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ABSTRACT

Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,
which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomes
these limitations by vectorizing information through increased directionality and magnitude, ensuring that spatial
information is not overlooked. Therefore, this study proposes a novel expression recognition technique called
CAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining and
integrating features extracted by a convolutional neural network before introducing them into CapsNet, our model
enhances facial recognition capabilities. Compared to traditional neural network models, our approach offers
faster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimental
results demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and
99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventional
expression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associated
with convolutional neural networks while increasing expression identification accuracy.
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1 Introduction

Given the rapid pace of scientific and technological advancements, coupled with ongoing progress
in computer science, artificial intelligence, and related fields, there is a constant need for improving
human-computer interaction. In face-to-face communication, nonverbal cues such as facial expres-
sions and body movements play a crucial role in conveying messages and helping the audience
understand the speaker’s intentions [1]. Facial expressions serve as manifestations of human thoughts,
emotions, and conditions. As science and technology continue to advance with dedicated research
efforts, the potential ability of computers to accurately and efficiently recognize facial expressions
holds great promise for enhancing the naturalness and harmony of human interactions. The theoretical
and practical applications of facial expression recognition technologies are numerous.
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According to Mehrabian’s investigation [2], verbal communication accounts for only 7% of
expressing emotions, while other non-verbal means such as rhythm, voice, speed of speech, and
particularly facial expressions contribute to 38%. Among these non-verbal cues, facial expressions
alone represent 55% [3]. Therefore, valuable insights into human thoughts and emotions can be derived
from analyzing facial expressions. The primary objective of facial expression recognition technology is
to develop an effective and efficient system capable of accurately identifying various human emotions
conveyed through expressions including neutrality, surprise, disgust, anger, sadness, and happiness [4].

The rapid advancement of deep learning technology [5–9], artificial intelligence technology
[10–13], and computer hardware has significantly impacted facial expression recognition technology.
Facial recognition [14] is a representative interdisciplinary, involving psychology, sociology, psychol-
ogy and psychology. The continuous development of facial expression recognition technology will
surely attract more scholars’ attention, and research in various fields will promote the development of
many fields.

Facial expression recognition algorithms can be categorized into machine learning algorithms
and deep learning-based methods. Traditional recognition algorithms typically employ specific feature
extraction techniques based on the research subject, and these traditional methods have long been
the focus of human facial expression recognition research. However, traditional facial expression
recognition methods rely on manually designed feature extraction, which is susceptible to interference
from irrelevant factors, resulting in relatively low-level semantic features being extracted for most facial
expressions. With advancements in computer hardware performance, researchers have increasingly
turned to deep learning-based approaches as the mainstream method for facial expression recognition.
Deep learning-based algorithms address the limitations of traditional methods by eliminating the
need for manual design of facial expression feature extraction [15,16]. By increasing network depth
and width, higher-level semantic features can be extracted. Currently, convolutional neural networks
(CNN) are widely used in facial expression recognition tasks; however, CNNs require a large amount of
training data and may struggle with identifying small sample sizes while also being prone to overfitting
or underfitting issues. Additionally, CNNs exhibit poor performance when recognizing complex scenes
and fail to accurately handle changes in image angles or reflect relationships between internal feature
levels [17–19].

The research motivation of this paper is to address the limited generalization ability of convo-
lutional neural network expression recognition methods when processing small sample data, such as
expression data, and to overcome the challenges posed by complex scenes, objects at different scales,
and image transformations. Our objective is to optimize the model in order to enhance its recognition
capability for small samples, improve its performance in complex scenes, enable better identification of
facial images with varying scales, effectively handle rotation, scaling and translation transformations
of facial images, and enhance the model’s robustness for recognizing different types of transformations.

The present paper introduces the capsule neural network (CapsNet) and proposes an expression
recognition method based on both convolutional neural network and capsule neural network. Firstly,
by leveraging the concept of capsules, the data dimension is reduced to enhance the model’s processing
capability for small sample data and facilitate better identification of objects with varying scales.
Secondly, the capsule neural network effectively handles the relationship between local features
and global features, thereby improving recognition performance in complex scenes. Lastly, spatial
orientation information is stored and propagated using the capsule structure within the capsule neural
network.
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2 Related Work

Since the 19th century, foreign scholars have conducted systematic analyses and research on
facial expressions. In 1872, biologist Darwin confirmed in his book “The Emotional Expression of
Man and Animals” that facial expressions are shared characteristics between humans and animals.
In 1971, psychologists Ekman and Friesen developed a comprehensive classification system for facial
expressions, encompassing emotions such as happiness, fear, sadness, surprise, anger, and disgust [20].

