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ABSTRACT

A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase the
visual impression of fused images by improving the quality of infrared and visible light picture fusion. The network
comprises an encoder module, fusion layer, decoder module, and edge improvement module. The encoder module
utilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformer
to achieve deep-level co-extraction of local and global features from the original picture. An edge enhancement
module (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy is
introduced to enhance the adaptive representation of information in various regions of the source image, thereby
enhancing the contrast of the fused image. The encoder and the EEM module extract features, which are then
combined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test the
algorithm proposed in this paper. The results of the experiments demonstrate that the network effectively preserves
background and detail information in both infrared and visible images, yielding superior outcomes in subjective
and objective evaluations.
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1 Introduction

Image fusion involves combining two or more pictures using a certain algorithm to create a
new image. Utilizing the spatial and temporal correlation as well as information complementarity of
many photos enhances the clarity and comprehensiveness of the scene description, making the fused
image more appropriate for human visual perception and automated machine detection [1]. Infrared
sensors detect heat source targets by detecting thermal radiation and may operate in all situations and
weather. They have an excellent ability to differentiate between background and target information and
demonstrate considerable resistance to interference. Nevertheless, the pictures acquired frequently lack
structural texture. Visible sensors can analyze intricate scene and texture characteristics by interpreting
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light reflection, mirroring the observation pattern of the human eye. The identification effect is
moderate and sensitive to light, which might make it challenging to use in low-light conditions. Image
fusion technology combines visible and infrared sensors to leverage their strengths and compensate
for their weaknesses, resulting in images with enhanced detail and improved target perception. These
images can be used to aid other related activities in other areas, such as medical diagnosis, smart
driving, and security monitoring [2].

Current methods for combining infrared and visible pictures may be generally divided into two
categories: Conventional fusion techniques and deep learning-driven fusion techniques. Traditional
fusion methods include image pyramid transform [3], wavelet transform based [4], contour wavelet
[5], multi-scale geometric transform, spatial filtering, etc. [6—8]. For example, in literature [9], weighted
average and nuclear norm are set as fusion strategies; however, for modal features of infrared images,
the target is highlighted by pixel brightness perception, while for visible light, the feature is highlighted
by structural texture, and the most perfect feature may not be obtained. Also, in the literature [10], the
visible and infrared images are decomposed separately using multiscale transform (MST), and colour
fusion is performed manually. Conventional fusion techniques need manual configuration, and the
resultant fused picture is dependent on manually established guidelines. Furthermore, conventional
approaches have a drawback in feature extraction since they extract a limited number of characteristics.
Deep learning has advanced image processing by effectively extracting intricate features from images,
addressing the limitations of traditional methods in feature extraction. Consequently, fusion methods
based on deep learning are increasingly utilized.

