
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.048061

ARTICLE

Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human
Physical Activities in Large and Distributed Manners: A Recommendation
System

Ameni Ellouze1, Nesrine Kadri2, Alaa Alaerjan3,* and Mohamed Ksantini1

1Control and Energy Management Laboratory, National Engineering School, Preparatory Institute for Engineering Studies,
University of Sfax, Sfax, 3029, Tunisia
2Higher Institute of Computer Science and Communication Technologies, University of Sousse, Sousse, BN1 9RH, Tunisia
3College of Computer and Information Sciences, Jouf University, PO Box 2014, Sakakah, Saudi Arabia

*Corresponding Author: Alaa Alaerjan. Email: asalaerjan@ju.edu.sa

Received: 26 November 2023 Accepted: 05 February 2024 Published: 25 April 2024

ABSTRACT

Recognizing human activity (HAR) from data in a smartphone sensor plays an important role in the field of
health to prevent chronic diseases. Daily and weekly physical activities are recorded on the smartphone and tell
the user whether he is moving well or not. Typically, smartphones and their associated sensing devices operate
in distributed and unstable environments. Therefore, collecting their data and extracting useful information is a
significant challenge. In this context, the aim of this paper is twofold: The first is to analyze human behavior based on
the recognition of physical activities. Using the results of physical activity detection and classification, the second
part aims to develop a health recommendation system to notify smartphone users about their healthy physical
behavior related to their physical activities. This system is based on the calculation of calories burned by each user
during physical activities. In this way, conclusions can be drawn about a person’s physical behavior by estimating
the number of calories burned after evaluating data collected daily or even weekly following a series of physical
workouts. To identify and classify human behavior our methodology is based on artificial intelligence models
specifically deep learning techniques like Long Short-Term Memory (LSTM), stacked LSTM, and bidirectional
LSTM. Since human activity data contains both spatial and temporal information, we proposed, in this paper, to
use of an architecture allowing the extraction of the two types of information simultaneously. While Convolutional
Neural Networks (CNN) has an architecture designed for spatial information, our idea is to combine CNN with
LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal
data. The results obtained achieved an accuracy of 96%. On the other side, the data learned by these algorithms
is prone to error and uncertainty. To overcome this constraint and improve performance (96%), we proposed to
use the fusion mechanisms. The last combines deep learning classifiers to model non-accurate and ambiguous data
to obtain synthetic information to aid in decision-making. The Voting and Dempster-Shafer (DS) approaches are
employed. The results showed that fused classifiers based on DS theory outperformed individual classifiers (96%)
with the highest accuracy level of 98%. Also, the findings disclosed that participants engaging in physical activities
are healthy, showcasing a disparity in the distribution of physical activities between men and women.
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1 Introduction

Human physical activities such as walking, running, cycling, doing sports, etc., are all defined as
body movements produced by the activation of skeletal muscles and resulting in a substantial release
of energy.

Human activity recognition is a field of study related to the spontaneous detection of daily
activities performed by individuals, based on recordings of time series using sensors. The use of sensors
for the recognition of these human actions represents a major advancement in the field of computer
science and technology. Significant progress has been made in interconnected sensor technology, the
Internet of Things (IoT), cloud computing, and edge computing. Sensors are cost-effective devices
that can be easily integrated or incorporated into portable and non-portable devices. Wearable devices
equipped with sensors, an omnipresent application of the IoT, record valuable data in a broader and
distributed manner, capturing information such as movements, variations in pressure, or visual images,
depending on their type.

Studies focus on activity recognition using video sequences collected by standard cameras and
surveillance cameras [1,2]. Recognizing activity with regular cameras can be challenging due to low
light conditions or darkness. In recent years, the widespread adoption of wearable devices, particularly
smartphones, featuring sensors like accelerometers and gyroscopes, has facilitated the identification
and localization of human movements, paving the way for the development of numerous applications
in the field of human activity recognition. Accelerometers and gyroscopes are indispensable tools for
human activity recognition, providing a rich and detailed source of information on body movements.
Their use significantly contributes to a variety of applications, ranging from personal health tracking
to the design of interactive interfaces and physical rehabilitation [3–7].

Specifically in the field of health, human activity recognition proves to be particularly promising,
encompassing the detection, classification, and interpretation of physical activities. Through this
approach, computer systems gain the ability to precisely understand human behavior, monitor and
assess the mobility of patients, track prescribed physical exercises, and facilitate physical rehabilitation.

Recognizing these physical activities is highly beneficial for heart, body, and mind health,
contributing to the prevention of diseases such as cardiovascular diseases, cancer, and diabetes. The
distributed monitoring of health by studying an individual’s activities is considered effective and
beneficial for improving the physical and mental well-being of individuals, enabling them to safeguard
against any potential danger that could lead to serious illnesses. In this context, private companies
develop medical devices based on a system of human physical activity recognition to predict health
indicators such as heart rate, pulse analysis, blood pressure, calorie consumption, and so on, these
devices often require patients to complete a series of well-defined exercises as part of their treatment
[8–12]. Typically, those medical devices are designed to operate in different distributed environments.
As a result, recognizing their daily activities becomes quite valuable in providing information on
the patient’s physical and even mental behavior to the healthcare team. Physical activity recognition
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systems can provide information on physical health as well as mental health if coupled with facial
recognition systems used to track facial expressions and assess an individual’s emotional state [13]. By
combining the two systems, it becomes possible to create more sophisticated systems for understanding
how people interact in various situations.