Deep learning-based techniques and machine learning algorithms are two categories under which
facial expression recognition systems fall. The deep learning approach, surpassing machine learning
algorithms and yielding more abstract information, has gained popularity in recent years. In 2016,
Li et al. proposed a facial expression recognition method based on Gabor and Conditional Random
Fields (Gabor+PCA+CRF [21]). This method utilized the Gabor characteristics extracted by five
scales to reduce dimensionality and employed State Random Fields (CRF) for facial expression iden-
tification and classification. Similarly, in the same year, AT Lopes presented the Lopes algorithm [22] in
2017, which jointly processed images using convolutional neural networks and specific preprocessing
methods. Yan et al.’s cooperative discriminant multi-metric learning algorithm (CDMML) [23] was
suggested for video-based facial expression identification by integrating voice and video modalities to
enhance recognition performance. In 2021, Pourmirzaei et al. [24], employing self-supervised learning
techniques, improved recognition performance and reduced error rates through fine-grained tasks of
facial feature expression analysis. Aouayeb et al. [25], on the other hand, proposed a Transformer
model for facial expression recognition based on attention mechanisms. The present study introduces
a novel joint extrusion and excitation (SE) block for learning visual Transformer in order to address the
limited training data issue of the transformer model in FER task. Experimental results demonstrate
the competitive performance of this approach. Minaee et al. proposed a deep learning technique
based on attention convolution networks (Deep Emotion [26]), which effectively focuses on facial
key regions and significantly enhances the performance compared to previous models across multiple
datasets. The current status of image-based facial expression recognition was assessed based on the
suggestion made by Christopher Pramerdorfer (Inception [27]). To highlight algorithm differences
and their performance effects, CNNS were employed. Fard et al. proposed an algorithm model called
adaptive correlation (AD-CORRE [28]) loss to guide the correlation between samples in the classroom
and network level samples, aiming to embed feature vectors with reduced correlation. Khaireddin and
his colleagues proposed the adoption of VGGNet [29] architecture, which was fine-tuned with precise
adjustments to its approximate parameters and implemented using various optimized experimental
methodologies, leading to favorable outcomes.

The aforementioned research demonstrates that although deep learning has made some progress
in face recognition, there are still challenges with convolutional neural networks (CNNs), such as
their limited ability to accurately handle changes in angles and directions of images, as well as
the relationship between internal feature levels. In 2017, Sabour et al. [30] proposed a novel deep
learning network structure called Capsule Neural Network (CapsNet), which initially outperformed
CNNs and RNNs in image recognition. Despite being at an early stage of research, several scholars
have applied CapsNet in various fields including natural language processing and computer vision,
yielding competitive results. For instance, Kim et al. [31] introduced an abnormal driving centerline
intersection detection method based on CapsNet. One advantage of using CapsNet is that it recognizes
objects as vectors containing all state information within capsules. Suri et al. [32], utilizing signals
collected by a specially designed wearable IMU system, proposed a novel one-dimensional deep
CapsNet architecture for continuous Indian sign language recognition. Compared to CNNs, CapsNet
exhibits higher performance demonstrating its applicability. Li et al. [33] employed CapsNet to
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determine whether natural text contains secret information and achieved robustness and accuracy.
By enhancing the direction and size of information, CapsNet achieves vectorization without losing
spatial information from images thereby overcoming limitations of traditional CNNs. To address
existing issues with CNNs and enhance expression recognition performance, this paper proposes a
model combining CNNs with CapsNet for expression recognition purposes due to the latter’s superior
ability in recognizing spatial orientation.

3 Method

The VGG16 model serves as the fundamental framework in this study, while the incorporation
of a capsule layer significantly enhances facial expression recognition performance. Referred to as
CAPSULE-VGG, our proposed convolutional neural network and capsule neural network model
represents a fusion CapsNet classification approach. Specifically, we introduce a capsule neural
network before the fully connected layer within the existing VGG16 architecture.