Deep learning approaches may be categorized into four groups, with the first being a convolutional
neural network [11-13], which extends the multi-scale processing of images. Optimization network
approaches, like filters or feature extraction networks, convert the spatial domain into the basic
domain and the detail domain. The average of the basic domain is combined with high-frequency
texture features in the detail domain. The detailed feature map generated from the original pre-trained
neural network is integrated. The basic image and detailed image are fused to create the final fused
picture. In literature [14], Zhang et al. designed a feature coding block composed of convolutions
and proposed a lightweight convolutional neural network containing only nine convolutional neural
networks (CNNs) layers for encoding and decoding, which can carry out feature fusion more fully. In
the literature [15], Tang et al. introduced a method for fusing infrared and visible light images using
Convolutional Neural Networks (CNNs) and saliency detection. They utilized a two-channel CNN
to generate the initial fused image. A saliency map is created by comparing the structural similarity
between the infrared and visible source pictures with the original fused image. A weighted fusion rule
is employed to create the fused picture, maintaining the intensity and texture homogeneity in the
saliency zone. The second category is based on generative adversarial networks [16,17]. In this type
of article, image fusion is considered as a result of adversarial equilibrium, where the generator creates
fused images that contain the glowing and texture information of the source image and keeps adding
detailed information for generation and adversarial, and finally, the generator produces fused images
that are indistinguishable by the discriminator. These end-to-end models avoid the manual design of
fusion rules. In literature [18], Liu et al. proposed a comparison of visible infrared image conversion
networks and introduced a class-activation graph-based attention module into the generator and
discriminator for generating adversarial networks (GANs) to capture richer contextual information
in images. For example, in literature [19], Li et al. utilized the coupled generative adversarial network
in picture fusion to expedite the network’s convergence. The third category is an automatic encoding
and decoding-based image fusion architecture where the network is taught during the training phase
to extract features from the source picture. During the testing step, the feature maps are combined
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individually, and then the integrated picture is rebuilt using a decoder. Deep neural networks (DNNss)
are commonly employed to extract features from input images, followed by the application of specific
fusion algorithms to combine these characteristics and accomplish the image fusion job. In a study
referenced as [20], it was shown that utilizing solely convolutional and pooling layers together with a
loss function, without incorporating reference quality measurements, effectively combines the feature.
Wang et al. retrieved superficial and profound image features by using two branches of the encoder in
literature [21]. The fusion layer uses residual blocks to combine two sets of features from the infrared
and visible images inside the same branch, and the decoder creates the final fused image. The fourth
category is fusion methods based on Transformer, which was first proposed in the literature [22]in 2017
and applied to natural language processing with good results. Since then, Transformer applications
have gradually emerged in image processing. For example, in literature [23], a Transformer network
was used for automatic detection in image processing and achieved good results, followed by image
recovery in literature [24] in 2021. The approach involved utilizing a convolutional layer for extracting
shallow features initially, followed by employing the Swin Transformer for deep feature extraction. In
2022, in literature [25], Wang et al. introduced the use of a Transformer in image fusion for infrared
and visible light. They developed a fully attentional feature encoding backbone to capture long-
range dependencies. This pure Transformer network has superior representational abilities compared
to convolutional neural networks and effectively maintains the brightness of infrared images while
preserving visible details.

However, the aforementioned deep learning methods still have certain issues. For instance, in
convolutional neural networks, the excessive use of convolutional layers can lead to the vanishing
or exploding gradients of the network. While GANs train the generator and discriminator in an
adversarial manner, there are potential problems such as training imbalance and mode collapse.
Sometimes, the generator is able to generate samples of high quality, but the discriminator can
still accurately distinguish them, causing training to become difficult. Standalone encoder-decoder
networks or Transformer networks also have their limitations. This research suggests an automatic
encoded and decoded infrared-visible image fusion network that combines Res2Net and Transformer
to overcome the limits of individual approaches and improve the quality of fused pictures. This paper’s
contributions can be summarized as follows:

(1) The introduction of the improved Inception module enables the extraction of multi-scale
features on the one hand, and on the other hand, it also increases the robustness of the network.

(2) An Edge Enhancement Module (EEM) is created to extract additional edge characteristics
from the original photos.

(3) A novel encoder consisting of Res2Net and Transformer is built for simultaneous extraction
of local and global information from infrared and visible images.

(4) A modal maximum difference degree fusion technique is proposed to enhance the adaptive
representation of information in various regions of the source picture during fusion, resulting in a
fused image that aligns better with human visual perception.

(5) The proposed method achieved favourable results in subjective evaluations and objective
analyses compared to several typical methods across three different datasets.

The remainder of this article is organized as follows. Section 2 presents the network fusion
framework and the framework of each module, Section 3 provides the loss function and fusion
technique, Section 4 covers the experimental findings and analysis, and Section 5 concludes the
document.
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2 Proposed Methodology
2.1 Overall Network Structure

