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ABSTRACT

Age-related macular degeneration (AMD) ranks third among the most common causes of blindness. As the most
conventional and direct method for identifying AMD, color fundus photography has become prominent owing
to its consistency, ease of use, and good quality in extensive clinical practice. In this study, a convolutional neural
network (CSPDarknet53) was combined with a transformer to construct a new hybrid model, HCSP-Net. This
hybrid model was employed to tri-classify color fundus photography into the normal macula (NM), dry macular
degeneration (DMD), and wet macular degeneration (WMD) based on clinical classification manifestations,
thus identifying and resolving AMD as early as possible with color fundus photography. To further enhance the
performance of this model, grouped convolution was introduced in this study without significantly increasing the
number of parameters. HCSP-Net was validated using an independent test set. The average precision of HCSP-
Net in the diagnosis of AMD was 99.2%, the recall rate was 98.2%, the F1-Score was 98.7%, the PPV (positive
predictive value) was 99.2%, and the NPV (negative predictive value) was 99.6%. Moreover, a knowledge distillation
approach was also adopted to develop a lightweight student network (SCSP-Net). The experimental results revealed
a noteworthy enhancement in the accuracy of SCSP-Net, rising from 94% to 97%, while remarkably reducing the
parameter count to a quarter of HCSP-Net. This attribute positions SCSP-Net as a highly suitable candidate for
the deployment of resource-constrained devices, which may provide ophthalmologists with an efficient tool for
diagnosing AMD.
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1 Introduction

According to a study published in The Lancet Global Health, the number of patients with severe
visual impairment or blindness due to age-related macular degeneration (AMD) is anticipated to reach
288 million by 2040, bringing a significant burden to ophthalmologists [1]. As reported in some studies,
AMD is influenced by age, genetics, and complex environmental factors (such as smoking and diet)
[2,3]. However, it remains unclear about the specific pathogenesis of AMD. Aging of macular tissues
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is believed to be the primary cause of AMD, which is more prevalent in individuals over the age of 50
years [4–6]. There are serious challenges to global eye health in the aging population [1,3,7]. Although
AMD can exert serious effects on patient’s health, it has not yet attracted a high degree of societal
attention or investment in medical resources. Insufficient knowledge and medical resources pose dire
threats to patients and hinder limited ophthalmologists from providing convenient and comprehensive
diagnostic service for such a large patient population.

AMD can be categorized into Normal Macula (NM), Dry Macular Degeneration (DMD), and
Wet Macular Degeneration (WMD) based on its clinical manifestations and imaging features, as
shown in Fig. 1 [3,8,9]. Over 80% of patients with AMD present with DMD, defined by the early
development of drusen and later development of geographic atrophy, resulting in a gradual loss of
vision and vision distortion [6,10]. In contrast, WMD develops from DMD, in which drusen of varying
sizes form rapidly in the maculae. As the affected area rapidly invades the surrounding tissues, this
condition can cause severe vision loss or even blindness [11]. In this study, the classification based on
clinical manifestations could aid ophthalmologists in making quick diagnoses and selecting effective
therapies.

Figure 1: (A) Normal macula; (B) dry macular degeneration; (C) wet macular degeneration

It is important to note that conventional diagnostic techniques have been improved by deep-
learning (DL) technology. DL techniques can be employed to avoid misdiagnosis in subjective
assessments and make efficient and accurate diagnoses by objectively analyzing numerous data. This
can reduce the burden on physicians and facilitate better therapeutic outcomes. A convolutional
neural network (CNN) is the main model used in DL. As the depth of the CNN increases, the back-
propagation algorithm can be utilized to solve the contribution distribution problem of each layer
of the network, so that the model can be applied to prediction. Medical images feature uniform
specifications, ease of use, and high quality in long-term clinical practice. The use of DL to process
medical images exhibits extremely broad application possibilities and outperforms human experts
in diagnosing certain diseases [12–16]. Priya et al. proposed a probabilistic graphical model and a
series of image-preprocessing techniques to classify AMD [17]. To improve the visibility of lesions,
they first extracted the green channel. Then, the discrete wavelet transforms in combination with the
Kirsch operator were used to locate vessels and identify potential lesions. This optimized preprocessing
pipeline effectively extracted pathological discriminative features, achieving a classification accuracy
of 96%. In contrast to single-model approaches, Grassmann et al. proposed an integrated framework
of convolutional neural networks based on random forests for the automated detection of macular
degeneration [18]. Through the integration of multiple independently trained CNNs, the integrated
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model demonstrated superior classification performance compared with individual human experts.
Motozawa et al. constructed another dual-model approach for diagnosing AMD [19]. The first model
was designed to differentiate between NM and AMD, and the second one was used to detect exudative
changes in AMD, differentiating between DMD and WMD. However, the construction of two separate
convolutional neural networks was required, and a diagnostic accuracy of 93.9% was only achieved for
AMD. Vague et al. explored the application of multimodal image analysis methods in three cohorts:
Young normal, old normal, and dry macular maculopathy [20]. The results showed a diagnostic
accuracy of 96% for this task when combined with multimodal training, thus validating the excellence
of multimodality for the diagnosis of macular lesions. However, multimodal models are more complex
than normal ones and require more computational resources and time for training and optimization.

