinary Differential Equations (NODE’s) are extensively utilized within this context. N-
CDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with
enhanced clarity. To this end, an attentive neural network has been proposed to generate attention maps, which
uses two different types of N-CDE’s, one for adopting hidden layers and the other to generate attention values. Two
distinct attention techniques are implemented including time-wise attention, also referred to as bottom N-CDE’s;
and element-wise attention, called top N-CDE’s. Additionally, a training methodology is proposed to guarantee that
the training problem is sufficiently presented. Two classification tasks including fine-grained visual classification
and multi-label classification, are utilized to evaluate the proposed model. The proposed methodology is employed
on five publicly available datasets, including CUB-200-2011, ImageNet-1K, PASCAL VOC 2007, PASCAL VOC
2012, and MS COCO. The obtained visualizations have demonstrated that N-CDE’s are better appropriate for
attention-based activities in comparison to conventional NODE’s.

KEYWORDS
Differential equations; neural-controlled DE; image classification; attention maps; N-CDE’s

1 Introduction

Image recognition encompasses several techniques for automatically assigning one or many
labels to an image, depending on its visual contents. This task, which can be categorized into multi
and single labelled image class, is both underlying and applicable in practice. Convolutional Neural
Networks (CNNs) have also achieved tremendous success in recent times [1–3]. Recently, researchers
have employed the CNNs in human action recognition [4,5], document classification [6], blockchain
security [7] and superhero classification [8]. Nevertheless, the efficacy of CNNs remains relatively
constrained when confronted with demanding image recognition tasks. Illustrated in Figs. 1a and 1b
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are representative images and their respective class, extracted from the MS COCO [9] and PASCAL
VOC dataset [10], serving as instances of Fine-Grained Visual Categorization (FGVC) and image
classification.

Figure 1: A selection of representative images obtained from various datasets [9–11]

A form of differential equation that includes a control input or a decision-making mechanism
is referred to as a Controlled Differential Equation (CDE). These equations delineate the temporal
evolution of a system’s state within the framework of dynamic systems and control theory. They
account for both the inherent dynamics of the system and the impact of external controls. To define
the specific terminology: a) Differential Equation (DE): DEs of functions are utilized in this type
of equation. These derivatives represent the rates of change of particular variables in the context
of CDE’s; and b) Controlled: The term “controlled” denotes the circumstance in which a control
input influences or directs the behavior of the system. The control input in question is commonly
a programmable function that can be altered or tailored to accomplish intended system operations.
Consequently, a CDE delineates the temporal evolution of a system’s state, incorporating not only the
intrinsic dynamics of the system but also the influence of a control input. In mathematical notation, a

CDE may be represented as
dx
dt

= f (x, u), here, x denotes the system’s state variables, t signifies time,

u signifies the control input, and f represents a function describing the system’s natural evolution.

The presence of several factors such as viewpoint, occlusion, illumination, scale and appearance
contribute to the substantial intra-class variations observed in picture identification. These factors,
along with the interplay between different object categories, provide considerable challenges and
render image classification a more complex task. Additionally, Fig. 1c depicts a collection of bird
photos and their respective class sourced from CUB-200-2011 dataset [11], which is recognized as a
demanding dataset comprising 200 distinct bird species. The presence of significant intraclass variances
resulting from factors such as pose, scales, and position, along with the small changes between classes,
contribute to the challenging nature of FGVC. One may pose the question: Is it possible to develop a
methodology that possesses the capacity to augment the efficacy of representation?

It is most likely possible to relate the observed performance disparities between N-CDE’s and
Neural Ordinary Differential Equations (NODE’s) to certain architectural variations and innate traits
that are ingrained in the models. Different architectural features such as attention processes, network
depth, skip connections, and complexity may be responsible for different information-capturing and
information-using capacities. The phenomenon of image analysis has been the subject of substantial
research in previous studies since it has been recognized as an efficient method for enhancing the
representation capabilities of machine learning in multiple domains like object recognition [12–14],
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image denoising [15], detection of human movement [16], CPU scheduling [17], target detection
[18], person identification [19] and Spoof detection [20]. Furthermore, intrinsic features like data
augmentation, learning rate tactics, regularization approaches, and parameter initialization can have a
significant impact on how well the models generalize and learn. The details in how these components
are implemented within the architectures, in addition to taking the difficulty of the task and the
structure of the dataset into account, are important factors affecting the observed differences in
model performance. Referring to the original research papers or documentation related to N-CDE’s,
and NODE’s is crucial for a thorough understanding because these sources usually offer in-depth
explanations of the experimental conditions, hyperparameter settings, and architectural decisions that
lead to the differences that are observed [21].

When compared to N-CDE’s, the use of NODE’s in attention-based models may have certain
drawbacks. Due to the complexity of attention systems, one significant obstacle is the possible
difficulty in comprehending the decisions made by the model. Comprehending the logic behind
the model’s concentration on input data areas could be intricate, impeding the model’s clarity and
comprehensibility. Furthermore, the scalability of the model may be impacted by the computational
complexity brought about by attention processes, particularly if they are widespread or complicated
and result in longer training durations and higher resource requirements. Attention-based models
have a danger of overfitting, especially if they do not have good regularization techniques, and they
might not translate well to new, untested data. Potential drawbacks include these models’ sensitivity
to hyperparameter decisions as well as their reliance on the variety and distribution of the training
set. Standardization issues in attention mechanisms, such as NODE’s, might make it difficult to
compare them across various architectures, and their efficacy in tasks requiring a more comprehensive
contextual awareness may be restricted by their inability to capture long-range dependencies. Fur-
thermore, the resilience of attention-based models in practical applications may be questioned due to
their susceptibility to adversarial attacks. It is crucial to remember that the specific shortcomings of
NODE’s and how they compare to N-CDE’s will vary depending on how well each architecture is
implemented [22].