The network has three primary modules: Feature extraction, feature fusion, and feature recon-
struction. The feature extraction module consists of three stages: Extracting features from infrared
pictures, extracting features from visible light images, and extracting edge features from both types
of photos. During each stage, both the infrared (IR) and visible source images are simultaneously
processed. Shallow feature extraction is conducted using an enhanced Inception module, passing
through each convolutional layer sequentially. Feature enhancement and a Transformer cascade of
Res2Net are utilized for feature extraction to generate the background and detail feature maps of IR
and visible light, denoted as B,, D,, B, and D,, respectively. Furthermore, there are edge features E;
acquired from the feature extraction module. The feature fusion layer combines the retrieved features
and sends them to the three-layer convolution decoder. During the decoding stage, the feature maps
from the Inception module and the first convolution are added to the last and penultimate convolution
layers to preserve pixel intensity and gradient information from the source image. This process aims
to prevent the loss of detailed information after multiple convolutions and enhance convergence
speed, resulting in a fused image that combines features from both infrared and visible light images.
Fig. 1 displays the comprehensive structure of the fusion model introduced in this article. The next
sections will provide a detailed explanation of the enhanced Inception module, Res2Net Residual
Swin Transformer (RRST) feature extractor, Transformer module, and edge improvement module
integrated into the encoder for designing infrared and visible images.

%
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Figure 1: Infrared and visible image fusion network
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2.2 Improved Inception Module

This research utilizes the Inception network to incorporate multi-scale information to enhance the
fused picture characteristics and ensure the network’s resilience. The inception network is a significant
achievement in the evolution of CNN classifiers. Before Inception, popular CNNs often added
additional convolutional layers to increase the depth of the network in order to improve performance.
The first iteration of the Inception network, Inception V1 or GoogLeNet, was created to develop
a network with a strong local structure by executing numerous convolution and pooling operations
simultaneously on the input image and combining all the results into a deep feature map. Utilizing
various convolution procedures like I x 1,3 x 3, or 5 x 5 together with pooling operations may gather
diverse information from the input picture. Running these operations simultaneously and merging the
outcomes enhances the image representation. Subsequent to Inception V1, networks like Inception
V2, Inception V3, Inception V4, and Inception-ResNet-V2 [26—29] have been introduced.

Fig. 2 displays the enhanced Inception module structure utilized in this study, which maintains
the benefits of feature maps, including intricate feature patterns at various sizes, employing diverse
convolutional kernels, and capturing features at many scales. The network starts with a 1 x 1
convolution, followed by 3 x 3 and 5 x 5 convolutions to enhance network depth, enhance network
nonlinearity, and decrease network parameters. The model incorporates a bulk normalization (BN)
layer preceding each input layer to normalize the inputs to a mean of 0 and a variance of 1. This boosts
the network’s complexity and non-linear characteristics while also speeding up the training procedure.

Figure 2: Inception module

2.3 Res2Net

Res2Net was proposed by Mingming Cheng’s group at Nankai University in 2019 [30], and
the main contribution is to improve the block module in the ResNet model with no increase in
computational load and more powerful feature extraction. As shown in Fig. 3, in simple terms,
Res2Net divides the input of 3 x 3 convolutional layers into four parts, and the network is connected
internally in a residual style. Before finally going through the 1 x 1 convolution, after the newly added
Squeeze-and-Excitation (SE) module, the expressive ability and performance of the neural network are
enhanced by adaptively learning the weights of each channel so that the network can learn and utilize
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the relationship between the feature channels more efficiently, enabling Res2Net to better extract multi-
scale features.

Figure 3: Res2Net module

2.4 RRST Module

Fig. 4a illustrates the network structure of the Res2Net Residual Swin Transformer Block. It
consists of Res2Net and a sequence of Swin Transformer layers (STLs) with residual connections after
the previous shallow extraction, followed by combining the extracted information into the Residual
Swin Transformer Block network. Three Res2Net modules and three Swin Transformer layers are
employed in this study to extract intermediate global features. Res2Net and Swin Transformer utilize
many layers to capture global data effectively, with residual connections aggregating features across
various levels.

v
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(a) Res2Net Residual Swin Transformer Block

—>-—>-—<%>*

(b) Swin Transformer Block
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Figure 4: Res2Net residual swin transformer block & swin transformer block

The Swin Transformer layer, depicted in Fig. 4b, as described in the literature [25], first employs an
N x N sliding window to divide the input into non-overlapping HW /N?* local windows and calculate
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their local attention. The matrices Q, K and V for the local window &z feature are computed using
Eq. (1).

0=¢,Wo,K =, W,V =0, W, @)

The parameters W, Wy and W), € R are shared over three linear projection layers for distinct
windows, whereas d represents the dimension of (Q, K). The sequence matrices of the self-attention
process are described by Eq. (2).