Nonetheless, there are still limitations in accurately diagnosing AMD through existing models.
Firstly, manual feature engineering and image preprocessing are highly dependent, and more automa-
tion and intelligence are required. Secondly, sample imbalance still needs to be addressed. Thirdly, the
architecture of existing models lacks lightweight and efficient deployment in real-world applications.
Given that, a more automated and efficient diagnostic framework was introduced in this study to
overcome these challenges. The proposed HCSP-Net, a DL model with a hybrid architecture, aims to
tackle the issues resulting from uneven data distribution. Notably, HCSP-Net achieves an impressive
diagnostic accuracy of 99%. Furthermore, knowledge distillation was employed to develop SCSP-
Net—a lightweight network with enhanced feasibility on resource-limited platforms just based on
1.05 MB parameters.

2 Structure
2.1 Data Acquisition

This study has obtained ethical approval to collect retinal images from the Shenzhen Eye Hospital
for research purposes, following the principles outlined in the Declaration of Helsinki [21]. To address
privacy concerns associated with patient data usage, careful steps were taken before color fundus
photographs were incorporated into the dataset. Utilizing the OpenCV toolkit, all patient-related
information, including patient name, age, and date of diagnosis, was systematically removed from
fundus photographs [22]. During the data preprocessing phase, which involved transforming fundus
photographs into binary images, a 10 × 10 operator was applied to eliminate any remaining patient-
related information. Subsequently, contour screening (extracting the contour with the most significant
area) was performed to determine the retinal area and cropping the retinal area. Therefore, it is
important to highlight that this study does not disclose patient-related statistical information.

Recognizing the critical role of image quality in influencing the data analysis of models, 745 data
points were carefully selected, excluding those with inferior exposure. Besides, a meticulous approach
using random number seeds was used for dataset division. This ensured a balanced proportion of each
macular data in both Datasets A and B, which achieved equitable data distribution and mitigated the
impact of subjective factors, thus ensuring fairness in the experimental process. Additional details
about the data division are presented in Table 1. Owing to the limited number of dry maculae (only
half as many as the other two maculae), the network’s generalization and convergence may be severely
hampered by the uneven spread of data [23]. Section 2.2 of this paper provides details of the approach
we used.
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Table 1: Number of fundus images in Datasets A and B from clinical classification of AMD

Clinical classification of AMD No. of fundus images (% total)

Dataset A Dataset B

NM 255 (39.5) 40 (40.0)
DMD 123 (19.1) 19 (19.0)
WMD 267(41.4) 41 (41.0)
Total 645(100.0) 100 (100)

2.2 Composition of Model Structure

Convolutional neural networks have been extensively applied to image processing and are con-
stantly evolving, with many excellent networks emerging [24–26]. However, when an image is processed
locally by CNNs via convolution and pooling, the influence of the context surrounding the image is
ignored. This study combines a convolutional neural network with a transformer to access the specific
and general contextual information of an image. The core feature extraction component of HCSP-
Net involves an improved convolutional neural, CSPDarknet53. CSPDarknet53 reduces the number
of model parameters while resolving redundant gradients [24]. The structure of HCSP-Net is shown
in Fig. 2. The improved CSPDarknet53 is the backbone of YOLOv5 (You Only Look Once-v5) and
comprises CSPDarknet53 and SPPF. YOLOv5 comprises four models with various depths and widths:
S, M, L, and X. In this study, the backbone of the S model, which has the smallest width and depth,
was used to construct a lightweight model.