An advanced method to improve neural network modeling is the combination of N-CDE and
attentive neural networks to generate attentive N-CDE’s. The underlying idea is to combine N-
CDE’s—which are well-known for their capacity to simulate dynamics in continuous time—with
attention mechanisms that allow for the selective focus on important aspects. This combination enables
the dynamic adaptation to important features at different time points and enables the modeling of
temporal dynamics using differential equations in attentive N-CDE’s. This is particularly useful for
time-series data, where it is essential to capture changing patterns over time. Moreover, the inclusion
of attention mechanisms makes it easier to create attention maps, which offers insight into the temporal
events that affect the model’s predictions. The promise of this combined method in managing complex
and dynamic data structures is demonstrated by the synergy between N-CDE’s and attention processes,
which not only increases interpretability in time-series analysis but also strengthens the model’s
robustness to noisy or irregular temporal patterns [23].

Over the course of time, persistent initiatives have been undertaken to tackle the concerns. A
new methodology of arranging feature information with a class specific weight along with an extra
approach to improve the impact of the feature information arrangement was introduced to comprehen-
sively handle classification and localization misalignment. The results showed MaxBoxAccV2 score
of 68.9% and 79.5% on CUB-200-2011 and ImageNet-1K datasets, respectively. A clustering-based
approach that is Class RE-Activation Mapping (CREAM) was applied on class specific background
context-embeddings as cluster centers and contextual embeddings were learned during training by
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CAM-guided momentum preservation approach. CREAM performed well on OpenImages, ILSVRC
and CUB benchmark datasets [9]. A pipeline for DA-WSOL was devised with the aim of incorporating
domain adaption (DA) methodologies into WSOL by utilizing target sampling strategy to choose
various sorts of target samples and experiments showed better results from SOTA methods on multi
benchmark.

Class-agnostic Activation Map (CAM), a contrastive learning approach, utilized unlabeled images
data without relying on image-level supervision and reported to successfully extract object bounding
boxes [24]. CNN in conjunction with Recurrent Neural Network (RNN) was utilized for defining
image-label relationship and the semantic label dependence. The experimental results of RNN-CNN
outperformed multi-label classification models [25]. The regional latent dependencies model was
developed which comprises a full convolutional localization model to locate the region and the located
regions are then forwarded to the RNN for characterization of dependences at the regional level. They
claimed the best performance of model for predicting small objects [26].

The evaluation of the depth of the convolutional network was conducted using an architecture
that employed compact (3 × 3) convolution filter, which revealed that by increasing the depth to
16–19 weight layers, a notable enhancement in performance was attained compared to previous
configurations [27]. A framework for residual learning was developed, which obtained good gen-
eralization performance on recognition tasks by explicitly reformulated layers as learning residual
parameters in relation to corresponding layers, as opposed to learning unreferenced functions [28].
Multi labelled image recognition was achieved by proposing a recurrent memorized attention-based
module, consisting of an LSTM and transformer layer subnetwork. They reported better results for
both accuracy and efficiency on PASCAL VOC 07 and MS COCO dataset [29].

Multi object recognition was performed by extracting object proposals using selective search,
which yielded two distinct types of extracted features. The LMNN CNN was provided with a low-
dimensional feature to generate the label view, while the normal CNN feature was employed as the
feature view and then these two views were fused. The results validated discriminative effect and
the generalization capability of the model [30]. A novel attention framework utilizing reinforcement
learning was devised to address the problem of redundant computation cost by iteratively identifying
a series of attentional and informative regions associated with semantic objects. On MS COCO and
PASCAL VOC, this technique outperformed in efficiency and region-specific picture labelling [31].

Reinforcement learning approach to classify multi class images that seeks to replicate human
behavior in order to assign labels to images from simple to complex was utilized to sequentially predict
labels [32]. RNN model with an attention layer as well as LSTM layer was used for multi labelled image
recognition to jointly learns the labels of interest and results proved to be effective on MS COCO
and NUS-WISE datasets [33]. A unique deep learning architecture was constructed that integrates
knowledge graphs to represent the connections among multiple labels and learns information from
semantic label bay. The proposed methodology exhibited enhanced performance in the context of
multi labelled recognition and multi labelled zero-shot learning (ML-ZSL) [34].

Attention maps were generated from Spatial Regularization Network (SRN) and results obtained
from regularized network were merged with original outcomes by a ResNet-101 model, and SRN
model demonstrated improved classification performance for both spatial and semantic relationships
of labels [35]. An effective attention module called Convolutional Block Attention Module (CBAM)
was developed with the ability to integrate with CNN architecture, resulting in minimal computational
overhead [36]. A novel model called Squeeze-and-Excitation (SE) was designed which dynamically
adjusts channel wise feature retorts by overtly capturing the mutuality among channels. The SENet
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architecture was constructed by concatenating many SE blocks, resulting in a significant reduction in
top-5 errors to a value of 2.251% [37].