Machine and deep learning algorithms are commonly utilized in the recognition of human physical
activity based on smartphone sensors. Several researchers have attempted to classify human physical
activity using typical machine learning techniques, which produce less accurate results [4,5,14,15].
Furthermore, several writers have separately applied deep learning algorithms to CNN [16–20] and
Recurrent Neural Network (RNN) architectures. The results obtained in this respect suffer from
limitations, since CNN architectures, in reality, are made for retrieving geographical information,
whereas RNN or its derivatives such as LSTM architectures are made for retrieving data [21–24]. In
addition, some works have achieved precision that can be improved by imposing problems to classify
certain types of activities where the activities studied in the data are limited.

To overcome these limitations, some researchers have suggested human activity data contains both
spatial and temporal information [25–28]. In this case, an architecture capable of extracting both data
at the same time is required [8,19,22]. Inspired by the idea of spatial and temporal data, we proposed,
in this paper, to combine CNN with LSTM to identify and classify the physical activities based on the
smartphone sensor data and to obtain better accuracy.

In this setting, our contribution focuses on two dimensions:

• The first involves employing deep learning techniques such as CNN, LSTM which is a variation
of RNN, and bidirectional LSTM to classify human behaviors. The CNN-LSTM and the
convolutional LSTM are used to increase classification accuracy by taking into account the
extraction of both spatial and temporal data. The first is a hybrid of CNN and LSTM,
whereas the second is a CNN-LSTM variation in which the internal matrix multiplications
are substituted with convolution operations, thereby making state-to-state and input-to-state
transitions between the cell and its neighbors easier. A comparison between these different
architectures was conducted to show the effectiveness of the combined architecture providing
the best accuracy especially when the approach is used in distributed domains. Best accuracy
leads to making the best decisions related to health. But the accuracy is connected to the
smartphone data, which is always susceptible to a certain ambiguity. The uncertainty stems
from reading faulty data and/or acquiring a less-than-perfect sensor. Generally, most existing
publications in the literature suffer from this constraint because they base their research on
all available facts without taking into account the uncertain element which is considered
a limitation. To improve accuracy and reduce the negative influence of imperfection and
uncertainty in the data of the smartphone sensors, the DS theory of belief functions and the
voting method are utilized in this research effort [29–31]. These two strategies help to increase
the fundamental data quality and dependability. Their principle is to combine data from several
sources or classifiers.

• Based on the human activities classification results obtained in the first axis, the second
axis is to create a healthy suggestion system to tell smartphone users about their health
behavior concerning their human physical activities. This data is gathered by measuring the
number of calories each user burns during a physical activity calculated with mathematical
equations. Thus, conclusions could be drawn about a person’s physical behavior by computing
the number of calories burned after evaluating data collected daily or even weekly following a
series of physical workouts. Given the circumstances, it is crucial to acknowledge that calorie
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consumption varies from men to women, and it is influenced by a variety of factors that have
an impact on people’s health behavior, such as alcohol and smoking.

The structure of this paper will include the following sections: Section 2 will cover related research,
while Section 3 will offer (i) the customized database, (ii) the above-mentioned deep learning algo-
rithms applied to smartphone sensor data, (iii) the computation of calories based on daily activities,
and (iv) data fusion approaches to define our methodology for the classification of physical activities.
The experimental results and discussions are presented in Section 4. The final section demonstrates
the conclusion with some suggestions for further research.

2 Related Works

In the field of physical activity recognition several studies have been conducted based on deep
learning algorithms mainly on CNN and RNN architectures [22–27]. RNN architectures are specif-
ically built for data retrieval, whereas CNN structures are designed for spatial information retrieval.
CNN and LSTM models, which are derivative of RNN models, are used to identify and classify a
time series from numerous sources using labeled training data. These algorithms can be used to solve
a variety of problems, including recognizing human activities.

In [23], a CNN model is used to categorize two types of activities (dynamic and static), with two
3-class classifiers doing the recognition. The accuracy gained was 97.62%.

The authors suggested two deep learning approaches, a Deep Neural Network (DNN) and a feed-
forward deep neural network, to categorize physical activities [18]. Two physical movement datasets
acquired from numerous participants wearing tri-axials are used to test these two models. The first
dataset was obtained from 16 volunteers who each wore a sole tri-axial accelerometer on their wrist
and recorded 14 distinct daily activities. The second database, which contains 10 different everyday
activities, was gathered from eight participants who wore the sensors on their hips. According to the
findings, the RNN model achieved an accuracy of 82.56%.

In [3], the Bidirectional LSTM is used as a deep learning model with a bidirectional layer followed
by a dropout layer to read and extract its features using 10 epochs and 400 samples. The data used
comes from Wireless Sensor Data Mining (WISDM). A smartphone tri-axial accelerometer was used
for 36 users to characterize their actions, which included walking, jogging, moving downstairs and
upstairs, sitting, and standing. The results demonstrated that the precision is good for predicting some
activities but problems have appeared for clearly identifying the others activities.