Figure 2: The structure of HCSP-Net

CSPDarknet53 reduces the number of model parameters while resolving redundant gradients.
In addition, the data will be deformed when the model input part uniformly scales the image to a
fixed resolution. In this study, the SPPF module was retained in the design of the model, making
the HCSP-Net more resistant to object deformation [27]. Yet, the original SPPF module relies solely
on the maximum pooling layer to emphasize the most salient or active features within a given
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region, disregarding others. In this study, it was maintained that after maximum pooling, there was
a need for further integration of features to ensure the effective capture of information from the
entire feature map. Consequently, a more intricate integration strategy was adopted in the SPPF
module. The convolutional operation was incorporated after each maximal pooling layer to enhance
the network’s perceptual capabilities. Additionally, in consideration of the model’s parameter count,
the conventional convolution operation was substituted with grouped convolution, aiming to reduce
parameters without compromising performance. The enhanced SPPF module is illustrated in Fig. 3.
The introduction of grouped convolution provided HCSP-Net with more potent feature extraction and
processing capabilities. This established a robust foundation for the model to adeptly handle diverse
and dynamic data in practical applications.

Figure 3: ESPPF: Enhanced SPPF module with GCONV (grouped convolution)

The transformer, a model based on a self-attention mechanism originally proposed by Google
for machine translation tasks, has demonstrated superiority over conventional convolutional neural
networks in processing long sequence data and modeling global dependencies [28]. It has become a
pivotal technique in various domains, including image processing [28–31]. The classification module
employs a Transformer block to capture long-term dependencies in the data while preserving sequence
information [28]. The structure of the Transformer block is illustrated in Fig. 4. Besides, in light of
the uneven data distribution and the shared characteristics between DMD and WMD, this study
was conducted to enhance the model’s ability to distinguish between the two by incorporating a
transformer module. This addition seeks to mitigate the impact of data imbalance on the model’s
performance.

Of note, due to the small size of the feature map output from the convolutional neural network (7
× 7), the single-headed self-attention mechanism was directly used for calculations. The self-attention
can be calculated as follows:

Attentation (Q, K, V) = softmax
(

QKT

√
dk

)
V (1)

After the calculation by the Transformer module, its output was transformed into a 3 × 1 vector
using a linear layer, where each vector represents the probability of corresponding to NM, DMD, and
WMD, respectively.

2.3 SCSP-Net Boosted by Knowledge Distillation

The Teacher-Student Training (TST) method is a widely recognized approach to knowledge
distillation [32]. TST involves the construction of a teacher network with significant depth and width,
alongside generating a comparatively lightweight student network. Then, the trained teacher network
is used to supervise the training of the student network, aiming to enhance its overall performance.
In this study, the well-trained HCSP-Net served as the teacher network, while a lightweight student
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network, SCSP-Net, was constructed (refer to Table 2 for model structures). HCSP-Net and SCSP-
Net exhibited notable distinctions in channel configuration and module settings. Notably, SCSP-
Net featured half the number of channels across the entire network compared with HCSP-Net. In
addition, differences in the number of modules between the two models were observed at specific
layers. For example, in the third C3 layer, HCSP-Net incorporated three duplicate C3 modules, whereas
SCSP-Net employed only two duplicate stacked modules. HCSP-Net’s model parameters amounted to
4.19 MB, while SCSP-Net, through a reasonable reduction in width and depth, achieved a parameter
count of 1.05 MB—approximately one-fourth of that of HCSP-Net. The amalgamation of lightweight
design and knowledge distillation rendered the more pragmatic and viable deployment of SCSP-Net
on embedded devices. In the knowledge distillation process, the generalization performance of the
student model was improved by transferring the soft labels of the teacher model (HCSP-Net). This
enabled SCSP-Net to effectively incorporate knowledge from HCSP-Net.