Although N-CDE’s exhibit potential in representing dynamic dependencies in neural network
models, significant research gaps still need to be filled. First, more research is needed to determine
how well N-CDE’s scale and perform when handling huge datasets or intricate model architectures.
Real-world applications require an understanding of the computational demands and potential
obstacles. Furthermore, studies might explore N-CDE interpretability in further detail, focusing on
how reliable and understandable these models are, particularly when used for challenging tasks.
Moreover, evaluating N-CDE’s adaptation to different real-world settings requires examining their
generalization abilities over a range of datasets and domains. Another area that needs attention is
the creation of strong training procedures, regularization approaches, and methodologies for dealing
with problems like overfitting or underfitting. Finally, comparisons with other dynamic modeling
techniques can shed light on the advantages and disadvantages of N-CDE’s, leading to a more
thorough comprehension of their suitability in various situations. Filling in these research voids will
help N-CDE’s mature and become more widely used in dynamic modeling applications.

2 Attentive N-CDE’s

In NODE’s, a time series multivariate vector w (t1) at any time (t1) which can be computed by
initial vector w (t0) by w (t1) = w (t0) + ∫ t1

to
g

(
w (t) ;∅g

)
dt, where the value of time point tj ∈ [0, T ].

Here it is noted that g is neural network having a parameter ∅g and a time dependent derivative term w.
So, it can be said that the fundamental evolutionary technique information of w after being initialized
lies in g. A lot of models include w but they have no limitations to heat-diffusion process, climate, and
epidemic model. Though, the model which directly calculate w like RNN’s are known as discrete while
the NODE’s models are continuous with respect to time t. In the integral term the time variable is
controlled freely, e.g., t1 as shown above with the help of which at any time t, w can be found.

As compared with NODE’s, the starting process assumptions are more complicated than N-
CDE’s, the integral used in it is known as Riemann-Stieltjes, i.e., w (t1) = w (t0)+

∫ t1
to

g
(
w (t) ;∅g

)
dV (t).

If the identity function with respect to variable t, i.e., V (t) = t is used then N-CDE’s are reduced
to NODE’s. As the controlled parameter of NODE’s is “t” and N-CDE’s have a time series V (t).
Therefore, N-CDE’s could also be taken as NODE’s generalization.

Another important feature is that the multiplication of matrix vector g
(
w (t) ;∅g

)
dV (t) is done

without requiring huge computational cost. Fig. 2 shows the general architecture of N-CDE’s, whereas
in Fig. 3, it is shown that N-CDE’s of two types are used in proposed Attentive N-CDE’s technique
with one N-CDE’s attention values are generated and the other one is used for initialization of w ().
Two distinct attention techniques are used in proposed scheme one is known as “Time-wise attention”,
called Bottom N-CDE’s in which attention value is given as 0 ≤ α(t) ≤ 1 and the other one is known as
“Element-wise attention”, called Top N-CDE’s whose attention value α(t) ∈ [0, 1]dim V(t). The direction
V and attentions of bottom N-CDE’s are concatenated, which is represented by ⊗ symbol. In these
two cases, initialize second N-CDE’s by V (t) and attention element wise multiplication represented
by Z (t), in this way, the input values of N-CDE’s are selected by the first N-CDE’s variable V (t). A
training technique is proposed that ensures the training problem is adequately posed.
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Figure 2: General architecture of N-CDE’s

Figure 3: General architecture of proposed attentive N-CDE’s

2.1 Neural ODE’s

NODE’s are used to provide the solutions of Initial Value Problems (IVP) that contain integral
terms for the calculation of w (t1) via w (t0):

w (t1) = w (t0) +
∫ t1

to

g
(
w (t) ;∅g

)
dt, (1)

where, the ODE’s (Ordinary Differential Equations) g
(
w (t) ;∅g

)
is neural network used for the

approximation of w′(t)(i.e., w′ (t) = dw
dt

). For the solution of integral term NODE’s commonly used

solvers for ODE’s that mainly includes Euler Method, Modified Euler, Runge Kutta Methods (RK-
Method), and Dormand-Prince (RKDP) method for higher order ODE’s. Fig. 4 depicts NODE’s
conventional architecture.

Figure 4: General architecture of NODE’s

Generally, to discretize the time variable (t) and conversion of integral into other additional step
ODE’s solvers are utilized. For example, explicit Euler’s technique in one step is written as follows:

w (t + h) = w (t) + hg
(
w (t) ;∅g

)
, (2)

where, h represents the Euler’s method step size. The RKDP technique utilize more advanced technique
for updating w (t + h) from w(t) and it helps to control step size (h) dynamically. But sometimes the
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ODE’s solvers may cause numerical instability. For example, RKDP technique occasionally results
in underflow error because it reduces the step size. Several other techniques were also suggested for
the prevention of these unexpected issues. The adjoint sensitivity approach, which is employed for its
effectiveness and theoretical accuracy, is utilized to develop NODE’s in the context of backpropagation
technique.

Consider the optimizing scalar valued loss-function L(), the input of this function is derived from
results of ODE’s solver.

L (w (t1)) = L(w (t0) +
∫ t1

to

g
(
w (t) ;∅g

)
dt = L(ODESolve

(
w, t0, t1, g,∅g)

)
; (3)

For the optimization of L, gradient with respect to ∅g is required. Let us consider the adjoint

quantity αw (t) = ∂L
∂w(t)

, for loss function L, the calculation of gradient for loss with respect to (w.r.t)

parameters with the help of integral reverse mode is given as:

grad∅g (L) = −
∫ t0

tn

αw (t)
T ∂g

(
w (t) ;∅g

)
∂∅g

dt, (4)

gradw(0)L and the gradients can be propagated backwards to parts before ODE’s. It is important
to note that time complexity of adjoint sensitivity is O (1), while trained NODE’s complexity is
proportional to quantity of RKDP steps. Both the techniques have similar time-complexities, but the
efficiency of adjoint-sensitivity is quite better than backpropagation techniques. So, it helps to train
NODE’s more efficiently.