Attention (Q,K, V) = SoftMax (QKT/«/E +p) vV ()

p represents the learnable parameter utilized for position decoding. The Swin Transformer layer
then calculates the usual Multiple Self Attention (MSA) for the shift window. The system consists of
a Weighted-Moving Standard Average (W-MSA) and a multilayer perceptron (MLP). A LayerNorm
layer is placed before W-MSA and MLP, with a residual connection utilized for the module.

2.5 Edge Enhancement Module

In order to retain more edge features in the fusion stage, an edge feature extraction module is
designed, as shown in Fig. 5a. First, the Canny edge extraction operator is used to obtain preliminary
edge features, and then two groups of convolution layers, both of which have convolution kerns of 3 x
3, and the Relu activation function is used in CONV-Block 1. In CONV-Block 2, the Tanh activation
function is used and finally passes through the convolutional block attention module (CBAM) module,
as shown in Fig. 5b. The edge feature extraction of the source image is realized.

EF = EEM (Iira Ivis) (3)
ﬁ = Cat (C (Ilr) ) C (Ivis)) (4)
E;, = CBAM (1)) ®))

(a) Edge Enhancement Module (EEM)

Channel Attention Module

P Bl

Input Feature

Refined Feature

Spatial Attention Module

(b) CBAM

Figure 5: Edge enhancement module
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E; is the feature of the edge extraction module, C is the edge extraction operator, infrared and
visible images are through the edge extraction operator to get the feature f;, and finally through the
CBAM module to get the final edge feature.

3 Loss Functions and Fusion Strategies
3.1 Loss Function for Image Decomposition ( Coding)

The background feature map is to get the same feature points of IR and visible light, and the detail
feature map is to get the respective features of IR and visible light, so it should make the difference

between the obtained same features a little less and make the difference between different features a
little more, respectively, the loss function for image decomposition is defined as follows:

L =¢ (B, —B) I} — ¢ (IIDy — D,|12) (6)

B, and D, represent the background and detail feature maps of the visible image V, whereas B,
and D, represent the background and detail feature maps of the infrared image I. The function &(-)
utilizes a tangent function with a restricted value range of (—1,1).

3.2 Loss Function for Image Reconstruction

The reconstruction loss function is defined by the following equation for image reconstruction,
where the objective is to accurately maintain the input image’s pixel intensity and fine-grained texture
information:

L= af (1,}) taf (v, @) Fa,l|Vv— V|, (7)

Iand ] represent the input and reconstructed infrared pictures, whereas v and v represent the
visible images. V symbolizes the gradient operator.

£ (3.%) = 11 = 1B + AL (. %) @®)

The input and reconstructed pictures are designated by the letters x and X, respectively, and A
represents the hyperparameter. The original and reconstructed images’ pixel intensity consistency
is measured by L,-norm, while the difference in the images’ brightness, contrast, and structural
composition is determined by Lgg,,. In this instance, L, (x, Sc) 1s calculated as

| — SSIM (x, x)

Lsi (xa )AC) = 3 (9)
Combining Egs. (6) as well as (7), the total loss L, can be expressed as
Lrora/ = Ll + Lz (10)

The hyperparameters in the loss function are set as follows: o, = 0.5, &, = 3.5, @3 = 3.5, , = 10,
A = 5 (Subsequent experiments will justify the values taken).

3.3 Integration Strategy

The preceding section outlines the network structure and loss function. Following the training
process, an encoder and a decoder will be generated. The objective during the fusion step is to combine
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the infrared and visible pictures. A fusion layer is added during the fusion stage to combine the
background and detail feature maps together with the edge features. The fusion of the background
features is calculated as Eq. (11) since the difference between the two is not much for the background
information, but the difference between the detail information features is large.

B. =B, + B, (11)

However, the detailed feature map is to show the difference between the two. The infrared detail
feature map and the visible detail feature map are subtracted to calculate the difference between the
two, and then the difference feature map and the maximum difference degree of the difference feature
map are divided to obtain the relative difference weights and, as shown in Eqs. (12) and (13).