Figure 4: The structure of the Transformer block

The loss function comprises two key componesnts, namely, KL divergence and cross-entropy loss.
These components can be employed to measure the difference in the output distribution between the
teacher-student networks and the matching degree between the student network and the real label,
respectively. The specific expressions for KL divergence and cross-entropy loss are shown as follows:

Loss = ∝ KL(γ, p) + (1 − α)CE(y, p) (2)

In the above equation, the symbol ∝ represents the weighting coefficient in the loss function, the
symbol γ represents the soft labeling of the output of the teacher’s network, the symbol p represents
the predicted value of the student’s network, and the symbol y represents the true labeling of the input
image.



CMC, 2024, vol.79, no.1 397

Table 2: Architectures for HCSP-Net and SCSP-Net. In the table, ‘n’ represents the number of modules,
‘c’ represents the number of channels, ‘w’ represents the width of the feature map, and ‘h’ represents
the height of the feature map

Layer name Output size [n, c, w, and h]

HCSP-Net SCSP-Net

CBS 1, 32, 112, 112 1, 16, 112, 112
CBS 1, 64, 56, 56 1, 32, 56, 56
C3 1, 64, 56, 56 1, 32, 56, 56
CBS 1, 128, 28, 28 1, 64, 28, 28
C3 2, 128, 28, 28 1, 64, 28, 28
CBS 1, 256, 14, 14 1, 128, 14, 14
C3 3, 256, 14, 14 2, 128, 14, 14
CBS 1, 512, 7, 7 1, 256, 7, 7
C3 1, 512, 7, 7 1, 256, 7, 7
ESPPF 1, 512, 7, 7 1, 256, 7, 7
Transformer 2, 3, 1, 1 2, 3, 1, 1

2.4 Implementation

The HCSP-Net model was built in PyTorch based on Python 3.7.11, and a GPU (NVIDIA
GeForce RTX 1080) was used for the experiments [33]. Due to the limited data collected, Dataset A
was expanded by skimming the data horizontally and flipping them vertically, with the final amount of
data expanded to four times the original size. To prevent the model from overfitting, data enhancement
techniques, including color space variation, random luminance contrast variation, translation scaling,
and random orientation rotation, were applied to the fundus map with probabilities of 0.2, 0.2, 0.5, and
1.0, respectively. In the training process, Dataset A was divided according to the ratio of 8:2, which was
used for model training and validation, respectively, and the weight file with the lowest epoch number
and the highest accuracy was saved as the optimal model.

2.5 Statistical Method

The Scikit-learn toolkit was used to conduct the statistical study [34]. The precision, recall, F1-
Score, PPV (positive predictive value), and NPV (negative predictive value) of the HCSP-Net for
NM, DMD, and WMD were determined using binary indicators. The areas under the readings and
receiver operating characteristic curves (ROC) were also computed. AUC values were classified as poor
diagnostic values if they were between 0.5 and 0.70, average diagnostic values if they were between 0.75
and 0.85, and excellent diagnostic values if they were above 0.85.

The multi-classification indicator Kappa value was used to assess the degree of agreement between
the true diagnostic findings and the CSPDarknet53 and HCSP-Net results. The Kappa value ranged
from 0 to 1, and a higher Kappa value indicated greater agreement between the model’s predicted and
actual results. The Kappa values were calculated as follows:

Kappa = po − pe

1 − pe

(3)
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where p0 represents the overall classification accuracy. pe can be calculated as follows:

pe = a1 × b1 + a2 × b2 + · · · + ac × bc

n × n
(4)

where ai represents the number of actual samples in class i, bi represents the number of samples
predicted for class i, and n represents the total number of samples. The Jaccard similarity coefficient
is also a simple and effective statistical indicator of similarity and diversity. It is defined as the ratio of
the number of elements in the intersection of two sets to the number of elements in the concatenation,
which can be expressed as follows:

Jaccard (A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (5)

where A and B represent the real and predicted label sets, respectively.

3 Results
3.1 Model Performance Evaluation

The confusion matrix provided a more intuitive view of the classification performance of the
model. CSPDarknet53 can be utilized to identify 100% of the NM; however, owing to a lack of data
and similarities between DMD and WMD in terms of lesion features, it is difficult for the model
to distinguish between them, as shown in Fig. 5A. In Dataset B, 26.3% of DMD cases and 2.4% of
WMD cases were incorrectly categorized. Notably, with the addition of the transformer module, the
misdiagnosis of DMD was reduced by the HCSP-Net (SPPF), indicating the improved ability of this
model to capture the difference between DMD and WMD. Following a careful integration of features
extracted from the SPPF through the addition of grouped convolution, only one DMD lesion was
misdiagnosed as a WMD lesion by HCSP-Net (ESPPF). The corresponding confusion matrices for
the two improved networks based on CSPDarknet53 are shown in Figs. 5B and 5C, respectively. Hence,
the problem of uneven data distribution was resolved, resulting in improved model efficiency.