3.1 Convolutional Neural Network

The convolutional layer, pooling layer, activation layer, fully connected layer, and output layer
collectively constitute a convolutional network [34–36], which shares similarities with various funda-
mental neural networks while maintaining a relatively straightforward architectural design. The convo-
lutional operations in a general convolutional neural network consistently consider the construction of
local mean or maximum feature pooling levels [37–40]. Utilizing a multi-feature extraction network can
significantly reduce the resolution of multi-feature images. The output results from the fully connected
layer are fed into the softmax layer, enabling node-based multi-feature extraction and comparison of
feature graphs [41,42].

The convolution layer performs comprehensive feature extraction by employing multiple convo-
lution kernels, as demonstrated in Eq. (1) for precise calculation.

yj = α
(∑Nj

i=1
ωi ∗ xi + bj

)
(1)

The i-th feature map of the upper layer, denoted as xi, serves as the input at this stage. Corre-
spondingly, ωi represents the convolution kernel associated with it. yj refers to the j-th feature map,
bj denotes the bias term, and Nj signifies the number of features in each feature map. The activation
function f can take various forms such as Tanh or ReLu.

The primary objective of the pooling layer is to reduce the dimensions (width, length, and number
of channels) of the preceding layer while minimizing computation, memory, and parameter usage.
This facilitates achieving specific scale and space invariance objectives without relying on overly
aggressive fitting techniques. For instance, after obtaining the output from the last convolutional
layer, eigenvalues representing characteristic quantities of n ∗ n ∗ M can be utilized for 2 ∗ 2 pooling
operations within a window. Consequently, the pooled output would have dimensions of n/2 ∗ n/2 ∗
M. Various common calculation methods such as random pooling, maximum pooling, and average
pooling are commonly employed.

3.2 CapsNet

The CapsNet model was developed based on the principle of human visual object recognition
[43–46]. Hinton posits that during object recognition, humans tend to disregard irrelevant details and
transmit information about key parts of the observed object from the visual central nervous system
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to the higher central nervous system for higher-level decision-making. Similarly, in our representation
of image features as capsules, upper-level capsules do not fully incorporate all information from each
lower-level capsule but selectively integrate salient information.

The CapsNet architecture, illustrated in Fig. 1, represents a high-performance network structure
for deep learning. In this configuration, each feature is represented by a vector known as a capsule
[47–49]. By training this architecture, effective image feature extraction can be achieved. The char-
acteristics of each spatial entity are encapsulated within vectors and gradually combined using
clustering methods. To preserve the spatial information of the data, CapsNet replaces the pooling
layer commonly found in CNNs, resulting in an impressively low test error rate of only 0.25% on the
MNIST dataset.

Layer l
Capsule

Layer l+1
Capsule

dynamic
routing

cluster

Capsule

Figure 1: Capsule neural network structure diagram

The feature vector of a capsule possesses the property that its direction represents a specific feature,
while its modulus length (L2 norm) indicates the likelihood of this feature’s existence. Furthermore,
it is important to note that the modulus length of all capsules always remains less than 1. In contrast
to conventional neural networks, the utilization of a dynamic routing algorithm facilitates effective
information transfer between upper and lower layers within CapsNet.

The instantiation parameters of a specific entity type are represented by the input and output
vectors of the capsule. The direction of these vectors indicates certain attributes of the entity, while
their length signifies the likelihood of its existence. A transformation matrix predicts the instantiation
parameters for capsules within the same layer. The dynamic routing algorithm plays a crucial role in
prediction, ensuring consistency among multiple predictions within this layer and activating capsules
in the subsequent layer. The output vector length of each “capsule”reflects its occurrence probability in
the current input, necessitating that it falls within a range from 0 to 1. Nonlinear compression through
“squashing” guarantees that short vectors approach zero length, while long vectors are reduced to unit
length. At the capsule level, activation function is achieved using discriminant learning approach as
expressed by Eq. (2).

vj =
∥∥s2

j

∥∥
1 + ∥∥s2

j

∥∥
sj∥∥sj

∥∥ (2)

The input vector of capsule j, denoted as sj, and its corresponding output vector vj are defined in
this case. Moreover, the sum of the vector weights from all capsules i in the preceding layer to capsule
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j is equal to sj. This non-linear compression not only preserves the original direction of the vector,
thereby maintaining the attributes of instantiated parameters unchanged but also restricts the length
of the vector within a range between 0 and 1. The calculation process for obtaining the input vector
involves two steps: Linear combination and Routing, as expressed by Eq. (3).

