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ABSTRACT

In recent years, target tracking has been considered one of the most important applications of wireless sensor
network (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally critical
objectives in this scenario. The existing mechanisms still have weaknesses in balancing the two demands. The
proposed heuristic multi-node collaborative scheduling mechanism (HMNCS) comprises cluster head (CH)
election, pre-selection, and task set selection mechanisms, where the latter two kinds of selections form a two-layer
selection mechanism. The CH election innovatively introduces the movement trend of the target and establishes
a scoring mechanism to determine the optimal CH, which can delay the CH rotation and thus reduce energy
consumption. The pre-selection mechanism adaptively filters out suitable nodes as the candidate task set to apply
for tracking tasks, which can reduce the application consumption and the overhead of the following task set
selection. Finally, the task node selection is mathematically transformed into an optimization problem and the
genetic algorithm is adopted to form a final task set in the task set selection mechanism. Simulation results show
that HMNCS outperforms other compared mechanisms in the tracking accuracy and the network lifetime.
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1 Introduction
1.1 Background

Wireless sensor network (WSN) is comprised of many miniature sensor nodes that are deployed
in a monitored area. These nodes form a self-organizing network through multi-hop wireless com-
munication. In military scenarios, WSN is often applied for target tracking. However, sensor nodes
are mostly deployed in harsh field environments and difficult to replace batteries. Therefore, many
researchers aim to extend the lifetime of WSN from different perspectives, such as regulating the data
reporting process at the zone level through a general event-thresholding model in heterogeneous WSN
[1], obtaining suitable routing protocols for WSN [2], finding efficient relay selection [3] and so on.
In this paper, we mainly aim to extend the network lifetime from the perspective of scheduling nodes
to remove redundancy in WSN for target tracking. The dilemma is that improving tracking accuracy

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047996
https://www.techscience.com/doi/10.32604/cmc.2024.047996
mailto:jiang.wang@mail.sim.ac.cn
mailto:sinoiot@mail.sim.ac.cn


1336 CMC, 2024, vol.79, no.1

requires more nodes to track the target and consumes more energy [4,5]. Therefore, it is important to
investigate how to balance tracking accuracy and energy consumption to prolong the network lifetime
while obtaining favorable tracking performance [6].

To save energy, nodes are put in a sleep state where only the sensing module is turned on, while the
computation and communication modules are turned off until a target is sensed. After being awakened
by the target, the nodes enter the active state and are organized into a cluster to track the target. How
to select the appropriate task nodes from the awakened nodes to perform the tracking task, obtain
better tracking accuracy, and extend the network lifetime is the research motivation of this paper.

1.2 Contributions

The main contributions of this paper are summarized below:

Firstly, we propose a cluster head (CH) election mechanism, which innovatively introduces the
changing trend of the distance between the target and the node to obtain the optimal CH. This reduces
the frequency of CH rotation and thus reduces energy consumption.

Secondly, we develop a pre-selection mechanism that pre-selects a portion of cluster members to
apply for tracking the target. Some unsuitable nodes are prevented from transmitting data to CH, and
some transmission consumption is reduced.

Finally, a mathematical problem is formulated and solved to obtain the final task set from the
candidate task set. The tracking accuracy, the total energy consumption, and the balance degree of
the residual energy of cluster members are jointly considered. Simulation experiments are conducted
and the results show that the proposed heuristic multi-node collaborative scheduling mechanism
(HMNCS) has the most superior performance.

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3
introduces the system model. The proposed protocol is explained in Section 4. Section 5 includes
simulation experiments and performance analysis. Finally, Section 6 concludes the paper.