Figure 5: Confusion matrix. (A) CSPDarknet53; (B) HCSP-Net (SPPF); (C) HCSP-Net (ESPPF). 0
for normal macula, 1 for dry macular degeneration, 2 for wet macular degeneration

To objectively evaluate the performance of HCSP-Net, the receiver operating curve (ROC) was
used in this study. Fig. 6 illustrates the AUC values for NM, DMD, and WMD, which were 1.0000,
0.9974, and 0.9880, respectively.
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Figure 6: Roc curve

3.2 Enhanced SPPF Performance

In the comparison between SPPF and ESPPF, identical parameter settings, such as the learning
rate, optimizer, and weight decay, were utilized in this study to ensure fair experimental results. As
shown in Table 3, HCSP-Net (ESPPF) outperforms HCSP-Net (SPPF) model, with a 3.1% relative
improvement in the kappa value (increasing from 95.3% to 98.4%) and a 4.7% relative improvement
in the Jaccard value (increasing from 92.8% to 97.5%).

Table 3: Comparison of Kappa and Jaccard values between CSPDarknet53 and HCSP-Net

Model Accuracy Kappa Jaccard

HCSP-Net (SPPF) 97.0% 95.3% 92.8%
HCSP-Net (ESPPF) 99.0% 98.4% 97.5%

In addition, the impact of SPPF and ESPPF on the convergence of the model was explored in this
study. As depicted in Fig. 7, the initial 30 training epochs reveal a noteworthy observation: HSCP-
Net (ESPPF) demonstrates a significantly higher initial accuracy compared with HCSP-Net (SPPF).
Furthermore, throughout the entire training process, the accuracy curve of HSCP-Net (ESPPF)
steadily ascends, ultimately converging. This indicates that HCSP-Net (ESPPF) is adept at capturing
underlying patterns and features in the data during the early stages of model training, effectively
mitigating the impact of data noise.

3.3 SCSP-Net Performance Insights

The compression of the depth and width of HCSP-Net resulted in an increase in the training time
of the model and a significant decrease in the diagnostic accuracy to only 94%, as shown in Fig. 8A.
This study introduced the HCSP-Net (ESPPF) with an accuracy of 99% as a teacher network to guide
the SCSP-Net training to address this issue. Under the supervision of the teacher network, SCSP-Net
successfully reduced the confusion between DMD and WMD of this model, and the accuracy was
improved to 97% in Dataset (as shown in Fig. 8B). Drawing on the knowledge of the teacher network
cannot only alleviate the performance degradation caused by HCSP-Net compression but also provide
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more precise guidance for SCSP-Net to perform better when facing complex disease classification
tasks.

Figure 7: Comparison of the training set accuracy between HSCP-Net (SPPF) and HCSP-Net
(ESPPF)

Figure 8: Confusion matrix. Subfigure (A) illustrates SCSP-Net without knowledge distillation, while
subfigure (B) depicts SCSP-Net after knowledge distillation

According to the statistics in Table 4, the number of parameters and time complexity of different
models were comprehensively analyzed in this study. Notably, in HCSP-Net (SPPF), replacing conven-
tional fully connected layers with Transformer modules reduced the number of parameters. However,
despite the decrease in the number of parameters, the time complexity did not show a significant
declining trend. This indicated that introducing Transformer modules may face particular challenges in
improving computational efficiency, requiring further in-depth research and optimization. In addition,
after grouped convolutions were introduced, HCSP-Net (ESPPF) showed increased parameters and
time complexity compared with the baseline model and HCSP-Net (SPPF). Although the increase was
inevitable, this increase was acceptable considering the superior performance of HCSP-Net (ESPPF).
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It was noteworthy that by compressing the width and depth of the model, the number of parameters
and time complexity of SCSP-Net were reduced by 74.90% and 72.97%, respectively, demonstrating
its advantages in lightweight design.