In [4], the authors proposed a descriptor-based approach for classifying activities using integrated
smartphone sensors such as accelerometers and gyroscopes. Two descriptors, namely the gradient
histogram and the Fourier descriptor based on the centroid signature, are used to extract feature sets
from these signals. For the classification, the performance of multiclass support vector machine and
k-nearest neighbor classifiers are studied based on two publicly available data sets, namely, the UCI
HAR data set and physical activity sensor data. The experimental results show that the average activity
classification accuracy achieved 97.12%.

In [5], the authors used data from the accelerometer to recognize the kind of user movements
using the machine (decision tree algorithm) and deep learning (bidirectional LSTM) algorithms. The
data is provided from the Wireless Sensor Data Mining (WISDM) by collecting the sensor data from
smartphones obtained from 36 users with six attributes: User, activity, timestamp, x-acceleration y-
acceleration, z-acceleration, and the activities included walking, jogging, downstairs, upstairs, sitting
and standing. Two attributes age and gender are added to the data for every physical activity with
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random distribution. Based on the classification results, they have proposed a recommendation system
computing the total time of physical activities consuming calories to decide about the healthy behavior
of a person based on his gender and age, based on their daily physical activities. The paper presents
some limitations since the authors did not investigate a diverse range of activities in terms of type
and quantity, nor did they employ more robust algorithms. This has led to a relatively low precision,
yielding unreliable results for the recommendation system.

In [20], the authors proposed LSTM-based deep Recurrent Neural Networks to create models for
human activity recognition. They designed architectures using both unidirectional and bidirectional
RNNs with deep layers. The outcomes of their research, conducted on the UCI-HAD dataset,
demonstrated that the unidirectional DRNN model achieved a certain level of classification accuracy
of 96.7%.

In [25], the authors developed an activity recognition system using the data of an accelerometer
and a gyroscope. The results showed that using the UCI HAR dataset and a 3-layer LSTM model,
helped to reach an accuracy rate of 97.4% for the global classification of 7 activities (walking, jogging,
lying down, standing, falling, climbing, descending stairs).

Concerning human activity, some researchers used an architecture that can extract data containing
both spatial and temporal information simultaneously. Reference [21] presented a deep network with
four convolutional layers succeeded by two LSTM layers combining LSTM and CNN. The authors
of [19] constructed a hybrid model combining CNN and LSTM, in which the CNN is used to extract
spatial characteristics whereas the LSTM network is used to learn temporal information. The scientists
used a dataset of 12 different kinds of human physical activity that was collected from 20 subjects using
the Kinect V2 sensor. The accuracy attained 90.89%.

In [22], the authors explored various hybrid multi-layer deep learning architectures aimed at
improving human activity recognition performance by incorporating local features and being scale-
invariant with activity dependencies. the results obtained showed an activity recognition rate of 94.7%
on the University of California at Irvine public dataset for human activity recognition, comprising 6
activities, with a hybrid 2-layer CNN-1-layer LSTM model. In addition, on the University of Texas at
Dallas multimodal human activity dataset, comprising 27 activities, with a hybrid 4-layer CNN-1-layer
LSTM model, they achieved an activity recognition rate of 88.0%.

The authors introduced a hybrid deep neural network model in [28] to detect spatial-temporal
features. This model integrates the characteristics of a 1D CNN, which can extract spatial or local
information from the raw sensor data, and a Gated Recurrent Unit (GRU), which can recognize
temporal features. Derived from accelerometer-captured sensor data and a gyroscope obtained from
the WISDM data set, this model called CNN-GRU allows to categorization of eighteen distinct
simple and intricate human activities into three categories: Activities related to walking, general hand-
oriented activities, and hand-oriented activities involving feeding. On the smartphone dataset, the
CNN-GRU model was 90.44% accurate.

3 Proposed Methodology

We presented this work in two parts to make a reliable recommendation system. The system is
intended to operate and observe physical activities in largely distributed manners. The first part is
concerned with applying deep learning algorithms to recognize various physical activities. The second
part deals with calculating the calories burned for each user according to his daily physical activity,
based on the recognition results. This calculation allows to achieve a recommendation system that
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informs smartphone users about their physical health behavior. So, the proposed methodology is based
on four steps:

• Description of data.
• Classification of physical activities using deep learning algorithms.
• Computation of the calories to determine the physical behavior based on daily activities.
• DS theory to reduce the decision uncertainties.

3.1 Description of Data

The used data comes from the Multi-level Monitoring Activity and Sleep on Healthy people
(MMASH) by collecting the sensor data from smartphones [32]. Smartphones are equipped with
multiple sensors that contribute to the recognition of human activity. By utilizing the information
collected by sensors in smartphones, one can detect and interpret the movements and behaviors of a
user:

• Accelerometer: This sensor measures linear acceleration. By analyzing changes in acceleration,
various types of physical activities such as walking, running, cycling, etc., can be determined.
Accelerometer data is used to create activity profiles.