2.2 Neural CDEs

One drawback observed in NODE’s is that, if given ∅g, w (t1) is determined solely based on w (t0),
which raises concern regarding the capability of NODE’s for representation learning. To address this
limitation, N-CDE’s used given time-series data to introduce a supplementary path denoted as V(t).
Consequently, the formulation for w (t1) is now regulated by both w (t0) and V(t).

The formulation of the Initial Value Problems (IVP’s) for N-CDE’s are expressed as follows:

w (t1) = w (t0) +
∫ t1

to

g
(
w (t) ;∅g

)
d(V (t)) (5)

w (t1) = w (t0) +
∫ t1

to

g
(
w (t) ;∅g

) dV(t)
dt

dt, (6)

where, V (t) characterizes a natural cubic-spline path, originating from the inherent time series data. It
is noteworthy that this integral problem is quoted as the Riemann-Stieltjes integral, a departure from
the traditional Riemann integral employed by NODE’s. Furthermore, CDE’s function g

(
w (t) ;∅g

)
is

introduced to approximate
dw(t)

d(V (t))
. While various methods can be employed for determining V (t),

the authors prefer natural cubic spline method because of its advantageous characteristics such as
being twice differentiable, computationally efficient, and ensuring the continuity of V (t) concerning
t after interpolation.
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2.3 Overall Workflow

Initially, a continuous path V(t) utilizing standard cubic-spline technique is constructed by
assumed data of time series, i.e., (v0, t0), (v1, t1), . . . . Initialize N-CDE’s from bottom by V(t) for
production of attention outputs at every point of time t. Attention element wise multiplication and
function V(t) used in creation of the path values Z(t) in Eq. (15). Now, initialize the N-CDE’s from top
for the generation of hidden last vector. Eq. (19), contains additional classified layers which generate
outcome. Besides of, raw points {(v0, t0), (v1, t1), . . . , (vm, tm)}, irregular and discrete behavior of given
data V(t) path shows continuous behavior also V(tm) = vm, where the time tm is calculated by vm. All
other non-calculated points were interpolated by cubic-spline technique using nearest data set. Fig. 5
shows the overall design of the anticipated prototype.

Figure 5: Overall design of the anticipated attentive N-CDE’s

2.4 N-CDE’s Vs NODE’s

Initially, a continuous path V(t) utilizing standard cubic-spline technique is constructed by
assumed data of time series, i.e., {(v0, t0), (v1, t1), . . .}. Initialize N-CDE’s from bottom by V(t) for
production of attention outputs at every point of time t. Attention element wise multiplication and
function V(t) used in creation of the path values Z(t) in Eq. (15). Now, initialize the N-CDE’s from top
for the generation of hidden last vector. Eq. (19) contains additional classified layers which generate
outcome. Besides of, raw points {(v0, t0), (v1, t1), . . . (vm, tm)}, irregular and discrete behavior of given
data V(t) path shows continuous behavior also V(tm) = vm, where the time tm is calculated by vm. All
other non-calculated points were interpolated by cubic-spline technique using nearest data set.
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The existence of path V (t) is main key point that distinguish between N-CDE’s and NODE’s
techniques. In N-CDE’s, V (t) is calculated particularly by cubic spline which utilized upcoming data
values {vt′ } , t′ > t, in combination with its recent and previous calculations, which is the limitation
in NODE’s. Hence, N-CDE’s is comparatively better than NODE’s technique. Also, N-CDE’s are
converted to NODE’s by V (t) = t which is commonly known as identity function.

2.4.1 Bottom N-CDE’s for Attention Values

The bottom N-CDE’s is formulated as follows:

s (t1) = s (t0) +
∫ t1

to

g
(
s (t) ;∅g

)
dV (t) ; (7)

= s (t0) +
∫ t1

to

g
(
s (t) ;∅g

) dV(t)
dt

dt (8)

Here, s(t) represents attention hidden vector and used for its derivation at time t. Here our
article will support two attention concepts, i.e., attentions depending on time α(t) ∈ R and element
α(t) ∈ Rdim(V(t)). In the first type, the output size is 1 for a fully connected layer FC1, here α (t) =
sigma(FC1(s (t)), represents scalar value. However, the roles are reversed in second type, where α (t) =
sigma (s (t)) is a vector. Our observation indicates equivalence between bottom N-CDE’s and the
original N-CDE’s setting.

These attention types are associated with different output sizes and activation functions. In our
study, we will study three variations of the sigmoid activation function. The first two are soft attention
and hard attention utilizing the original sigmoid represented. Hard attention would later be finished
with rounding function. The third variation will be hard attention with sigmoid slope annealing
referred to as straight through estimator. We will disregard soft attention on the count of using original
sigmoid. The forward and backward paths definitions for hard attention are given as:

For forward-path,

sigma (v) = ceil (sigmoid (v)) ; (9)

For backward path,

grad (sigma (v)) = grad (sigmoid (v)) ; (10)

In straight through estimator, for forward-path,

sigma (v) = ceil (sigmoid (Tv)) ; (11)

For backward path,

grad (sigma (v)) = grad(sigmoid ((Tv)) ; (12)

Notably, the temperature parameter T controls the slope of the sigmoid function.