2 Related Work
2.1 Existing Researches

In WSN for target tracking, there are many researchers dedicated to research on node scheduling.
In [3], Energy proficient clustering (EEPC) was proposed to reduce energy consumption. The place-
ment and energy level are used to select the CH and the relay nodes are obtained by calculating particle
fitness value with their velocity and location. In [7], researchers proposed an improved Unscented
Kalman Filter (UKF) that considers the uncertainty of the network and unpredictability of target
motion. They utilized a genetic adaptive multi-objective algorithm to obtain a better set of task nodes
without knowing the number of sensors to be selected. In [8], a scheduling mechanism based on a
Type-2 Fuzzy Logic System (T2FLS) and a software agent approach was developed. The mechanism
integrates energy, the number of neighboring nodes, and available bandwidth. In [9], researchers
applied target state dynamics to predict the target trajectory and used the particle swarm algorithm
for network optimization. A coordinated tracking mechanism was designed to save overall network
energy consumption. In [10], Zhu et al. proposed an environment-adaptive event-driven robust set
affiliation fusion estimation mechanism to schedule the required number of nodes to track the target.
Experiments demonstrated that it reduces energy consumption and computational complexity while
ensuring localization accuracy. In [11], the sensor selection problem was transformed into a multi-
objective optimization framework, and a new mutual information upper bound (MIUB)–based sensor
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selection mechanism was proposed. The authors studied several sensor selection strategies, such as
how to obtain a task set when minimizing the number of selected sensors or minimizing the difference
between the performance obtained when all sensors transmit data and the performance obtained when
only task nodes transmit data. In [12], researchers proposed a GPB1-UIF (the Generalized Pseudo-
Bayesian estimator of first order and the unscented information filter) algorithm with estimation
feedback and an information quality metric framework to obtain the task set using a multi-objective
optimization strategy. In [13], Fu et al. analyzed the target detection probability and residual energy
of sensors, proposing a new energy-balanced sensor node scheduling algorithm to balance tracking
quality and network lifetime. In [14], Alagha et al. considered factors such as residual energy, power
cost, and data confidence, proposing a new data-driven active node selection mechanism that uses
genetic and greedy algorithms to select the optimal task set. In [15], the scheduling problem was
transformed into a partially observable Markov decision process (POMDP) optimal policy problem
by analyzing the intrinsic relationship between tracking performance and energy consumption. A
dynamic cluster membership scheduling (DCMS) algorithm was proposed to solve the trade-off
problem. In [16], spatial and temporal correlations among nodes were utilized instead of just spatial
correlation. With the support of reconstructed data from the previous moment, a constrained convex
relaxation plus rounding method was applied to obtain the task set, and the proposed mechanism was
experimentally shown to extend the network lifetime. In [17], an accuracy enhancement algorithm and
an active node selection algorithm based on the robust interval fusion preference aggregation (IF&PA)
method were developed to significantly extend the network lifetime while providing high-accuracy
measurements. Measurement uncertainty can be reduced even with a small number of sensors. In
[18], game theory was used to reduce redundancy, and only one active node was periodically selected
in each region to transmit data. Extensive simulation results showed that the proposed mechanism
effectively reduced energy waste and extended the network lifetime. Finally, in [19], a cooperative node
selection mechanism considering the spatial correlation among nodes was proposed to dynamically
select the optimal set of nodes for the tracking task, significantly reducing energy consumption without
degrading tracking accuracy. In [20], the proposed mechanism selects the set of sensors based on
the location of the target and the mobile sink, thereby extending the network lifespan and reducing
complexity. In [21], the researchers proposed an innovative glowworm swarm optimization technique
(SS-GSO) to appropriately divide the clusters and obtain the optimal CHs. The residual energy, total
energy consumption, and other factors are considered to efficiently schedule the nodes. The simulation
results show that SS-GSO performs better in energy consumption and lifetime compared with other
techniques. In [22], the researchers developed a long-term dynamic resource allocation algorithm to
obtain the optimal resource scheduling solution for accurate and consecutive tracking. The algorithm
offloads time-sensitive tasks to sink to improve computing efficiency.