— 12

H max (D, — Dy) (12)
Dy, — D,

— 13

= max (D, — D)) (13)

The max in Egs. (12) and (13) performs a global depth maximum pooling operation on the
difference feature maps to obtain the maximum degree of difference between the two images.

In order to assign weights to the pixels in the infrared and visible feature maps according to
their importance, the relative difference weights obtained above are added to their absolute values
and averaged as the final adaptive weighted maps \, and X, to guide the fusion process, shown by
Egs. (14) and (15), where X\, and A, have the same dimensions as the initial feature maps.

A= LW (14)
2
A = %'“2' (15)

This adaptive weighting map and the initial feature map are then multiplied to generate the pre-
fused feature maps F, and F,, as shown by Eqs. (16) and (17).

F]=)\,]*Dl+(1_)\,1)*DV (16)
Fzz)\,z*DV‘f_(l_)\,z)*D[ (17)
Finally, the two pre-fusion feature maps are averaged to obtain the final detailed fusion feature
map Dy, as shown in Eq. (18).
_F+F
T2
Finally, Br and Dy, as well as the feature £ obtained through the edge module, carry out the final
feature fusion.

(18)

3.4 Complexity Analysis

Suppose in the training phase, the number of images in the dataset in the training phase is M, the
number of cycles of training is E, the number of images contained in one iteration, i.c., the batch size,
is N, the number of iterations (which denotes the number of iterations contained in one cycle) is I,



1450 CMC, 2024, vol.79, no.1

and I = M/N. So, the time complexity obtained in the data extraction phase is O(E) %« O(N) % O(I) =
O(E % N % I).

The article only includes the essential phases of the training cycle, as the primary time-consuming
components are the Transformer and Res2Net modules. The time complexity of the Transformer
model is calculated as O(dim * H * W + d * nW + H % W % dim % dim * mlp_ratio), where dim
represents the input features’ dimension, H is the input image height, W is the input image width, d
is the input feature dimension within each window, and nW is the total number of windows. The time
complexity of the 1x1 convolutional layer in Res2Net is O(c_in * c_out * h * w), whereas the time
complexity of the BN layer and activation function may be ignored to get the total time complexity
of Res2Net. Res2Net’s time complexity is O(c_in * ¢c_out * h % w * scales), ¢_in and ¢_out denote the
input and output channels of the convolutional layer, h represents the height of the input feature map,
w represents the width of the input feature map, and scales indicate the number of feature groups in
the residual block.

In the training phase, since the rest of the steps are executed sequentially, the time complexity is
all O(1), so the total time complexity is O(ENI) % [ O(dim * H * W 4+ d * nW 4+ H % W * dim * dim
mlp_ratio) + O(c_in * c_out * h * w * scales)].

In the testing phase, this paper uses only one kind of dataset to test the time complexity and
uses the already trained model. The time complexity depends on the number of times of forward
propagation, so the time complexity of the testing phase is O(M x I), where M is the number of samples
tested and I is the prediction time of each sample.

4 Experiment
4.1 Experimental Setup

This section aims to analyze the fusion effect obtained by picture fusion and contrast it with
other advanced modelling techniques. The FLIR dataset was chosen for training in this study, and
all pictures were transformed to grayscale prior to training. This study simultaneously centred and
cropped the images to 128 x 128 pixels. One hundred and eighty pairings of infrared and visible
datasets were utilized for training, whereas three publically accessible datasets, namely TNO, NIR-
century, and FLIR, were employed for fusion experiments. The studies were carried out using a
hardware setup consisting of an NVIDIA GeForce RTX 3090 and a software setup including Windows
10, Python 3.8, and PyTorch 1.10.2.