Slope of sigmoid function is controlled via temperature T such that T ≥ 1.0 is a scalar. For a
significantly large T , slope of the sigmoid function approaches that of the rounding function. Hence,
after initializing it to 1 at the start, we uniformly keep increase 0.12 to T every epoch. In soft time
attention, the distribution is combined with the features of the localized portion, in hard time, attention
uses stochastic models like the Monte Carlo Method and reinforcement learning, making it less
popular, while in Space, Time, and Environment (STE), all factors of soft and hard are integrated.
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Table 1 shows all six, possible attention models that we retained by using three types of attention (soft
time, hard time and STE time) and three variations for sigma.

Table 1: Different combinations of attentions

Attention model Type of attention Variation of sigma (T )

By Element
α (t) ∈ Rdim(V(t))

STE Time Straight
Hard Time Hard
Soft Time Sigmoid

By Time
α (t) ∈ R

STE Time Straight
Hard Time Hard
Soft Time Sigmoid

2.4.2 Top N-CDE’s for Classification

The top N-CDE’s is expressed as follows:

w (t1) = w (t0) +
∫ t1

to

q
(
w (t) ;∅q

)
d (Z(t)); (13)

= w (t0) +
∫ t1

to

q
(
w (t) ;∅q

) dZ(t)

dt
dt (14)

where,

Z (t) =
{

α (t) V (t) if attention is time wise
α (t) ⊗ V (t) if attention is element wise

(15)

Given here, Z (t) is the element wise multiplication between attention and V (t).⊗ represents
the element-wise multiplication operation. Being able to store information picked by the bottom N-
CDE’s in Z (t), top N-CDE’s is free to only concern itself with useful information and consequently
downstream Machine Learning (ML) tasks can be. Therefore, Z (t) includes information chosen by
the bottom N-CDE’s. The top N-CDE’s can exclusively emphasis on valuable data, leading to an
enhancement in the performance of subsequent ML tasks.

Further derivation of the above equation in tractable form as:

w (t1) = w (t0) +
∫ t1

to

q
(
w (t) ;∅q

) dZ(t)
dt

dt (16)

For attention in time wise,

dZ (t)

dt
dt = dV (t)

dt
α (t) + V (t) α (t) (1 − α (t))

(
dFC1 (s (t))

ds (t)

) (
ds (t)

dt

)
(17)

For attention in element wise,

dZ (t)

dt
dt = dV (t)

dt
dtα (t) + V (t) α (t) (1 − α (t))

(
ds (t)

dt

)
(18)
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We highlight that our derivations primarily assume soft attention but remain applicable to hard-
attention and straight through estimator. These attention mechanisms facilitate the selection of
relevant values by the top N-CDE’s, enhancing the execution of downstream ML tasks. The generated
value by hard attention lies in set {0, 1} and the interval values in [0,1] are caused by soft attention.
The architectures of function g in bottom N-CDE’s and q in top N-CDE’s are given in Tables 2 and 3,
respectively.

Table 2: Architecture of function g in bottom N-CDE’s. FCL denotes fully connected layer,

represents Rectified Linear Unit (ReLU) ɝ and represents hyperbolic tangent (Tanh)

Layer No. Type Input Output

1 FCL 224 × 1024 224 × 2048
2 (FCL) 224 × 2048 224 × 2048
3 (FCL) 224 × 2048 224 × 2048
4 (FCL) 224 × 2048 224 × 2048
5 (FCL) 224 × 2048 224 × 2048
6 (FCL) 224 × 2048 224 × 2048

7 ɝ (FCL 224 × 2048 224 × 1024

Table 3: Architecture of function q in top N-CDE’s

Layer No. Type Input Output

1 FCL 224 × 4096 224 × 4096
2 (FCL) 224 × 4096 224 × 4096
3 (FCL) 224 × 4096 224 × 4096
4 (FCL) 224 × 4096 224 × 4096
5 (FCL) 224 × 4096 224 × 4096
6 (FCL) 224 × 4096 224 × 4096

7 ɝ (FCL) 224 × 4096 224 × 2048

8 ɝ (FCL) 224 × 2048 224 × 1024

Hence, it is noted that the hard-attention range is still valid. For example, consider that if attention

is calculated time wise and by hard attention the value of α(t) is either 0 or 1. Consequently,
dZ (t)

dt
= 0

or
dZ (t)

dt
= dV (t)

dt
that correspond exactly to proposed attention motivation, which have the concept

that the top values of N-CDE’s are chosen by the bottom values N-CDE’s. Estimator of straight
through is taken as a hard-attention variant of temperature annealing, which also produced values
that are either 0 or 1. So the equations are easily used in all three defined attentions.
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Algorithm 1: AN-CDE’s training algorithm
Input: Training Data (Dtrain), Validating Data (Dval), Max. Iteration No. (maxiter)

1. Start ∅g,∅q and other parameters ∅others, if required for example extractor feature and classifier
parameters.

2. n ← 0;
3. While n < maxiter do;
4. Train ∅others while keep∅g and ∅q fixed;
5. Train ∅g whil keep∅others and ∅q fixed;
6. Train ∅q while keep∅g and ∅others fixed;
7. Update and verify the best parametric values, ∅g

∗, ∅q
∗, and ∅others

∗ fromDval.
8. n ← n + 1;
9. Return ∅g

∗, ∅q
∗, and ∅others

∗;

2.5 Training Algorithm and Well-Posedness

Backpropagation adjoint technique is used to trained N-CDE’s whose required memory is O(G +
K), where G = t1 − t0 which is referred as integral time space, and K denotes size of defined N-CDE’s
filed vector. Thus, adjoint method is used in training of Algorithm 1, from Line 4 to 6. Though the
proposed algorithm requires two N-CDE’s which results in increment of memory, i.e., O(2G+Kg+Kq),
here Kg and Kq represent the field vector sizes obtained by bottom and top N-CDE’s, respectively.