2.2 Remaining Weaknesses

It can be seen that researchers have explored different ways to eliminate redundancy from multiple
perspectives in Section 2.1. However, certain limitations still exist within the current approaches.
Firstly, there is a lack of comprehensive consideration for the rotation process. Since target tracking is
an ongoing task, frequent rotations can lead to substantial energy wastage. Secondly, in the majority
of existing mechanisms, all cluster members are required to transmit pertinent information to the CH
for selection, without taking into account the energy consumption involved in this process. In reality,
if certain criteria can be established for cluster members to halt the transmission of information from
nodes that do not contribute to prolonging the network lifespan, it could result in significant energy
savings.
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3 System Model
3.1 Network Model

Without losing generality, we consider an L ∗ L monitored area where N nodes are randomly
deployed. The target enters the area from the boundary and moves within the area according to
certain rules until leaving the network. To save energy and continuously monitor the target, before the
node perceives the target, only the sensing module is turned on, and the computing and transmission
modules are turned off, that is, the sensor node is in a dormant state. After sensing the target, the node
is awakened and enters the wake-up state, which means all modules are turned on. After awakened
nodes are self-organized into a cluster, CH collects and fuses the data about the target from task nodes,
and then transmits it to the sink. Here the assumptions are as follows:

1. Sink is in the center of the region and has unlimited energy.

2. The transmission radius of the sensor is more than twice the sensing radius to ensure that all
nodes in the cluster can communicate with each other.

3. Nodes can obtain their positions through the global positioning system (GPS) or any other
positioning algorithm.

Fig. 1 shows the schematic diagram of the network scene.

Figure 1: The schematic diagram of the network scene

3.2 Target Movement Model

We denote the state of the target at kth moment is XK = [
xk, vx

k, yk, vy
k

]T
, k = 1, 2, 3, · · · , where xk

and yk are the position coordinates of the target in the horizontal and vertical directions, respectively,
and vx

k and vy
k are the velocities of the target in the horizontal and vertical directions, respectively.
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The state transition equation of the target is as follows:

Xk = F · Xk−1 + Wk−1 (1)

F =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦, Wk−1 is the process noise at k −1th moment and Wk is a zero mean Gaussian

white noise. The covariance matrix of Wk is C. The noise intensity matrix is Q = diag ([q1, q2]) , and

the process noise driving matrix is G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2
0

T 0

0
T 2

2
0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, so C = G · Q · GT . The observation equation of

the node is as follows:

yi
k = h (Xk) + vi

k (2)

h (Xk) =
√

(xk − xi)
2 + (yk − yi)

2 (3)

vi
k ∼ N (0, R) , and vi

k is the observation noise of node i at kth moment. The observation noise and
the process noise are independent of each other. In this paper, UKF is used to estimate the state of the
target [10].

3.3 Energy Consumption Model

The most common energy consumption model is adopted, as shown below [13]:

ETx (l, d) =
{

l · Eelec + l · εfs · d2, d < d0

l · Eelec + l · εamp · d4, d ≥ d0
(4)

ERx (l) = l · Eelec (5)

d0 = √
εfs/εamp (6)

where εfs and εamp are the energy consumed by each bit of data through the power amplifier for the free
space and multi-path wireless channel model, respectively, and d0 is the threshold distance between the
two models. Eelec is the energy consumed by each bit of data transmitted or received by the sensor. d is
the distance between the sender and the receiver.

4 The Proposed Protocol

The proposed protocol HMNCS will be described in detail in this section. Section 4.1 describes
the process of target tracking. Section 4.2 presents the CH selection mechanism. Section 4.3 includes
the pre-selection mechanism. Finally, the task set selection mechanism is introduced in Section 4.4.
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4.1 The Overall Framework of HMNCS

Throughout the journey of the target within the network, a set of strategies has been devised
to enhance tracking accuracy and prolong the network lifespan. These strategies encompass the CH
selection mechanism, the pre-selection mechanism, and the task set selection mechanism, collectively
referred to as the heuristic multi-node collaborative scheduling mechanism (HMNCS), illustrated in
Fig. 2.