This study uses six objective parameters to thoroughly assess the quality of the merged picture.
Information entropy (EN) quantifies the information included in the combined features of the
grayscale distribution inside the image. Mutual information (MI) quantifies the level of mutual
interdependence between two variables. MI may assess the level of information overlap between two
input pictures in image fusion. The average gradient (AG) is a measure of picture sharpness in fused
images. A higher AG value implies greater image sharpness and overall fusion quality. Standard
deviation (SD) is a quantitative measure that assesses the amount of information included in a picture.
A higher standard deviation number signifies a wider spread of grayscale values and a greater quantity
of information conveyed by the image, leading to improved fusion image quality. Visual Information
Fidelity (VIF) is a measure used to assess how well visual information is maintained. Peak signal-to-
noise ratio (PSNR) assesses picture distortion by analyzing the discrepancies between the original and
reconstructed images. Higher PSNR values correspond to superior image quality. Six generally used
parameters are utilized to objectively assess the fusion results of each approach.
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4.2 Experimental Results and Analysis

4.2.1 Training Effect

In the training phase, Adam optimizes the network for 120 epochs with a batch size of 24 during
the training phase. In this study, the learning rate is set at 10~ and is lowered by a factor of 10 every
40 epochs.

In order to verify the optimal values of each parameter value, the values of each parameter were
adjusted to four sets of values (a), (b), (c), and (d), respectively, in the training phase and the optimal
values were obtained according to the training results. The values of each parameter were set among
them, as shown in Table 1.

Table 1: Individual values of the parameters

o o, o oy A
(a) 0.3 3 3 8 4
(b) 04 3.2 3.2 9 4.5
(© 0.6 3.8 3.8 11 5.5
(d) 0.5 3.5 3.5 10 5

The obtained training effects are shown in Figs. 6a—6d, define the horizontal and vertical axes as
the x-axis and y-axis, respectively. The results show that all the loss curves are almost very flat after
120 rounds of training. Four training images were obtained for the four sets of data in the setup,
and in Figs. 6a and 6c, although the overall loss function and the recombined loss function curves
reached convergence after about 20 rounds, the background loss function did not converge until about
40 rounds, and the convergence performance was slow and ineffective. Fig. 6b shows that while the
overall loss function and background loss function converge rapidly, the detail loss function decreases
compared to group (d). A higher value in the detail loss function indicates better model extraction
performance, making the image (d) more effective. Therefore, the data from group (d) is selected as
the parameter value.

4.2.2 Performance Evaluation

This paper utilizes a dichotomous model support vector machine (SVM) to assess the benefits of
the training model, as inspired by the literature [31]. Fused images from each algorithm are used as
inputs, and the variance of the area under the curve is calculated along with the 95% confidence interval
using a normal distribution function. The 95% confidence interval, a statistical concept, represents the
range of uncertainty in estimating parameter results in statistical inference, indicating the reliability of
the inferred outcomes. The receiver operating characteristic (ROC) curve is obtained, which in turn
gives the area under the curve (AUC) value [32]. An AUC value of 0.9065 can be obtained for the
model of this paper, 0.8641 for U2Fusion, 0.7301 for SwinFusion, and 0.7254 for NestFuse. Since
there are more methods to compare, only three algorithms were selected for comparison, as shown in
Fig. 7. From the AUC results, it can be seen that the model proposed in this paper performs better.
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The performance comparison of various machine learning algorithms is shown in Table 2.

Table 2: Comparison of different algorithms in SVM

Accuracy (CI)
SwinFusion 85.62 (83.12-87.45)
NestFuse 82.51 (80.13-84.64)
U2Fusion 88.49 (85.36-91.47)

Proposed algorithm 90.49 (88.49-92.74)

In order to verify the effectiveness of the method, Nestfuse [33], Seafusion [34], U2Fusion [35],
IGNet [36], SwinFusion [37], DATFuse [38], PAIFusion [39], MetaFusion [40], and YDTR [41]
were selected nine typical fusion algorithms are compared. The method’s performance is assessed
subjectively and objectively.

Fig. 8 displays the fusion outcomes of combining a collection of infrared and visible photos
from the TNO dataset using the nine approaches mentioned above. The infrared target perceives the
brightness of (c), (), (h), and (k) in Fig. § as dim and indistinct, particularly inside the area shown
in red. Only the basic shape of the window is seen, but individual details are unclear. In Figs. 8d and
8g, although the brightness of the target is high, the colour of the figure is slightly dim in terms of
the richness of texture details, and the key features are not highlighted. As can be seen from the green
border marked in the figure, in images (e) and (i), although the brightness of the target is high, there are
some distortions, especially in the image (i), where there are large black shadows. The original features
cannot be accurately displayed. Compared with the target of the fusion image mentioned above, the
fusion image target obtained by the model in this paper is bright and clear, which proves that the model
can extract more feature information from the source image.
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Figure 8: Experimental results on the TNO dataset