Table 4: Comprehensive analysis of model parameters and computational complexity

Model Parameters
(M)

FLOPs
(G)

CSPDarknet53 4.1853 0.6430
HCSP-Net (SPPF) 4.1732 0.6429
HCSP-Net (ESPPF) 4.1867 0.6449
SCSP-Net 1.0509 0.1743

3.4 Ablation Experiment

In this study, the HCSP-Net model was constructed based on an innovative amalgamation of the
enhanced CSPDarknet53 and the Transformer module. This model exhibited substantial distinctions
compared with conventional counterparts, such as Resnet50, EfficientNetV2, InceptionV3, and ViT.
The underlying rationale for this fusion design lay in the deliberate exploitation of the robust feature
extraction capabilities of CSPDarknet53 and the utilization of the Transformer module to capture
intricate long-term dependencies within the data, thereby facilitating a more profound exploration
of abstract features within images. Regarding feature engineering, incorporating the Transformer
module empowered HCSP-Net to discern and capture long-term dependencies inherent in image
data more effectively, thus extracting expressive and discriminative features. Furthermore, the ESPPF
module played a pivotal role during the initial stages of model training, significantly reducing noise
impacts on the model. This aspect was of great significance when addressing challenges associated
with data heterogeneity and inhomogeneity prevalent in medical images. To further demonstrate the
superior performance of HCSP-Net, the performance of several models was evaluated using binary
classification indicators. The experimental results are listed in Table 5. All models in this experiment
were trained and validated on Dataset A and tested on Dataset B. The obtained test results were
considered the ultimate performance indicators for each model. HCSP-Net (ESPPF) performed
optimally in all other metrics compared with other models, achieving a precision of 99.2%, recall of
98.2%, F1-Score of 98.7%, PPV of 99.2%, and NPV of 99.6%. The ablation experiment also confirmed
the superior performance of HCSP-Net, as the addition of the transformer and ESPPF module led to
an improvement in model performance.

Moreover, to further validate the generalization capability of HCSP-Net (ESPPF), a validation
experiment was performed on a publicly available dataset containing 11 types of retinal fundus images
(https://www.kaggle.com/datasets/kssanjaynithish03/retinal-fundus-images/data). NM, DMD, and
WMD images were extracted from this dataset to construct an external validation set. Then, HCSP-
Net (ESPPF) was retrained and tested on this validation set. As shown in Fig. 9, HCSP-Net (ESPPF)
achieves a classification accuracy of 100% on the test set with 256 images. This validation result
demonstrated that HCSP-Net (ESPPF) had a strong generalization ability in distinguishing NM,
DMD, and WMD fundus images and can adapt to unseen new datasets, laying a foundation for
subsequent clinical applications.

https://www.kaggle.com/datasets/kssanjaynithish03/retinal-fundus-images/data


402 CMC, 2024, vol.79, no.1

Table 5: HCSP-Net performance evaluation: Precision, recall, F1-Score, PPV, and NPV

Model Precision Recall F1-Score PPV NPV

ResNet50 [35] 98.448 98.736 98.589 98.448 99.430
EfficientNetV2 [25] 98.437 99.166 97.543 98.437 99.469
InceptionV3 [36] 98.145 98.023 98.083 98.146 99.278

Train ViT [29] 98.940 99.359 99.143 98.340 99.635
HCSP-Net (SPPF) 99.016 99.268 99.140 99.016 99.648
HCSP-Net (ESPPF) 99.260 99.387 99.323 99.260 99.730

ResNet50 [35] 95.714 93.924 94.709 95.713 98.210
EfficientNetV2 [25] 94.845 94.865 94.845 94.845 98.066
InceptionV3 [36] 94.845 94.865 94.845 94.845 98.066

Test ViT [29] 94.778 92.169 93.239 94.778 97.828
HCSP-Net (SPPF) 96.561 95.678 96.092 96.561 98.612
HCSP-Net (ESPPF) 99.206 98.246 98.697 99.206 99.593

Figure 9: Confusion matrix. 0 for normal macular, 1 for dry macular degeneration, 2 for wet macular
degeneration

4 Discussion

Age-related macular degeneration (AMD) is a major cause of irreversible damage to vision in
individuals over the age of 50, affecting the health of millions of people worldwide [5,7,10]. Early
detection and treatment of AMD contribute to slow disease progression. However, with the increasing
number of patients with AMD, it is difficult for ophthalmologists to provide a comprehensive
diagnostic service for this large patient population; therefore, the use of DL techniques to intelligently
analyze AMD is of great clinical importance.