Figure 2: The block diagram of HMNCS

The target enters WSN from the area boundary, triggering the awakening of the node responsible
for sensing the target. In the initial round, since no node possesses complete information about the
cluster at the outset, the first awakened node assumes the role of CH, while the remaining nodes
become cluster members. If an awakened node fails to receive the announcement message transmitted
by other nodes, it broadcasts its announcement message, declaring itself as the temporary CH, and
awaits join messages from other nodes. However, if the awakened node successfully receives the
announcement message from other nodes, it sends a join message to the temporary CH, seeking
admission into the cluster. The temporary CH responds by sending a confirmation message to the
awakened nodes, verifying their inclusion in the cluster. Subsequently, the temporary CH employs the
CH selection mechanism to determine the actual CH and broadcasts the information in the cluster.
Once the cluster members are aware of the true CH, the temporary CH relinquishes its role and
becomes a cluster member.

After a cluster is formed, each node obtains the number of awakened nodes in its neighborhood
by exchanging information between itself and neighbor nodes. Then it determines whether it applies
to CH to be a task node according to the pre-selection mechanism, which will be introduced in
Section 4.3. If it meets the pre-selection conditions, it will send an applying message including the
residual energy and the observation of the target state to CH. CH derives the task set by applying the
task set selection mechanism, which will be described in Section 4.4, and broadcasts the scheduling
result in the cluster. Those selected task nodes keep awake to track the target, while those non-task
nodes enter the dormant state to save energy. Task nodes keep tracking and send observations to CH.
CH fuses the collected information, uses UKF to obtain the estimated target state, and then sends it
to the sink. In the second and subsequent rounds, those nodes not aware of the target get out of the
cluster, and those newly awakened nodes join the cluster. And as the target moves, CH and the task
set may need to rotate. CH determines whether it needs rotating or not. If it does, CH obtains the new
CH according to the CH selection mechanism and broadcasts it in the cluster. The newly designated
CH assumes the responsibilities of the CH, while the former CH transitions into a cluster member or
departs from the cluster entirely. CH also needs to determine whether the task set needs rotating or not.
When the task set needs rotating, CH gets the new task set by using the task set selection mechanism
and broadcasts it. Task nodes diligently track the target, while non-task nodes enter a dormant state
to conserve energy. This process iterates until the target leaves the monitored area.
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In this paper, we assume that the target moves slowly, it is usually a long time from a task set
selected to it is rotated. During the process, those nodes that meet the pre-selection conditions only
send an apply message once. Hence the energy consumption of applying accounts for a small part of
total consumption and is acceptable.

4.2 The CH Election Mechanism

The proposed CH election mechanism is shown in Algorithm 1.

Algorithm 1: The CH election algorithm
Step 1: Compute the average residual energy of cluster members according to Eq. (7);
Step 2: Score the nodes whose residual energy is more than the average residual energy eth in Eq. (7)
according to Eq. (8);
Step 3: The node with the highest score becomes CH.

eth = 1
n

n∑
i=1

eres
i (7)

score (i) =
n∑

i=1

1
1 + log (dis (i, v) + 1)

+ 1
1 + log (dis (i, sin k) + 1)

+ γi (8)

γi =
{

γ0 if dis (i, target)k ≤ dis (i, target)k−1 and k > 1

0 if dis (i, target)k > dis (i, target)k−1 or k = 1
(9)

eres
i is the residual energy of ith node, and eth is the average residual energy of cluster members.

dis (i, v) is the Euclidean distance between ith node and vth node, and dis (i, sin k) is that between ith

node and sink. γi is used to indicate whether the target is getting closer or farther from the node. If
they are getting closer or keep the same distance, γi is equal to a positive constant γ0. If it is getting
farther, γi is equal to 0. In the beginning, it is impossible to obtain the trend of target movement, so it
is specified that γi of nodes in the first round after the target appears are equal to 0.