Fig. 9 displays the fusion outcomes of an infrared and visible picture pair using several techniques
in the NIR dataset. The target brightness of images (c), (f), (h), and (k) in Fig. 9 is notably low,
particularly in picture (h). The picture is too fuzzy, almost distorted, and cannot accurately reflect the
texture and detail characteristics of the source image. In images (d), (g) and (j), the brightness effect
looks good, but the texture of visible images cannot be well displayed. For example, in the marked red
border, the shadow part of the tree is lighter, and the visual effect is unsatisfactory. In images (e) and
(1), although the brightness is higher, the image is also clearer, but the tree and the shadow part (green
border and red border) are a little too black, and it looks even darker than the colour of the source
image, which is also relatively distorted. It can clearly display high brightness and does not excessively
make a certain part of the image darker than the image (i). This method of fusion preserves the target
features and background characteristics to the fullest extent in the resulting image. Hence, the fusion
impact of this approach surpasses that of other comparison methods.

Fig. 10 displays the fusion outcomes of an infrared and visible picture pair from the FLIR dataset
utilizing several techniques. In images (c), (e), (f), (h) and (k), some details of the target are lost, and
the target point is almost invisible, especially in the image (e), although the overall image looks bright,
the manhole cover in the figure is completely invisible, and the distortion is too serious, which can be
seen by the marked red border. Although the target point can be seen in image (i), the overall image
is still too black, except for the points marked. Almost all other places are black. In images (d), (g)
and (j), although the overall image looks bright, the license plate in the figure is partially lost, and the
texture details are not completely presented. In summary, it can be seen that the image fused by the
method of this paper has a bright target, rich background and better quality.
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Figure 9: Experimental results of NIR dataset
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Figure 10: Experimental results of FLIR dataset
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The data metrics acquired by each algorithm in different datasets are presented in Tables 3-5 to
confirm the benefits of the strategy suggested in this work.

Table 3: Comparison of the performance of the different methods in Fig. §

EN MI AG SD VIF PSNR
Nestfuse 6.8852 3.2759 3.2273 40.4871 0.7075 62.6179
Seafusion 7.171 2.5442 5.0273 48.149 0.6314 61.6519
U2Fusion 7.2295 2.2321 7.1611 74.6469 0.5211 59.9133
IGNet 7.4464 2.7034 4.6553 47.4335 0.6255 62.1447
SwinFusion 7.0345 1.6113 4.9621 53.1762 0.5155 57.0948
DATFuse 6.5398 3.2269 3.075 30.9734 0.642 62.1587
PAIFusion 7.6038 1.7153 6.0982 73.5383 0.4906 57.7086
MetaFusion 6.954 2.0323 5.641 48.262 0.5031 62.3021
YDTR 6.511 2.1696 2.7249 24.99 0.5418 63.2362
Proposed Method 7.1403 3.3036 7.2548 50.8639 0.7197 63.3675

Table 4: Comparison of the performance of the different methods in Fig. 9

EN MI AG SD VIF PSNR
Nestfuse 7.3596 4.7431 5.4043 44.5078 0.9614 61.7126
Seafusion 7.3528 3.4705 7.8631 48.7366 0.7297 59.9955
U2Fusion 7.1695 3.8119 11.2708 96.2183 0.6135 58.3594
IGNet 7.7052 4.1497 8.3902 60.5846 0.7779 61.2792
SwinFusion 7.7788 4.1433 8.6115 71.7153 0.599 57.1083
DATFuse 6.8423 3.5496 5.3915 32.2052 0.6633 61.2466
PAIFusion 6.9409 3.897 7.6564 97.8948 0.5749 57.6459
MetaFusion 7.5031 4.1236 6.4862 46.5129 0.7061 60.516
YDTR 7.0949 4.2337 4.9715 40.1719 0.8173 60.7527
Proposed Method 7.7966 4.8678 7.8818 73.4038 0.7971 62.4469
Table 5: Performance comparison of different methods in Fig. 10
EN MI AG SD VIF PSNR
Nestfuse 7.3071 4.8714 3.439 45.0093 0.8367 60.4155
Seafusion 7.388 4.253 4.5755 49.9897 0.7383 59.3596
U2Fusion 7.5818 3.7021 6.5009 73.9141 0.6116 58.3987
IGNet 7.0386 3.4118 4.0502 42.428 0.5742 60.9522
SwinFusion 7.3854 3.7027 4.6201 47.6814 0.4692 56.9874
DATFuse 6.6901 4.7337 3.1639 31.0108 0.6792 60.2554