sj =
∑

i

cijûj|i, ûj|i = wijui (3)

Among them, ûj|i is a linear combination of ui, which, although not identical, exhibits compara-
bility to the fully connected network. It demonstrates the strength of the connection between the i-th
capsule in the preceding layer and the j-th capsule in the subsequent layer or represents the prediction
vector obtained by multiplying the output vector of the i-th capsule in the preceding layer with its
corresponding weight matrix. The process of calculating sj is designed to iteratively update cij using
a dynamic routing algorithm. Through routing, this procedure can acquire the input vector sj of the
subsequent layer of capsules. Dynamic routing is a pivotal component in capsule neural networks, as
its dynamic nature enhances the network’s explanatory power and improves performance on noisy
samples. By iteratively adjusting the coupling coefficient between parent and child capsules, dynamic
routing facilitates dynamic connections between them. This mechanism identifies which sub-capsules
should be updated during backward propagation and highlights entities in the image that require
attention, thereby encouraging sub-capsules to transmit information to their parent capsules with
higher coupling coefficients.

Fig. 2 illustrates the process of implementing dynamic routing, which involves obtaining the
prediction vector û(l+1)

j|i ∈ Rd(l+1) by multiplying sub-capsule u(l)
i with learnable viewpoint matrix

W (l+1)

i,j ∈ Rd(l+1)×d(l) . The coupling coefficient between capsules is determined using Softmax function as
the cumulative prior and set to 0 in the first iteration. Then, squashing function is used for weighted
sum of û(l+1)

j|i , coupling coefficient, parent capsule u(l+1)

j , and corresponding prediction vector û(l+1)

j|i .
Finally, scalar product is accumulated with t(l+1)

i,j to update coupling coefficient. This mechanism
enables dynamic routing to quickly establish connection between child capsule and parent capsule.

Figure 2: Execution process of dynamic routing

Table 1 displays the steps of the dynamic routing algorithm.
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Table 1: Dynamic routing algorithm

1 Rounting
(
ûj|i, r, l

)

2 Regarding every l+1-layer capsule j and every l-layer capsule i: bij → 0
3 Iterate r times
4 Regarding every l-layer capsule, i: cij ← softmax(bij)

5 For all capsules j with l+1 layers: si = ∑
i cijûj|i

6 For all capsules j with l+1 layers: vj ← squash(sj)

7 Regarding every l+1-layer capsule j and every l-layer capsule i:
bij = bij + ûj|i · vj

Return vj

3.3 Loss Function and Optimization Algorithm

The internal weight matrix of parameters should be adjusted in accordance with the loss function,
while the coupling factor needs to be dynamically modified through routing.

The probability of a capsule’s representation content is denoted by its vector magnitude, and the
sum of the output probabilities does not necessarily equal 1. Therefore, this paper employs interval
loss to formulate the network’s loss function, as opposed to the commonly used cross entropy loss in
traditional classification tasks. The interval loss function can be mathematically represented as Eq. (4).

Lc = Tc max
(
0, m+ − ‖vc‖2

) + λ(1 − Tc) max(0, ‖vc‖ − m−)2 (4)

In Eq. (4), c represents the category. Tc indicates the presence or absence of a class c intrusion.
Within the output layer, vc denotes the length of the capsule, specifically representing the likelihood
that a sample belongs to class c. The maximum penalty for false positives is denoted as m+, whereas
m− represents the minimum penalty for false negatives. The coefficient of proportionality λ is utilized
to adjust their specific gravity accordingly. In this study, we set λ, m+ and m− to 0.25, 0.9 and 0.1,
respectively. Although dynamic routing algorithm resolves weight update issues between capsules
exclusively, it remains crucial to implement backpropagation in order to enhance network convergence
capabilities effectively. To achieve smooth convergence and minimize loss values iteratively while
updating neuron weights, we employ Adam method as an optimization algorithm for our loss function.

3.4 CAPSULE-VGG

The VGG16 network is employed in this study for facial expression recognition. Fig. 3 illustrates
the model structure constructed using the VGG16 network, which consists of 13 convolutional layers
accompanied by 5 max-pooling and 3 fully connected levels. In terms of the network architecture, a
combination approach integrating CapsNet with the VGG16 network is adopted.