When CH meets the constraints in Eq. (10) or Eq. (11), it needs rotating.

eCH < λ · eth, λ ∈ (0, 1] (10)

dis (CH, target) > rsense (11)

In Algorithm 1, the first and second parts of Eq. (8) are included to make the transmitting distance
between cluster members and CH short to reduce energy consumption. The average residual energy
of CLUSTER MEMBERs is used as a threshold to avoid nodes with low energy becoming CH. In
Eq. (10), when the residual energy of CH is less than a certain value, CH needs to rotate to make sure
the CH node has enough energy to complete its task in the next round. It should be noted that the
energy consumption of a CH exceeds that of a cluster member. If nodes with low residual energy were
to become CH, they would have a short lifespan, leading to an accelerated emergence of coverage
holes, an increased frequency of CH rotation, and energy wastage [10]. Moreover, the relative position
between the target and the node is also taken into account. Nodes that are approaching the target are
more likely to become CH, thus delaying CH rotation caused by failure to sense the target.
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4.3 The Pre-Selection Mechanism

Considering redundancy, all nodes do not have to participate in tracking tasks. Instead, nodes
transmit pertinent information to CH to express their interest in becoming task nodes, and CH selects
a set of task nodes from these applicants. To minimize energy consumption during the application
process and alleviate the computational load on the CH, a pre-selection mechanism is developed. This
mechanism enables each node to decide whether or not to apply based on factors such as residual
energy, estimation error, node density, and other relevant criteria.

The requirements which nodes need to satisfy to apply are as follows:

k > 1 (12)∣∣yk − yr
k

∣∣ > δ (13)

yr
k =

{
ŷk if the node ever sent message
0 otherwise (14)

ec

eres
< b · Nd

k

Ns
k

(15)

Nd
k = c · εk−1 (16)

where yk is the observed Euclidean distance of a wake-up node in kth round, and yr
k is its reference value

in the kth round. If the node has ever been selected as a task node of the current target, yr
k is equal to

ŷk, and ŷk is the observed Euclidean distance that the node transmitted to CH last time. If the node
has not been selected as a task node of the current target, yr

k is equal to 0. ec is the expected energy
consumption in the current round if the node performs the task. eres is the residual energy of the node.
Nd

k is the number of reference neighbor nodes in kth round, which can be obtained by information
exchange in the neighborhood. Ns

k is the number of awakened neighbor nodes.

Eq. (13) requires that the absolute difference between the observation yk and the reference yr
k is

greater than δ. This is to avoid some unnecessary transmission when the target moves slowly and the
observation changes slightly. The left of Eq. (15) is the ratio of expected energy consumption ec to
residual energy eres of the node. The right of Eq. (15) is b times the ratio of the number of awakened
neighbor nodes Ns

k to the number of reference neighbor nodes. If Ns
k is relatively small, each awakened

node in this neighborhood is supposed to be more likely to apply to give CH more choices to get enough
information about the target. Nd

k is positively correlated with the estimation error εk−1 of the previous
round. If εk−1 is large, more nodes are supposed to get involved in tracking. Therefore, the nodes that
have lower expected energy consumption, higher residual energy, and less awakened neighbor nodes
are more likely to apply.

The nodes that meet the pre-selection requirements apply to CH to become a task node, and those
nodes that do not meet the conditions turn into a dormant state directly until the next task set rotation
or is awakened by the next target.

The flow chart for determining whether to apply is shown in Fig. 3.
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Figure 3: The flowchart of the pre-selection mechanism

4.4 The Task Set Selection Mechanism

The selection of the task node set takes into account both the estimation accuracy and the network
lifespan, where the latter is influenced by the total energy consumption and the energy balance level. In
this paper, UKF is employed to estimate the true state of the target. The trace of the error covariance
matrix in UKF serves as an indicator of the average square error in state estimation [10]. The total
energy consumption is the sum of the energy consumption of each node in WSN, and the energy
balance level is measured by the variance of the residual energy sequence of nodes in the cluster. Their
expressions are as follows:

εTS = tr (P) (17)

EC
TS =

∑
i

ec
i (18)

varTS = 1
n

∑
i

(
ei − 1

n

∑
i

ei

)2

(19)

where εTS is the average square error obtained by using observations of task nodes to estimate the
real target state through UKF, and P is the error covariance matrix in UKF. ec

i is the expected
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energy consumption of ith node if it becomes a task node. EC
TS and varTS are the expected total energy

consumption of the network and the expected variance of the residual energy sequence of nodes in the
cluster, respectively, after the task set TS completes the tracking task in the current round.