On a fixed path, the well-posedness of N-CDE’s is already utilizing the mild circumstances of
Lipschitz continuity, which have a constant of 1 for all activations including, Softsign, ArcTan,
Sigmoid, Tanh, SoftPlus, Leaky ReLU and ReLU. Other commonly used CNN layers, i.e., pooling,
batch normalization and dropout have explicit Lipschitz continuity. Thus, the continuity of g and q is
achieved in proposed model as the attention values for bottom N-CDE’s are produced by keeping ∅q

fixed (Line 5 of Algorithm 1) and attention values for top N-CDE’s re produced by keeping ∅others fixed
(Line 6 of Algorithm 1). During the experimental process, the classification task is solved by adopting
the ordinary cross entropy loss having a hidden layer w (t) and classification output layer as:

�o = ς (FCL ((w (t)))) (19)

Here �o is the predicted output label and denotes a softmax activations. The output size of FCL
is kept uniform equals to total classes in each dataset, whereas standard cross entropy function is also
adopted.

3 Experiments
3.1 Datasets and Performance Measures

The proposed model is assessed on two classification tasks (fine-grained visual classification and
multi-label classification). A total of five (5) publicly available datasets including are utilized to CUB-
200-2011 (D1) and ImageNet-1K (D2), PASCAL VOC 2007 (D3), PASCAL VOC 2012 (D4) and MS
COCO (D5) are utilized during the experiments. D3 and D5 are used for multi-label classifications,
whereas D1, D2 and D4 are used for fine-grained visual classifications. D1 dataset contains 5994
training and 5794 testing images of bird species. D2 dataset has 1.3 million images for training and
50000 images for testing across 1000 classes. D3 contains 5011 and 4952 images for training and testing
across 20 classes, whereas D4 has 11540 training images, 10991 testing images and a total of 20 classes.
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D5 contains 123000 images and 80 classes, where 82783 are training images and 40504 are testing
images.

MaxBoxAccV2 is utilized to evaluate the model on D1 and D2. For D2 and D3, widely used mean
Average Precision (mAP) is used along with recording results for each of the 20 classes. Conventional
performance measures such as Precision (P), Recall (R), mAP, Average Precision (AvP), Average Recall
(AvR), Class-wise Average F1 score (AvF1C) and Overall Average F1 score (AvF1O) are used to
evaluate the proposed model on D5.

3.2 Implementation Details

All experiments are performed on Windows 11, Python 3.12.0, CUDA 12.2, TENSORFLOW
2.14.0, MATPLOTLIB 3.8, SCIPY 1.11.3, NUMPY 1.20.3, i7 CPU and NVIDIA RTX TITAN
with Nvidia GeForce Graphics Driver 537.58. All experiments are repeated 3 times and reported
results are the mean accuracies. For the testing of proposed model on all selected datasets, a total
of 240 epochs with a batch size of 16 are executed with

{
0.5 × 10−3, 2.0 × 10−3, 0.5 × 10−4, 2.0 × 10−3

}
learning rate, hidden layers of size {50, 60, 65, 70, 75} and N-CDE’s have {6, 7, 8, 9} layers. Best results
are achieved by adopting a learning rate of 0.5 × 10−4, 65 hidden layers and 7 layers in bottom N-
CDE’s, whereas 8 layers in top N-CDE’s. When evaluating attention-based models for intra- and inter-
class similarities, it is necessary to evaluate the following metrics: F1 score, precision, recall, confusion
matrices, and classification accuracy. Furthermore, examining attention maps, ROC curves, AUC, and
feature embeddings offers perceptions into the interpretability and performance of the model. While
domain-specific metrics take care of application-specific requirements, cross-validation guarantees
generality. When these measures are combined with visualization tools, it becomes possible to gain
a thorough insight of how well the model handles both intra- and inter-class differences. Standard
criteria like classification accuracy, precision, recall, and F1 score are often used in evaluation metrics
to examine how well models like N-CDE’s and NODE’s represent similarities and differences. These
metrics evaluate the models’ capacity to accurately categorize instances, distinguish across classes, and
manage variations within a class. Furthermore, based on the particulars of the work, researchers might
use more specialized measures, including feature embedding analyses or domain-specific metrics.
In order to achieve resilience, the evaluation procedure frequently takes into account the models’
performance across different subsets of the data and makes use of cross-validation techniques.