Due to the parameter sharing in convolution and the local effect of the pooling layer, CNN exhibits
translation invariance, implying that when the position and direction of an entity change during
prediction, neurons that were active for the original entity will not be activated. Conversely, the pooling
layer results in significant degradation of spatial information. To better preserve the spatial properties
of data, we optimize the basic VGG16 network and propose a CAPSULE-VGG model. The features
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extracted from VGG16 are further analyzed using CapsNet, thereby enhancing the representation of
spatial information within these features. The structural diagram is illustrated in Fig. 4.
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Figure 3: VGG-16 structure diagram
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Figure 4: CAPSULE-VGG structure diagram
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The CAPSULE-VGG model fully mines the preprocessed expression data set and extracts its
features using the VGG module. These features are then aggregated by the capsule network layer, with
weights between capsules updated through dynamic routing algorithm. The number of capsules is set
to 16, and the final classification result is outputted by a Softmax classifier. Table 2 provides detailed
configuration information for the CAPSULE-VGG model.

Table 2: Detailed configuration of CAPSULE-VGG model

Conv1-1 Convolution kernel: 3 × 3, 64
Conv1-1 Convolution kernel: 3 × 3, 64
Maxpool 2 × 2
Conv2-1 Convolution kernel: 3 × 3, 128
Conv2-2 Convolution kernel: 3 × 3, 128
Maxpool 2 × 2
Conv3-1 Convolution kernel: 3 × 3, 256
Conv3-2 Convolution kernel: 3 × 3, 256
Conv3-3 Convolution kernel: 3 × 3, 256
Maxpool 2 × 2
Conv4-1 Convolution kernel: 3 × 3, 512
Conv4-2 Convolution kernel: 3 × 3, 512
Conv4-3 Convolution kernel: 3 × 3, 512
Maxpool 2 × 2
Conv5-3 Convolution kernel: 3 × 3, 512
Conv5-3 Convolution kernel: 3 × 3, 512
Conv5-3 Convolution kernel: 3 × 3, 512
Maxpool 2 × 2
Activation function ReLu
CapsNet Layer number = 1, Capsule numbers = 16
FC1 4096
FC2 4096
Activation function Softmax

4 Experimental Results and Analysis
4.1 Data Set

The performance of the model is evaluated in this study using two facial expression datasets,
namely FER2013 [50] and CK+ [51,52]. The CK+ dataset is an extension and supplementation of the
original Cohn-Kanade data from 2010. Data collection for CK+ was conducted indoors. To construct
a comprehensive network model, we extracted frames from videos and gathered photographs captured
by 123 staff members. Each video yielded 593 photos encompassing seven distinct expressions. A
representative image is depicted in Fig. 5.
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Figure 5: CK+ expression data set example

The specific configuration of the original dataset is presented in Table 3.

Table 3: CK+ raw data set data configuration

Label Training set Test set Total

Anger 0 1230 120 1350
Disgust 1 1590 180 1770
Happy 2 1860 210 2070
Fear 3 660 90 750
Sad 4 750 90 840
Surprise 5 480 60 540
Neutral 6 480 60 540
Total – 8820 990 9810

The FER2013 dataset is a comprehensive collection of freely available data, obtained using the
Google image retrieval API. After removing any defective frames and adjusting the cropping area, all
images were standardized to a resolution of 48 ∗ 48 pixels. The training set consists of 28,709 images,
while the verification and test sets each contain 3589 images. These datasets encompass seven distinct
emotional tags: Neutral, happy, sad, surprised, disgusted, and fearful. An illustrative sample image is
presented in Fig. 6.

The distribution of different types of data exhibits non-uniformity, and the facial expression
dataset is limited in size. This study enhances the dataset to augment the model’s capacity for
generalization by incorporating techniques such as random horizontal flip, random cropping, and
random rotation.

4.2 Experimental Parameters

The parameters utilized in the experimental model are presented in Table 4, encompassing the
learning rate, test iterations, learning decay rate, batch size, quantity of capsules within the capsule
layer, dynamic routing iterations, as well as training optimizer and loss function parameters.
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Figure 6: FER2013 expression data set example

Table 4: Model parameter

Parameter CK+ FER2013

Learning rate 0.00001 0.000001
Test iterations 200 80
Weight decay 0.0005 0.0005
Batch_size 20 10
Capsule numbers 16 16
Route_iterations 3 3
Optimizer Adam Adam
λ 0.25 0.25
m+ 0.9 0.9
m− 0.1 0.1

4.3 Experimental Analysis

4.3.1 Preparatory Experiment

A preliminary experiment was conducted on the CK+ dataset to investigate the impact of CapsNet
on the novel network architecture and determine the optimal number of capsule layers for achieving
superior performance. Notably, the number of test iterations was fixed at 50, while other parameters
were set as specified in Table 4. The experimental parameters are presented in Table 5.
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Table 5: Preliminary experimental parameters

Experimental name Number of capsule layers

Test 1–1 0
Test 1–2 1
Test 1–3 2
Test 1–4 3

Fig. 7 presents a comparative diagram of the training and validation accuracies for various capsule
layers in the preliminary experiment.