The optimization objective function for selecting the task set is as follows:

min
[
α · ε̃TS + β · Ẽc

TS + χ · ṽarTS

]
α + β + χ = 1

0 < α, β, χ < 1

(20)

α, β, χ are the weights of average square estimation error, energy consumption, and energy balance
level, respectively. ε̃TS, ẼC

TS, ṽarTS are their normalized values, respectively.

Eq. (20) is an optimization problem. If the exhaustive algorithm is used to get the results, there
will be C1

m +C2
m +· · ·+Cm

m = 2m −1 candidate task sets (assuming there are m nodes in the cluster), and
the number increases with m at an exponential rate. Therefore, it is necessary to apply an algorithm
with low complexity to solve this problem.

In this paper, the genetic algorithm is adopted. CH is always in the task set, and task nodes
are selected from those applying nodes. Hence the length of the chromosome is equal to the number
of applying nodes, and each gene on the chromosome represents a node. Each node has two states:
Selected and unselected, so binary encoding can be perfectly applied to this case. Each gene has two
values, 1 for selected and 0 for unselected. Each chromosome corresponds to a task set. Suppose that
there are eight applying nodes whose numbers are 11, 32, 45, 8, 55, 135, 146, and 16, respectively.
If the chromosome code is “01110100”, the second, third, and sixth nodes are selected, that is, the
corresponding task set is 32, 45, 8, 135, as shown in Fig. 4.

Figure 4: The comparison diagram of chromosomes and task sets
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According to the objective function, the fitness function of the candidate task set is set, as shown
in Eq. (21).

f (TS) = α · ε̃TS + β · Ẽc
TS + χ · ṽarTS

α + β + χ = 1
0 < α, β, χ < 1

(21)

Due to significant differences in absolute values, it is necessary to normalize the average square
estimation error, energy consumption, and variance. Normalization is carried out for all chromosomes
in the population. The task set selection algorithm is shown in the Algorithm 2.

Algorithm 2: The task set selection algorithm
Input: The set of applying nodes;
Output: The task set;
Step 1: Initialize the population based on the number of applying nodes;
Step 2: Calculate the fitness value of each individual according to Eq. (21), and the number of
iterations is 1;
Step 3: Has the number of iterations exceeded the maximum value? If it has, go to step 10. If it has
not, execute step 4;
Step 4: According to the roulette principle, n descendants are selected and the population is updated.
The individuals with small fitness values are more likely to be selected;
Step 5: For the adjacent odd and even individuals in the new population (such as the first and the
second, the third and the fourth, excluding the second and the third, and so on), determine whether
to cross by the cross probability. If so, randomly select the crossing position to obtain two new
descendants; If they do not cross, the two individuals become descendants. Update population;
Step 6: For each individual in the population, determine whether it is mutated by the mutation
probability. If it is mutated, randomly select a gene to change to obtain a descendant; If there is no
mutation, the individual directly becomes a descendant. Update population;
Step 7: Calculate the fitness value of each individual in the population;
Step 8: Select the individual with the lowest fitness value in the population and record it as the best
individual in the current round;
Step 9: Increase the number of iterations by 1, and go to step 3;
Step 10: Select the individual with the lowest fitness value from the best individuals in all iteration
rounds to become the best individual obtained by genetic algorithm;
Step 11: Convert the optimal individual into a task set, which is the final task set.