(Continued)
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Table 5 (continued)

EN MI AG SD VIF PSNR
PAIFusion 7.6375 3.6695 6.5513 72.7476 0.4909 57.6272
MetaFusion 7.0364 4.8661 3.5614 44.6219 0.6861 60.5121
YDTR 6.5167 3.3144 2.5431 27.4356 0.5353 61.0361

Proposed Method 7.6973 2.8319 4.1778 41.7343 0.8258 61.2639

The approach presented in this study demonstrates the most effective results based on the objective
assessment metrics of fusion pictures in Table 3 and Fig. 8. The approach achieves the four highest
fusion indicators of MI, AG, VIF, and PSNR among the six data indicators. In the AG index, the
value is 7.2548, and the AG value of YDTR is 2.7249, which is 4.5299 greater than the AG value. This
indicates that the picture has more edge features and demonstrates the success of the edge enhancement
module. Furthermore, the MI and VIF values are greater compared to other methods, aligning
with subjective perception. The fusion picture target seems brilliant, with rich local information
and a pleasant visual impression. The study demonstrates that the proposed technique may extract
additional information and provide a superior fusion effect in the TNO dataset.

Table 4 documents the objective assessment metrics of the fusion pictures produced by the various
approaches depicted in Fig. 9. When using evaluation measures EN, the value may not be much greater
compared to other techniques, but it can still indicate the level of similarity or information overlap
between the original picture and the fused image. The MI value is 0.9708, more than the PAIFusion
value of 3.897, indicating a higher level of feature information from the original picture. It indicates
that the NIR data set yields more information and a higher correlation between the fused image and
the source image. This approach effectively integrates picture information, texture, contrast, and visual
effects, aligning with subjective judgment better than previous algorithms.

The benefits of this paper’s approach are less noticeable in Table 5 when compared to the first two
datasets. However, it does showcase some advantages in certain aspects. For instance, the EN value of
this paper is 7.6973, whereas DATFuse is 6.6901, resulting in a difference of 1.0072. The fused image
contains more information compared to the DATFuse algorithm. Additionally, the PSNR achieved
the highest value, indicating that the fused image has more correlation or similarity with the source
image in the FLIR dataset, resulting in better quality. This demonstrates the advantages of the method
presented in the paper.

The data above shows that the fusion method suggested in this study completely integrates picture
information compared to the other approaches. The fusion image comprises the most complimentary
information from the source image and effectively preserves the edge texture details, demonstrating
the benefits of the suggested approach.

5 Conclusion

This article proposes a novel infrared and visible light image fusion autoencoder-decoder based
on the Res2Net-Transformer structure. Firstly, most existing methods in image fusion either solely
utilize CNN’s convolution layers or apply emerging transformer models for feature extraction. In
contrast, the proposed algorithm combines the Res2Net model for deep feature extraction with the
Transformer model to incorporate global feature extraction, thereby improving the fusion quality. An
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edge extraction module is created to enhance the capture of edge characteristics in pictures, facilitating
the extraction of more authentic edge features. A novel fusion approach has been developed based on
optimizing the disparity between the infrared and visible light feature maps. The procedure assigns
weights to pixels in feature maps based on their importance to guarantee the fused image retains
crucial properties from the original photos adaptively. The autoencoder fusion architecture excels
at merging infrared and visible light images, as demonstrated by subjective judgments and objective
evaluation criteria. Pixel-level fusion aims to achieve high-quality fused pictures and support tasks like
item identification and recognition. Hence, the subsequent action may involve creating a multitasking
neural network capable of efficiently executing tasks like object identification while producing superior
fused pictures.
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