• Gyroscope: It helps determine the orientation of the phone. When combined with other sensors,
the gyroscope can refine activity recognition.

• GPS: Used for location tracking by recording the user’s movements. This allows tracking
outdoor activities like running or cycling and provides information on distances traveled.

• Motion Pattern Identification: By combining accelerometer and gyroscope data, specific
motion patterns can be identified. This enables the distinction between different physical
activities and the assessment of how the user performs these activities.

• After identifying motion patterns, it becomes easy to use the collected information for various
applications such as health monitoring: These data can assist healthcare professionals in
evaluating the intensity of physical activity, crucial for managing various health conditions.
In our application, by combining sensor data with information available in the database,
the activity recognition algorithm can more accurately estimate the total energy expenditure
associated with specific physical activity. This can be a valuable tool for individuals aiming to
maintain a healthy lifestyle.

In our dataset, the human physical activities are measured thanks to the tri-axial accelerometer
data for 22 participants. The attributes of the data are accelerometer (axis1, axis2, axis3), ‘Start’ and
‘end’ columns, heart rate, age (between 20 and 40 years), weight, gender, and activities.

The activities column contains 10 types and is broken into three categories:

Low-effort activities: Sleeping, laying down, sitting.

Medium effort activities: Light movement (slow walk), eating, small screen usage, caffeinated
drink consumption.

High-effort activities: Medium (fast walk), Heavy (running), Large screen.

The 22 participants are classified according to their physical activities. The distribution of activities
is different for men and women. Also, several factors such as alcohol and smoking influence these
activities and can disrupt the daily lives of people by affecting their health and causing serious diseases.
Men and women are different in the consumption of these two elements and their influence on their
physical activities. For this reason, two attributes are added to the above data: Alcohol and smoking.
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A binary notation is assigned to these two attributes. 1 if the user consumes alcohol and smoking, 0
otherwise.

3.2 Deep Learning Algorithms

Deep learning relies on a neural network model equipped with algorithms that emulate the
cognitive processes of the human brain. Hundreds of layers of neurons make up these networks. Every
layer receives and processes information from the preceding layer [33]. Deep learning models are good
at handling massive volumes of data. They are placed at the data level without any deformation or prior
aggregation. The network l then learns the implicit data by itself using a large number of variables that
are adjusted during the learning process.

We used the deep learning algorithms in this paper. First, we used the standard LSTM and the
stacked and bidirectional LSTMs which are two derivatives of LSTM. The architectures of these
algorithms are specifically designed for data retrieval.

Indeed, CNNs have demonstrated their effectiveness in extracting spatial and discriminative
features from sensor data, such as accelerometer and gyroscope readings, treated as images. They are
well-suited for fixed and short sequence classification problems but are not recommended for long and
complex temporal data.

Problems involving sequential analysis over a while, such as activity recognition from sensor data,
typically call for a specialized type of neural network designed specifically for sequential data analysis,
with the ability to uncover hidden patterns from sequential information. LSTMs prove valuable in
handling temporal sequences, which is relevant for data from moving sensors. These models exhibit
the capability to retain information over an extended period. The internal architecture of LSTMs
includes multiple gates (including input, forget, and output gates), where each gate processes input
from the preceding gate and passes it to the next gate, thus controlling the flow of information toward
the final output.

Given that smartphone sensor data, dedicated to physical activity recognition, contains both
spatial and temporal information, we proposed a hybrid approach combining both CNN and LSTM
(or its derivatives). Therefore, we used the CNN-LSTM and the convolutional LSTM which is a variant
of CNN-LSTM but the internal matrix multiplications are substituted with convolution operations,
which enable the transitions between the cell and its neighboring states, both for state-to-state and
input-to-state interactions. In this combined architecture, spatial features are extracted from CNN
layers and then fed into LSTM for learning temporal information.

The following sections go over all of these algorithms:

• LSTM: LSTM networks, which extend the memory capacity compared to traditional RNNs,
serve as fundamental components in RNN layers. LSTMs allocate “weights” to data, enabling
RNNs to manage the introduction of new information, the forgetting of old data, and the
assessment of information’s importance, all of which can influence the output. It has a single
hidden layer unit which is referred to as a “memory block,” and each memory block can contain
one or multiple memory cells, all of which are shared within the same memory block. Every
memory cell’s functionality is autonomously regulated by three gates [21]:

Forget gates: These gates identify pertinent information from the past.

Input gates: They choose the information from the current input that will remain relevant in the
long run.
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Output gates: These gates extract critical information from the new cell state for

The following set of equations represents the LSTM architecture in Fig. 1:

Čt = tanh*
(Wcxt + Ucht−1 + bc) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ft = σ(Wfxt + Ufht−1 + bf) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

Ct = Čt.it + Ct−1.ft (5)

ht = tanh∗
(Ct) .ot (6)

with Wz, Wi, Wf, Wo are input weights, the UC, Ui, Uf, Uo are recurrent weights and bC, bi, bf , bo are the
biases.

• Stacked LSTM: It has the same architecture as LSTM except that it has two hidden layers.
• Bidirectional LSTM: Two models are trained in the bidirectional LSTM. The first model learns

the input sequence, whereas the second model learns the inverse of that sequence. The results of
the two LSTM layers are subsequently merged through various techniques, such as averaging,
summing, multiplying, and concatenating.