3.3 Comparisons with State-of-the-Art

3.3.1 Results on CUB-200-2011 and ImageNet-1K Dataset

Proposed model is compared with 7 fine-grained image classification methods including iCAM
decomposition [21], CREAM [2], WSOL [23], BagCAMs [38], ViTOL [39], iMCL, iMCL [40] and
C2AM [24]. This comparison is presented in Table 4. BagCAMs is a plug-and-play technique that
was developed for localization task based on the regional localizer generation (RLG) technique,
which involves defining a collection of regional localizers and subsequently deriving them from a
well-trained classifier. They reported that BagCAMs method achieved SOTA performance on three
WSOL benchmarks [38]. Object localization was performed by employing vision transformers for
self-attention (ViTOL) and patch-based attention dropout layer (p-ADL) was included to enhance
the coverage of the localization map. The results showed that on ImageNet-1K and CUB datasets
MaxBoxAcc-V2 localization scores was 70.4% and 73.17%, respectively [39]. Enhancements were
introduced to SimCLR by proposing iMCL, where improvements were made in the MoCo framework,
accompanied by certain adjustments to MoCo using MLP projection head and the application of
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additional data augmentation techniques. They established stronger baselines that outperformed
SimCLR and do not require large training batches [40]. The proposed model exhibited superior
performance compared to iMCL by a margin of 2.3% and outperformed BagCAMs by a margin of
7.3% on the D1 dataset. The performance of the proposed model on the D2 dataset surpasses that of
ViTOL and BagCAMs by 5.3% and 5.8%, respectively.

Table 4: Comparison of proposed methodology with state-of-the-art on CUB-200-2011 and
ImageNet-1K

Methods Backbone CUB-200-2011 (D1) ImageNet-1K (D2)

iCAM decomposition [21] ResNet-50 75.9 68.7
CREAM [22] ResNet-50 73.5 67.4
WSOL [23] ResNet-50 69.8 68.2
C2AM [24] ResNet-50 83.8 66.8
BagCAMs [38] ResNet-50 84.8 69.9
ViTOL [39] ViT-S 73.1 70.4
iMCL [40] ViT-S 89.9 –
Proposed Attentive N-CDE’s 92.1 75.7

3.3.2 Results on PASCAL VOC 2007 Dataset

For this dataset, the proposed model is compared with 12 models in terms of mAP as shown
in Table 5. A simple technique for multi-label classification was designed on the concept of simul-
taneously recognizing both labels and the correlation of labels utilizing ConvNet and a common
latent vector space, respectively. The results demonstrated exceptional performance on MS COCO
and PASCAL VOC datasets as benchmark [41]. Deep Semantic Dictionary Learning (DSDL) was
developed in which an auto-encoder created the semantic dictionary and then such dictionary was
utilized by CNN with label embeddings along with Alternately Parameters Update Strategy (APUS)
was applied for training to optimize DSDL. Experimental results showed promising performance on
three benchmarks [42]. The proposed model attained a mAP of 97%, surpassing its nearest competitor
by a margin of 3%.

Table 5: Comparison of proposed methodology with state-of-the-art on PASCAL VOC 2007 (D3)
dataset

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

[25] 96 83 94 92 61 82 89 94 64 83 70 92 91 84 93 59 93 75 99 78 84
[26] 96 92 93 94 71 92 94 95 74 90 74 95 96 92 97 66 93 73 97 87 88
[27] 98 95 96 95 69 90 93 96 74 86 87 96 96 93 97 70 92 80 98 87 89
[28] 99 97 96 94 68 92 95 94 77 89 85 94 96 94 98 80 93 79 98 91 90
[29] 98 97 96 96 75 92 96 97 76 92 87 96 97 93 98 81 93 82 98 89 91
[30] 98 96 97 95 74 94 96 96 76 90 88 96 97 95 98 78 93 82 98 90 92
[31] 98 97 97 95 75 92 96 97 78 92 87 96 96 93 98 81 93 83 98 89 92

(Continued)
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Table 5 (continued)

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

[41] 99 98 97 98 81 93 97 98 82 94 87 98 97 96 98 83 96 84 99 93 93
[42] 99 98 98 97 81 95 97 98 83 95 88 98 97 95 99 86 95 86 98 94 94
[43] 98 97 98 95 75 94 95 97 73 90 80 97 96 94 96 78 94 76 97 91 90
[44] 99 97 98 96 79 93 96 97 78 88 87 97 96 95 99 82 93 82 98 92 92
[45] 99 98 98 98 80 94 97 98 82 95 86 98 98 96 99 84 96 84 98 93 94
Proposed 99 99 98 99 82 96 96 95 84 96 90 97 98 99 99 90 98 89 99 96 97

3.3.3 Results on PASCAL VOC 2012 Dataset

The proposed model is compared with 6 latest techniques for this dataset in terms of mAP as
shown in Table 6. A deep CNN framework referred to as Hypotheses-CNN-Pooling (HCP) performed
classification based on hypotheses extraction, where each supposition is associated to a shared
CNN, and the resulting CNN outputs from different suppositions are combined using max pooling.
The results demonstrated the superiority of HCP with mAP up to 90.5% [43]. Multi-label image
identification employed object-proposal-free framework namely random crop pooling (RCP), which
stochastically scales and crops images ahead of delivering them to a CNN. This technique worked well
for recognizing the complex innards of multi label images on two datasets, i.e., PASCAL VOC 2012
and PASCAL VOC 2007 [44]. The performance of the proposed model on the D4 dataset surpasses
its nearest competitor by a margin of 1%.