(a) Training accuracy chart

(b)Verification accuracy diagram

Figure 7: FER2013 expression data set example
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The experiment compares the training accuracy, validation accuracy, test accuracy, and duration
required for each epoch. The findings are presented in Table 6.

Table 6: Prepare experimental results

Train Acc (%) Val ACC (%) Test Acc (%) Epoch Time (s)

Test 1–1 99.33 97.29 85.48 27
Test 1–2 99.87 100.00 88.22 28
Test 1–3 97.57 94.88 87.13 29
Test 1–4 99.44 99.80 87.05 30

The mesh structure with a single capsule layer and without a capsule layer exhibits the highest
motion accuracy at 30∼40 epochs, along with enhanced stability, surpassing the performance of mesh
structures with two or three capsule layers (Fig. 7a). Additionally, Fig. 7b demonstrates that after 30
epochs, the network featuring a single capsule level achieves superior verification accuracy initially
and tends to stabilize over time. Although Table 6 indicates some influence of the quantity of capsule
layers on experimental accuracy, an increase in the number of capsule layers does not correspondingly
improve classification accuracy during practical usage. Consequently, this model is designed to have
only one specified capsule layer.

4.3.2 Ablation Experiment

Firstly, this paper evaluates the rationality of the CAPSULE-VGG model. The experimental
results are presented in Table 7. Among them, VGG represents the baseline model without incor-
porating the capsule neural network, while CAPSULE-VGG is a composite model that combines
convolutional neural networks with capsule neural networks. The findings demonstrate that by
introducing the capsule network, training convergence is accelerated, model accuracy becomes more
stable, and recognition accuracy improves by 2.24% and 0.86% on CK+ and FER2013 datasets,
respectively. These results indicate that the capsule network compensates for limitations inherent to
convolutional neural networks, thereby facilitating enhanced learning of facial expression features and
improved overall network performance.

Table 7: Experimental comparison of the model on CK+ and FER2013

Model Accuracy/%

CK+ FER2013

VGG 97.61 73.28
CAPSULE-VGG 99.85 74.14

Through the analysis of CK+ expression and FER2013 emotion, we have obtained prediction
results for different types of facial expressions using the CAPSULE-VGG network model. The
emotions of each category were predicted and corresponding results were provided. Tables 8 and 9
present the different types of mixing matrices for CK+ and FER2013 datasets in the CAPSULE-VGG
model.
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Table 8: CK+ confusion matrix %

Expression Anger Disgust Fear Happy Neutral Sad Surprise

Anger 99.88 0.07 0 0 0 0.05 0
Disgust 0 100 0 0 0 0 0
Fear 0.03 0 99.89 0 0.03 0.05 0
Happy 0 0 0 100 0 0 0
Neutral 0.05 0 0 0 99.67 0.17 0.11
Sad 0.04 0.04 0.16 0 0.25 99.51 0
Surprise 0 0 0 0 0 0 100

Table 9: FER2013 confusion matrix %

Expression Anger Disgust Fear Happy Neutral Sad Surprise

Anger 73.11 0.99 6.11 3.26 6.25 8.65 1.63
Disgust 9.68 71.56 4.13 1.56 3.69 7.56 1.82
Fear 7.56 0.09 66.72 0.16 8.23 13.68 3.56
Happy 3.23 0.89 3.12 83.02 5.89 2.98 0.87
Neutral 5.97 0.86 4.68 4.77 73.69 9.14 0.89
Sad 7.56 1.77 7.77 2.13 11.23 68.69 0.85
Surprise 1.89 0.08 7.98 2.75 2.98 2.15 82.17

Comparing the confusion matrix of the CK+ dataset with that of FER2013, it is evident that the
image quality in CK+ surpasses that of FER2013, leading to a significantly higher recognition accu-
racy for facial expressions. In comparison to the CK+ dataset, FER2013 presents more challenging
characteristics. The images in FER2013 exhibit a wider range of pose angles and cover a broader age
spectrum, thereby resembling real-world scenarios more closely. The lower recognition rate achieved
by CAPSULE-VGG on the FER2013 dataset (74.14%) can be attributed largely to the substantial
variations in facial postures within this dataset.