• CNN-LSTM: First, in the CNN model, there is a convolutional layer responsible for processing
subsequences, which necessitates the specification of both the number of filters and the kernel
size. The number of filters corresponds to the quantity of input sequence “reads” or interpre-
tations. The kernel size is the number of time steps contained in each input sequence “read”
operation. Following the convolution layer, a maximum pooling layer reduces the filter maps to
half their original size and highlights the most important characteristics. These structures are
then flattened into a one-dimensional vector that the LSTM layer employs as a single input time
step. The LSTM component of the model, which comprehends the interpretation provided by
the CNN model for the input sequence, can then be defined. In our proposed hybrid model, by
combining these two models, we extract spatial features via the CNN, then pass these features on
to the LSTM for temporal learning and finally into a fully connected layer for recognition. The
first two layers of the CNN have different filter sizes: In the first layer, the filter size is 64, while
in the second layer, the filter size is 128. In addition to the filter size, the core size of both layers
is 3, and the activation function used in both layers is the ReLU activation function. These two
layers are followed by the maximum pooling layer with a pooling size of 2. These features from
the CNN layers pass through two LSTM layers with the same cell size of 64 in each layer. The
LSTM layer is followed by the flattening layer and the dense layer with a softmax activation
function.

• Convolutional LSTM: LSTM variation is closely tied to the CNN-LSTM approach, as it
incorporates the convolutional input processing directly within each LSTM unit.

In the tuning experiments, the models have been trained for 50 epochs and evaluated on the testing
sets using the Adam version of stochastic gradient descent to optimize the deep neural network with
a batch size of 32, a learning rate of 0.002, and a dropout of 0.03.
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Figure 1: LSTM architecture

Fig. 2 represents the convolutional LSTM architecture with � as the convolutional operator.

Figure 2: Convolutional LSTM architecture

3.3 Calories Computing

The developed recommended system is based on the computing of calories and its goal is to
warn people about their physical health habits (healthy or not healthy). Indeed, the calculation of the
calories, burned by the body according to its daily physical activities, is a useful tool for determining a
person’s health status. Heart rate is one of the best ways to measure calorie expenditure. It indicates the
effort it takes for a person to perform a certain activity, and this effort determines the calories burned.
The heart rate is determined by the analysis of data obtained from a person’s physical activities. Using
the obtained heart rate values, we based the two following mathematical equations [34,35] to calculate
the number of calories consumed by men and women.

The number of calories consumed by men:

Caloriesmale = −20.4022 + 0.4472h − 0.1263w + 0.074a
4.184 ∗ 60t

(7)

The number of calories consumed by women:

Caloriesfemale = −55.0969 + 0.639h − 0.1988w + 0.217a
4.184 ∗ 60t

(8)
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In these equations, h is the number of heartbeats per minute, w is the weight in kg, a is the age in
years and t is time in hours.

3.4 Data Fusion Methods

The information delivered from smartphone sensor data may exhibit a degree of uncertainty due to
the volume of data and the veracity of the information. The source delivering the information may be
unreliable, prone to errors, or intentionally providing incorrect information. Consequently, the infor-
mation can be incomplete and inaccurate. Our goal is to improve the performance by improving the
accuracy of the classifiers. Accuracy is contingent upon the data employed during the learning phase,
which is characterized by imprecision, uncertainty, vagueness, and incompleteness. These factors pose
challenges when articulating knowledge, primarily due to the limited availability of numerical data
and the use of natural language terms to describe certain attributes [36]. Uncertain information is
encountered in applications such as disease diagnosis, image processing and segmentation, treatment
and reading of texts, sensor signals, object detection, and recognition. This uncertainty is caused by
inaccurate data readings and/or sensor acquisition errors.

To address the challenges of imprecision and uncertainty, it is crucial to employ formalisms for
modeling these imperfections. Furthermore, to make the most of the available information, it is also
necessary for these formalisms to propose fusion mechanisms (combination or aggregation) that allow
to merging of several data coming from a variety of origins or via distinct classification systems. This
research is built on voting and DS which are two of the most common merging techniques. This
combination phase enables us to obtain synthetic information to aid in decision-making.

3.4.1 Voting Method

The voting technique is a formalism that amalgamates forecasts from various models, culminating
in an output based on the highest probability. The voting classification algorithm simply aggregates
the results from each classifier embedded within the model and forecasts the output class with the
greatest number of votes [29].

The Voting method supports two voting approaches:

Hard Voting: The voting classifier estimator predicts the output by selecting the class that receives
the highest number of votes from each classifier.

Soft Voting: The output class is predicted based on the average probability assigned to that class.
If ‘hard’ is chosen, the predicted class labels are used for the majority vote, while ‘soft’ relies on the
arg max of the summed predicted probabilities. The ‘soft’ approach is recommended for a set of well
calibrated classifiers.

The steps of the voting method algorithm are:

• Determine the feature importance score for each of the foundational estimators.
• Multiply the weights of the foundational estimators by the importance score of each feature.
• Calculate the average of the importance scores (from the previous step) for each feature.