5 Simulation Experiments and Performance Analysis
5.1 Simulation Scenarios and Parameter Settings

In this section, the performance of HMNCS, the dynamic chain-based collaboration mechanism
(DCBC) [23], the greedy balance replace heuristic algorithm (GBRHA) [13] and the node scheduling
algorithm for all-directional intrusion detection (NSAID) [24] are evaluated on MATLAB. In DCBC,
the target tracking task is completed by forming a dynamic tracking chain around the target. GBRHA
is an energy-balanced sensor node scheduling algorithm. By analyzing the target detection probability
and the residual energy of the sensor nodes, multiple sensor nodes are scheduled for cooperative target
tracking. In NSAID, the monitored region is divided into the outermost and inner regions, which can
effectively save energy while ensuring the quality of all-around detection.
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In the simulation, the monitored area is set to 300 m ∗ 300 m, and the sink is in the center of
the area, with infinite energy. To evaluate the performance of HMNCS under different deployment
densities, experiments with 400, 600, and 800 nodes are carried out. The sensing radius of nodes is set
to 40 m, and the transmission radius is set to twice the sensing radius to ensure that all nodes in the
cluster can communicate with each other. The sampling interval is 1 s, and every 5 s is a round. The
target enters the network from the random position of a boundary and moves according to the state
transition Eq. (1), until it leaves the network. Fusion energy consumption means the energy consumed
by fusing received data packets and its own data packets. The settings of simulation parameters are
shown in Table 1.

Table 1: The settings of simulation parameters

Parameter Value

Network scale 300 m ∗ 300 m
The sink coordinates (150 m, 150 m)
Sensing radius 40 m
Transmission radius 80 m
The energy consumption of fusion 0.0002J/packet
Initial energy [0.1, 0.2, 0.3] J
Delta_w 10∧(−3)
Variance of observation noise R 1
Weight of normalized energy consumption β 0.5
Weight of normalized variance x 0.2
eelec 1
εfs 0.5
εamp 0.2
The length of the control packet 48 ∗ 8 bits
The length of the data packet 600 ∗ 8 bits
The number of nodes [400, 600, 800]
Q delta w ∗ diag{1,1}
The sampling interval T 1 s
Weight of normalized estimation error 0.3
Fixed parameter about the movement trend 1

The performance criteria used in this paper include the number of alive nodes, the total energy
consumption, the tracking error, and the network lifespan. The lifespan can be usually measured in
terms of FND (first node death), HND (half node death), and LND (last node death). However,
in large-scale WSN, the death of the first node has little effect on the connectivity and coverage of
the network, so HND and LND are adopted. The average value and variance of the tracking error
sequence from deployment to the round when the last node runs out of energy are calculated to indicate
the tracking performance.
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5.2 Performance Analysis

The curves of the number of alive nodes and the total energy consumption of HMNCS, DCBC,
GBRHA, and NSAID, when 400, 600, and 800 nodes are deployed in the network, are plotted in Figs. 5
and 6, respectively. In the long term, the number of alive nodes of HMNCS is higher than that of other
compared mechanisms after the same rounds with different node deployment densities. In other words,
the nodes of HMNCS die slower than those of other mechanisms, and the total energy consumption
of HMNCS is the lowest after the same rounds. This is because HMNCS uses various methods to
reduce energy consumption. Firstly, in the CH selection mechanism, not only the residual energy of
nodes, the distance to other nodes, the distance to the sink, etc., are considered, but also the relative
movement trend between the target and each node is taken into account. The nodes that are closer
and closer to the target are more likely to be CH, which reduces the rotation energy consumption.
Further, using the event trigger mechanism avoids a part of applications and saves energy. Taking
energy consumption and energy balance factors into account when the task set is finally obtained, all
these operations result in lower energy consumption and longer network lifetime. As the deployment
density of nodes increases, it is found that the advantage of HMNCS over the compared mechanisms
increases, indicating that HMNCS is more suitable for scenarios with high node density.