Table 6: Comparison of proposed methodology with state-of-the-art on PASCAL VOC 2012 (D4)
dataset

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

[27] 99 88 95 93 73 92 84 97 79 90 83 97 96 94 96 63 93 74 97 87 89
[30] 98 92 93 90 74 93 90 96 78 89 80 95 96 95 97 73 91 75 97 88 89
[32] 98 85 92 88 64 86 82 94 72 83 73 95 91 90 95 58 87 70 93 83 84
[42] 99 95 97 95 83 94 93 98 85 94 83 98 97 95 98 80 95 82 98 93 93
[43] 99 92 97 94 79 93 89 98 78 94 79 97 97 93 96 74 94 71 96 88 90
[44] 99 92 97 94 82 94 92 98 83 93 83 98 97 96 98 77 95 79 97 92 92
Proposed 99 96 98 96 85 95 94 99 86 95 84 97 98 96 97 81 96 83 97 93 94

3.3.4 Results on MS COCO Dataset

For this dataset, the proposed model is compared with 12 models as shown in Table 7. The
multi label classification model was applied based on graph convolutional network (GCN), where
directed graphs were constructed to describe the relationships between object labels, with each label
being represented as word embeddings. The GCN was trained to transform this label graph into
interdependent object classifiers and represented better performance on two datasets [45]. Efficient
Channel Attention (ECA) module achieved improved performance by utilizing a minimal number of
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parameters. They reported to gain performance boost in terms of Top-1 accuracy of more than 2%
[46]. The proposed model performed better than the previous models.

Table 7: Comparison of proposed methodology with state-of-the-art on MS COCO (D5) dataset

Method All Top-3

mAP AvP AvR AvF1C P R AvF1O AvP AvR AvF1C P R AvF1O

[25] 61 66 55 60 69 66 67 – – – – – –
[28] 77 84 59 69 89 62 73 80 66 72 83 70 76
[29] – 79 58 67 84 63 72 – – – – – –
[33] – 71 54 62 74 62 67 – – – – – –
[34] – 74 64 69 – – – – – – – – –
[35] 77 85 58 67 87 62 72 81 65 71 82 69 75
[36] 80 89 57 70 93 62 74 86 63 73 90 67 77
[37] 79 89 57 69 93 61 74 87 61 72 90 66 77
[41] 81 86 62 72 88 65 75 81 70 75 83 73 78
[42] 81 88 62 73 89 65 75 84 70 76 85 73 79
[45] 80 84 61 71 88 65 75 81 70 75 83 74 78
[46] 80 87 60 71 92 63 75 85 66 74 89 69 78
Proposed 83 91 63 75 92 65 76 88 71 75 91 74 80

3.4 Visualization of Attention Maps

To visually demonstrate the efficacy of the proposed model in an intuitive and qualitative
manner, attention maps are depicted in Fig. 6. The proposed model generates attention maps that
are represented by different colors on maps. Dark red indicates the highest level of activation, while
dark blue represents the lowest intensity. It is evident that the attention maps for each class effectively
identify the object instances that belong to the same class, regardless of the number of objects present
in the photos, such as individuals, aircraft, individuals, and animals. Using the final image in the fourth
row as a case study, the suggested model effectively demonstrates its ability to accurately identify the
position of the penguin, even when the object in question is of diminutive size.

The resulting attention maps, which provide a thorough visual examination of the model’s
decision-making process, are produced by a model that makes use of contextual dense embeddings,
or N-CDE’s. These maps provide light on the crucial areas that support the model’s predictions by
illustrating where the model focuses its attention within an input. Through close examination of
these attention maps, one may identify the locations of relevant regions in the input data, which
offers insights into the characteristics that draw the attention of the model. When it comes to tasks
like image classification, where certain regions or patterns are suggestive of different classes, this
thorough attention analysis is especially helpful. Furthermore, attention maps aid in the recognition
of discriminative characteristics, exposing the components that are essential in differentiating between
various groups or classifications. This comprehension is further strengthened by the contextual
character of N-CDE’s, which demonstrates how the model considers more comprehensive contextual
information when making decisions. To put it briefly, attention maps produced by N-CDE’s are
an effective instrument for transparent and comprehensible model analysis. They aid in a better
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understanding of the inner workings of the model and enhance its reliability and performance.
Attention-based neural networks using N-CDE’s show potential for NLP, video and image analysis,
and medical fields. They promote contextual awareness for better recognition in picture analysis. For
more precise predictions, they capture subtle linguistic links in NLP. N-CDE attention models support
medical image analysis in the field of healthcare, providing interpretability that is essential for reliable
diagnosis. All things considered, N-CDE’s strengthen and dependability of models in a variety of
applications.

Figure 6: Visualization of attention maps using proposed methodology

4 Conclusion

Differential equations have been extensively employed in the context of attention-based classifica-
tion tasks. Numerous concepts and variants have been presented after the inception of NODE’s, all of
which have been constructed upon the fundamental principles of NODE’s. The utilization of NODE’s
in CNNs has been infrequent, whereas the incorporation of N-CDE’s has been exceedingly rare. This
article presents a methodology for generating attention maps using an attentive neural network that
utilizes N-CDE’s. The proposed approach involves the use of two distinct types of N-CDE’s: One
for incorporating hidden layers and another for generating attention values. The bottom N-CDE’s are
employed to capture attention values, while the top N-CDE’s are utilized for the classification task. The
proposed approach undergoes evaluation using five publicly available datasets, namely CUB-200-2011,
ImageNet-1K, PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO. As all selected datasets
contain different types of images, so it was evident that the proposed model is generalized. In the
future, the utilization of N-CDE’s can be employed for tasks that necessitate supervised segmentation,
particularly in the domains of semantic segmentation and instance segmentation.
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