3.4.2 DS Theory of Belief Functions

The theory of belief functions originated in Arthur Dempster’s work on the generalization of
Bayesian formalism [4]. The credal aspect of the theory was established by Glenn Shafer [4]. Known as
the Dempster–Shafer theory of evidence and rooted in probabilistic mathematics, it provides a formal
framework for reasoning under uncertainty, offering a model for knowledge representation. Through
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belief functions, which serve as tools for gauging subjective probability, we can assess the degree
of truthfulness of a statement. By introducing masses of evidence, coefficients of their weakening,
and employing the rule of combination, the theory enables the handling of information from diverse
sources and fields, aiming to determine their reliability.

The DS theory allows for the generalization of additive probability measures. They might be
thought of as upper and lower boundaries on probabilities that are unknown. The theory’s principle
is given in the following steps [4]:

• Each source of information provides a belief function that expresses the confidence or degree
of belief associated with different hypotheses or propositions. We begin by presenting the
information provided by their mass functions. By distinguishing frame Ω, the mass function
m represents with m (A) is the following:

m: 2Ω → [0, 1] with ΣA ⊆ Ω m (A) = 1 (9)

• The information is then corrected using the uncertainty mass function m also known as belief
mass, representing the strength of belief for each set of assumptions, and the degree of belief in
the source’s credibility μ yielding the revised function:

μm(A) = μ ∗ m(A); ∀A �= Ω (10)

• In the last, we combine the uncertainty masses from different sources to form a combined mass
and to obtain the informed choice. Consider two sources represented, respectively, by the mass
functions m1 and m2. This involves the use of combination rules, such as Dempster’s rule, which
takes into account the intersection of uncertainty masses. The following new mass function
appears from the merging of the two sources:

(m1 ⊕ m2)(C) = ΣA,B:C = A ∩ B m1(A) ∗ m2(B) (11)

• The final belief function is derived from the combined mass and reflects the synthesis of the
various sources of information to assess overall confidence in the various hypotheses. It is
given by pignistic transformation which is characterized as the probability distribution that
is formulated as follows:

Betp(w) =
∑

{A⊆�,ω∈A}

m (A)

(1 − m (∅)) |A| (12)

The decision is made based on the pignistic transformation by selecting the element x with the
highest probability:

Rp(x) = argmaxBetp(w)(x) (13)

The DS fusion theory offers a notable benefit by enabling decision-making even in cases where
a classifier may falter. Additionally, despite employing diverse learning algorithms, classifiers can
approach the same problem from multiple perspectives, resulting in more precise decision outcomes.
Cette approche a bien montré son efficacité dans plusieurs domaines incluant HAR où elle a permis
d’améliorer les précisons obtenus sans fusion [5,37,38].

4 Results and Discussions

Our main objective in this paper is to identify and classify physical activities as accurately as
possible using the dataset presented above.
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The first section of the project was devoted to computing the accuracy by calculating the error
rate for each deep learning classifier on its own. The fusion error rate is then computed by combining
the mass functions of classifiers.

For the deep learning algorithms, we present C1, C2, C3, C4, and C5, respectively, from LSTM,
stacked LSTM, bidirectional LSTM, CNN-LSTM, and convolutional LSTM.

We used the confusion matrix to measure classification skills when it comes to physical activities.
It compares the observed and expected values. The confusion matrix is used to define the following
measures:

• True Positives (TP) are the number of positive incidents that have been classified as such.
• True Negatives (TN): The number of negative incidents that have been classified as such.
• False Positives (FP) are the number of negative events that are mistakenly labeled as positive.
• False Negatives (FN) are the number of positive incidents that are incorrectly labeled as

negative.
The following metrics are defined based on the above values:

Precision = True positive
True Positive + False Positive

(14)

The precision is determined by the ratio of correctly classified positive instances to the total
number of instances classified as positive.

Recall = True positive
True Positive + False Negative

(15)

The Recall is determined as the ratio of correctly categorized positive instances to the total
number of positive instances.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(16)

F1 is a single measure that combines precision and recall.

As a backend, we used Python (version 3.6.5) with Anaconda distribution on Ubuntu 16.04.6 LTS
(XenialXerus), Keras (version 2.1.6), and Tensorflow (version 1.7.0) in this research.

4.1 Results on Independent Classifiers

After calculating the measures of Eqs. (14)–(16), Figs. 3–5 represent the confusion matrices of
each DL classifier.
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Figure 3: Confusion matrix of the bidirectional LSTM

Figure 4: (Continued)
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Figure 4: Confusion matrix of CNN-LSTM

Figure 5: Confusion matrix of the convolutional LSTM

The error rate for each classifier is shown in Table 1.

From Table 1, the convolutional LSTM achieves the lowest error rate equal to 0.4 which corre-
sponds to the best accuracy of 96%. Acomparison with state art is given in Table 2.

Our approach gave a higher score than those obtained in literature [19] (90.89%), [22] (90.44%),
[8] (94.7%). It should be noted that these existing works have also used an approach that combines
CNN with LSTM or its derivatives, as in [22] the author used GRU, which is a variant of LSTM but
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with fewer gates. However, the databases for each reference as well as my own are different, especially
in terms of the activities studied. It is also worth mentioning that the values of accuracy are obtained
without taking into account the uncertain aspect, which is considered a constraint for this task.