4.3.3 Contrast Experiment

To further validate the proposed model, we compared the experimental results of the CAPSULE-
VGG model on the CK+ expression dataset with the following experimental approaches.

Model 1: Collaborative Discriminant Multi-Metric Learning (CDMML). Yan et al. [23] intro-
duced CDMML, an algorithm that combines speech and video modalities to improve facial expression
recognition.

Model 2: Nonlinear eval on SL + SSL puzzling. Pourmirzaei et al. [24] utilized self-supervised
learning for fine-grained tasks in facial feature expression recognition, resulting in improved perfor-
mance and reduced error rate.

Model 3: ViT + SE. Aouayeb et al. [25] proposed a Transformer model based on the attention
mechanism for recognizing facial expressions. To address the lack of training data issue in Transformer
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models, they incorporated extrusion and excitation (SE) blocks into vision Transformers. Experimen-
tal results demonstrate the competitiveness of this approach.

This paper presents a comparative analysis of four models applied to the CK+ expression dataset:
CDMML, Nonlinear evaluation on SL + SSL perplexity, and ViT + SE models.

The comparison experiment of the CK+ dataset’s accuracy is illustrated in Fig. 8, which demon-
strates that this paper achieves the best recognition performance with an accuracy of 99.85%.
Subsequently, we conducted experiments to compare the CAPSULE-VGG model’s results on the
FER2013 expression dataset.

Figure 8: The accuracy of CK+ data set comparison experiment (unit: %)

Model 1: DeepEmotion, proposed by Shervin Minaee, presents a deep learning approach based
on attention convolutional networks (DeepEmotion) [26]. This model effectively focuses attention on
the primary facial regions and significantly enhances the performance compared to previous models
across multiple datasets.

Model 2: Inception, introduced by Christopher Pramerdorfer in a comprehensive review of
the state-of-the-art techniques, demonstrates image-based facial expression recognition capabilities
(Inception [27]). The utilization of CNNs highlights algorithmic distinctions and their impact on
performance outcomes.

Model 3: Ad-Corre is an algorithmic framework developed by Fard et al., which incorporates
adaptive correlation loss (AD-CORRE [28]) to guide feature vector embedding with reduced correla-
tion between level samples and classroom samples.

Model 4: VGGNet, proposed by Khaireddin et al., adopts the VGGNet architecture [29] and
achieves commendable results through precise parameter tuning and various optimization tests.

During experimentation, CAPSULE-VGG was compared against DeepEmotion model, Incep-
tion model, Ad-Corre model, and VGGNet model using FER2013 expression dataset.

The accuracy of the FER2013 dataset comparison experiment is illustrated in Fig. 9. Upon
comparison, it has been observed that the suggested algorithm exhibits lower accuracy compared
to alternative approaches. Although there has been an improvement in the model’s recognition
performance on the FER2013 dataset, further enhancements are still required due to its relatively
weaker generalization ability when compared to other datasets.
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Figure 9: The accuracy of FER2013 data set comparison experiment (unit: %)

5 Conclusion

The paper introduces the CAPSULE-VGG neural network model of the capsule neural network
to address the limitation of convolutional neural networks in considering information such as relative
position and angle between image features, resulting in insufficient generalization ability when dealing
with complex small sample data like expression data. A novel expression recognition method based
on a combination of convolutional neural networks and capsule neural networks is proposed. VGG16
is utilized as the feature extraction component during training, while an additional capsule neural
network layer is incorporated to enhance attention towards direction and location features of facial
expressions, thereby improving interpretability and network stability. Experimental results on both
CK+ expression dataset and FER2013 expression dataset demonstrate that the Capsule-VGG model
achieves accuracy rates of 99.85% and 74.14%, respectively, outperforming basic VGG16 by enhancing
recognition accuracy by 2.24% and 0.89%. Furthermore, it exhibits faster training convergence,
improved model speed, and enhanced stability in terms of accuracy.
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