(a) 400 nodes (b) 600 nodes (c) 800 nodes

Figure 5: The number of alive nodes under different densities

(a) 400 nodes (b) 600 nodes (c) 800 nodes

Figure 6: The total energy consumption under different densities

However, in the early stage after deployment, the number of alive nodes of HMNCS is slightly
lower than that of DCBC, and the gap decreases with the increase of node deployment density. In
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HMNCS, after the target appears, a cluster is formed in WSN. Then CH and a task set are selected,
and only some nodes track the target, while the rest of the CLUSTER MEMBERs enter the dormant
state. In DCBC, the nodes that sense the target form a tracking chain, and the chain head is selected.
Data of all nodes is transmitted to the chain head from both ends of the tracking chain node-by-node
and fused. Each node in the cluster transmits and fuses data, but the transmission distance is short
in DCBC. In HMNCS, only the task set nodes in the cluster transmit data directly to CH, but the
transmission distance is longer than that of DCBC. In DCBC, the energy consumption of each node
is low, so nodes die slowly in the beginning. However, there are so many nodes participating in data
transmission that the total energy consumption is large. In HMNCS, task nodes consume more energy,
while non-task nodes hardly consume energy. As a result, the number of alive nodes in the network is
slightly lower than that of DCBC in the early stage after deployment, but with the increase of rounds,
the advantages of HMNCS are gradually emerging, and the number of alive nodes is the highest.

Fig. 7 shows the average tracking error and variance of tracking error from deployment to the
round of last node death for 400, 600, and 800 nodes. Fig. 8 shows HND and LND under three
deployment densities. The average value and variance of tracking error of HMNCS are lower than
those of compared mechanisms, and HND and LND are the greatest, i.e., HMNCS is the best in
terms of tracking performance and network lifetime.

(a) 400 nodes (b) 600 nodes (c) 800 nodes

Figure 7: The tracking error under different densities

(a) 400 nodes (b) 600 nodes (c) 800 nodes

Figure 8: HND & LND under different densities
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The factors considered in HMNCS are relatively comprehensive. In the pre-selection mechanism,
the tracking error of the previous moment is used to adjust the number of applying nodes at the current
moment. Moreover, the average square estimation error is considered in the optimization objective
function. The expected energy consumption and the residual energy of nodes are used to filter whether
to apply or not. Energy consumption, and energy balance factors, which directly affect the network
lifespan, are also included in the objective function. By setting appropriate weights for different factors,
good performance can be achieved in both network lifespan and tracking performance.

It is worth noting that DCBC cannot achieve high tracking accuracy in the later stage due to
its fast node death rate. The early period of high tracking accuracy does not last for a long time, so
tracking performance is not good in the long run.

For all the mechanisms, the lifetime of WSN increases with the increase in node density. Among
them, the WSN that uses HMNCS has the most extended lifespan, so it is more suitable for high-
density WSN.

Based on the above simulation results, it can be concluded that the performance of HMNCS is
superior to that of the compared mechanisms. In every step of HMNCS, such as the CH election
mechanism, the pre-selection mechanism, and the optimization objective function of getting the final
task set, the accuracy, energy consumption, and energy balance factors are considered in different
ways. Therefore, HMNCS achieves a clever balance between the tracking accuracy and the network
lifetime and obtains good results in both aspects of performance over the long term.

6 Conclusion

In this paper, an innovative two-layer node scheduling protocol called the Heuristic Multi-Node
Collaborative Scheduling mechanism, is proposed to obtain optimal scheduling results during target
tracking in WSN. HMNCS consists of three parts, which are cluster head election, pre-selection, and
task set selection mechanism, respectively. By reducing the redundancy and making those necessary
nodes track the target, this work balances the tracking performance and the network lifetime as
much as possible. Simulation results confirm the superiority of the proposed mechanism. For HND,
HMNCS is improved by 31.1%, 83.9%, and 112.3% compared with DCBC, GBRHA and NSAID,
respectively. For LND, HMNCS is improved by 34.3%, 72.8%, and 89.0% compared with DCBC,
GBRHA and NSAID, respectively.

With the development of unmanned aerial vehicles (UAVs) in recent years, it is very common that
wireless sensor network deployed on the ground cooperate with UAVs to fulfill tasks. UAVs can be
regarded as movable sensor nodes, and all nodes form a three-dimensional heterogeneous wireless
sensor network. In such circumstances, how to schedule nodes and plan the flight paths of UAVs
efficiently to achieve reliable data collection and other requirements in the actual scenario is our future
research work.
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