Table 1: Error rates of deep learning classifiers

Deep learning classifiers C1 C2 C3 C4 C5

Error rates 0.6 0.64 0.52 0.48 0.4

Table 2: Comparison with state of art

Approach Accuracy (%)

CNN LSTM model [19] 90.89
CNN LSTM model [22] 90.44
CNN GRU model [8] 94.7
Our approach: CNN LSTM model 96

4.2 Results on Fusion Classifiers

To improve the accuracy to 96% and lessen the impact of the uncertain aspect, the voting and belief
functions methods are used. In this case, different combinations of the above deep learning classifiers
are tested to acquire the fusion error rate for each combination. The results of these combination tests
showed that by combining the C3, C4, and C5, the least fusion error rate is recorded. Using the voting
technique, the mistake is equal to 0.32, which corresponds to a 96.8% accuracy rate.

For the DS theory, we recall the steps described in Section 3.4.2 concerning where the merged
sources are the predictions obtained by each classifier independently.

First, each classifier issues degrees of belief associated with its predictions (Table 1). Each classifier
assigns degrees of belief to its predictions. These degrees of belief reflect the classifier’s confidence in
its predictions. DS theory provides a formal expression of these degrees of belief in the form of belief
masses, where each mass is associated with a specific class or decision Eqs. (9) and (10).

Second, the combination of belief masses allows for representing the overall uncertainty associated
with the final decision, taking into account discrepancies among the classifiers. The Dempster-Shafer
rule facilitates the combination of belief masses by merging information from multiple classifiers
(Eq. (11)). In our case, the optimal combination is achieved by merging the classifiers C3, C4, and
C5 offered by the mass function m3 + m4 + m5.

Third, the resulting fusion generates a new belief mass representing the combined belief across all
possible classes or decisions (Eq. (12)). Indeed, it considers both the belief masses associated with
specific predictions and manages conflicts by quantifying the degree of discordance between the
information sources of the classifiers.

Finally, the ultimate decision is derived from the combined belief mass. This can be achieved by
selecting the class with the highest belief mass, considering a decision threshold, or employing other
criteria tailored to the specific task (Eq. (13)). Thus, classifiers contribute to the final decision based
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on their degree of belief, allowing for the consideration of situations where certain classifiers are more
reliable than others.

Based on the above steps, the mistake obtained by the DS theory is equal to 0.2, which equates
to 98% accuracy. The last value indicates the effectiveness of the DS approach, as it outperforms the
results obtained using each classifier alone (96%) as well as the voting approach. As can be seen, the
belief function method produced more robust fusion results than the voting method. We can explain
the contribution of this method as follows: The voting method generally combines the predictions
of the different classifiers, assigning equal weight to each vote and then selecting the majority class.
However, it does not take into account the uncertainty associated with each prediction, nor the
respective reliability of the classifiers. In contrast, the belief function method lies in its ability to model
uncertainty in a more refined way. It offers a formal approach for taking into account uncertainty,
confusion, and discrepancies between the predictions of different classifiers. It assigns belief masses to
sets of classes, taking into account the degree of confidence accorded to each classifier. These belief
masses are then combined to calculate an overall belief mass for each class.

Fig. 6 presents the confusion matrix of the combined classifiers.

Figure 6: Confusion matrix of fusion classifiers
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4.3 Results on the Recommended System

Based on the obtained human activities classification results, the second of this project was ded-
icated to calculating the number of calories each user burns during physical activity. The distribution
of daily physical activities for the 22 participants is divided into 50% males and 50% females.

Using the Eqs. (7) and (8), the calorie values are calculated every 30 min of the day. To draw the
necessary conclusions about the health status of each individual and decide on his calorie consumption
(healthy behavior or not healthy behavior), the calorie values calculated for each activity must be
compared with those declared by the World Health Organization (WHO). The WHO has defined
the caloric threshold criteria according to the type of physical activities which are divided into
three categories (low-effort activities rated (−), medium-effort activities rated (+), and intense-effort
activities rated (++)). Table 3 presents the calorie threshold values for men and women.

Table 3: Calorie threshold values for men and women

Type of activity Men Women

(−) 2100 1800
(+) 2500 2400
(++) 3000 2800

From Table 3, the distribution of physical activities reveals that all participants (male and female)
are healthy. The fact that these participants produce more energy than the threshold value shown in
Table 3 justifies this outcome.

Also, Table 4 clearly illustrates that the distribution differs from men to women, particularly for
low and high-effort activities. 48% of males have a big distribution value for the large screen usage
activity that requires a lot of effort. Women, on the other hand, have the same percentage for the
low-effort sitting exercise.

Table 4: Distribution of activities and calorie values without alcohol and smoking

Men Women

Activity Activity
distribution

Calories values Activity
distribution

Calories values

Sleeping (−) 33% 2200 47% 1950
Laying down (−) 40% 2300 45% 2000
Sitting (−) 42% 2350 48% 2100
Eating (+) 40% 2600 35% 2500
Light movement (slow walk) (+) 46% 2650 44% 2550
Small screen usage (+) 40% 2530 42% 2450
Caffeinated drink consumption (+) 47% 2500 46% 2400
Medium (fast walk) (++) 45% 3100 41% 2900
Heavy (running) (++) 43% 3300 39% 3100
Large screen usage (++) 48% 3000 30% 2800
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To demonstrate the detrimental impact of alcohol and tobacco consumption on human health,
even with regular exercise, we integrated these two factors as attributes in the database and studied their
influence on calorie consumption. Table 5 presents the obtained results, it reveals that all individuals
are unhealthy since the obtained calorie values are lower than the threshold values, demonstrating the
harmful impact of drinking and smoking on human health.

Table 5: Distribution of activities and calorie values with alcohol and smoking

Men Women

Activity Activity
distribution

Calories values Activity
distribution

Calories values

Sleeping (−) 17% 1800 3% 1600
Laying down (−) 10% 1900 5% 1700
Sitting (−) 8% 2000 2% 1800
Eating (+) 10% 2350 15% 2200
Light movement (slow walk) (+) 4% 2430 6% 2320
Small screen usage (+) 10% 2400 8% 2300
Caffeinated drink consumption (+) 3% 2300 4% 2260
Medium (fast walk) (++) 5% 2800 9% 2600
Heavy (running) (++) 7% 2900 11% 2700
Large screen usage (++) 2% 2700 20% 2500

As a summary of the results of this work:

• Recognizing physical activity through smartphone data achieved high precision by employing
a hybrid CNN-LSTM architecture and incorporating belief function theory.

• The suggested system, relying on the outcomes of physical activity recognition, demonstrated
its efficacy in determining the health status of individuals, with varying distributions observed
between men and women. These systems lead to applications that, once installed on the
smartphone, will give an alert in the form of a message to the wearer, informing him of his
health status based on his movement.

• As shown, smartphone sensors are still useful tools for recognizing physical activity, offering a
practical and widely accessible approach to monitoring health and well-being. But their use has
certain limitations that can influence the results obtained:
– Sensors integrated into smartphones, such as accelerometers and gyroscopes, can have

variable accuracy depending on the model and brand of the smartphone, which can lead
to inconsistencies in data acquisition.

– Wearing the smartphone in a pocket, the hands, or any other position may give different
results.

– Sensor limitations: Some types of physical activity may not be well detected by available
sensors, requiring specific sensors for more accurate recognition.
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These limitations cannot negate the contribution of smartphones in the field of physical activity
recognition. However, progressive advances in sensor technology and advances in Artificial Intelli-
gence (AI) tools, in terms of the algorithms and methods used, may help to alleviate some of these
limitations.

5 Conclusion

Detecting human activity through smartphone sensor data is crucial in the health domain for
preventing chronic diseases. The smartphone records daily and weekly physical activities, providing
feedback to users on their movement patterns and determining a person’s health state. It is considered
effective since it can be applied in a large distributed manner.

This paper had a dual objective. Firstly, we analyzed human behavior by recognizing physical
activities. In this context, we considered and categorized low, medium, and high effort activities for
total participants of 22 men and women. Based on these data, the methodology relies on artificial
intelligence models, specifically deep learning techniques such as LSTM, stacked LSTM, and bidi-
rectional LSTM. Given that our smartphone sensor data, dedicated to physical activity recognition,
contains both spatial and temporal information, we proposed an approach combining both CNN and
LSTM (or its derivatives). In this combined architecture, spatial characteristics are derived from the
CNN layers and subsequently inputted into the LSTM for learning temporal information. The hybrid
architecture CNN-LSTM has demonstrated superior accuracy in discerning intricate human activities
when contrasted with the accuracies achieved by individual architecture types. The convolutional
LSTM had the best accuracy of 96%, according to data.

Acknowledging that the data learned by these algorithms is susceptible to errors and uncertainty,
the paper introduces fusion mechanisms to enhance performance. Despite achieving a 96% accuracy
level, the proposed solution incorporates Voting and DS approaches. The fused classifiers based on
DS theory surpass individual classifiers, achieving the highest accuracy level of 98%. This strategy
has mitigated inaccuracies and ambiguities in the data, providing synthetic information for decision-
making.

Secondly, based on the results of activity detection and classification, a health recommendation
system was created. The system is based on the calculation of the calories burned during each physical
activity. The assessment of daily or weekly data allows conclusions about an individual’s physical
behavior and has enabled to decide on the healthy physical behavior of users’ smartphones. The
computing of calories was calculated based on two mathematical equations dedicated to men and
women. The findings revealed that the participants are healthy, with a difference in the distribution
of physical activities between men and women. Also, it was demonstrated that individuals consuming
alcohol and smoking are not healthy, even if they participated in physical activities, underscoring the
impact of these two factors on human health.

In future works, we propose using a larger database that will include more physical activities of
daily living as well as an increased number of complex activities. In addition, to increase the obtained
accuracy, we propose to explore advanced techniques based on deep learning such as reinforcement
learning, transfer learning, and attention mechanism for activity recognition.
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