T-distributed stochastic neighbor embedding (T-SNE) is a nonlinear dimensionality reduction
algorithm utilized for visualizing high-dimensional data [37]. As there is a lack of interpretability
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in neural networks, T-SNE was employed in this study to reduce the dimensionality of the last
hidden layer in both CSPDarknet53 and HCSP-Net (ESPPF) models. Characteristic probability
distribution maps for various types of macular degeneration were generated to aid in interpreting
the neural network models, as shown in Fig. 10. When applied to the macular degeneration triple
classification task, the CSPDarknet53 model exhibited a noticeable overlap between the sample data
of DMD and WMD. This suggested that CSPDarknet53 did not effectively learn the distinctive
features necessary for differentiating between the two conditions. Conversely, the visualization results
of HCSP-Net showed a low percentage of sample data overlap, indicating that this model had an
improved ability to distinguish between DMD and WMD. This underscored the enhanced capacity
of this model to learn the distinctions between the two conditions, successfully differentiating them.
Additionally, it was apparent from the probability distribution plots that the probability plots of DMD
and WMD overlapped, further emphasizing the relationship between DMD and WMD, namely that
WMD developed in the context of DMD. Clinically, reliably differentiating DMD from WMD is
critical for appropriate treatment decisions. Thus, the difficulty of CSPDarknet53 in separating these
classes could lead to delays in treating WMD or unnecessary treatment for DMD due to incorrect
classification. Meanwhile, the more apparent separation achieved by HCSP-Net demonstrated its
potential to support more accurate clinical diagnosis and management between these AMD subtypes.
These visualization results complement our analysis, offering a more comprehensive understanding of
the model’s behavior and its implications for clinical decision-making.

Figure 10: t-SNE dimensionality reduction visualization. (A) CSPDarknet53; (B) HCSP-Net (ESPPF)

Moreover, the HCSP-Net architecture was examined and evaluated experimentally. The Trans-
former model was tested using various model architectures, such as replacing only one C3 module
at a time at a different location from the transformer module and replacing all C3 modules with
the transformer module. However, none of these models performed as well as HCSP-Net, which
may be explained from two aspects. First, the small amount of data used in this study prevented the
transformer model from learning all the characteristics of each macula, which was necessary for it to
obtain superiority over the convolutional neural network model [22]. Second, after pre-training on the
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COCO dataset, the improved CSPDarknet53 was loaded with weights and was able to derive general
features from the images. In this instance, changing the intermediate CSPDarknet53 architecture at
random would nullify the impact of the pre-trained weights. The Transformer module successfully
integrated its effect on the backbone feature extraction module’s information without erasing the pre-
trained weights, thereby enhancing the performance of HCSP-Net and allowing the model to learn
new features. This allows the model to detect minute variations between various maculae, thereby
improving the model’s performance while preserving its lightweight characteristics.

HCSP-Net, constructed in this study, had a parameter count of 4.19 MB. Further reduction of
model parameters to enhance its deployment on mobile devices represented the challenge addressed
in this study. Building upon HCSP-Net (ESPPF), knowledge distillation was employed to guide the
training of SCSP-Net in this study, resulting in an accuracy improvement from 94% to 97%, with
parameters accounting for less than a quarter of HCSP-Net. In CSPDarknet53 and HCSP-Net,
there was no misdiagnosis of DMD as NM, indicating that the model can capture the differences
between the two conditions. However, even with the assistance of knowledge distillation, SCSP-Net
exhibited misdiagnosis, incorrectly identifying DMD as NM. The experimental results highlighted
the significant impact of model depth and width on learning data features. This indicated that larger
models were more prone to extracting abstract features from the data. Consequently, striking a balance
between model detection accuracy and operational speed while reducing model parameters is a key
point for the future optimization of SCSP-Net.

An innovative approach was also introduced in this study by replacing the conventional fully
connected classification method with a Transformer model based on the self-attention mechanism.
Additionally, improvements were achieved by incorporating group convolution to expedite model
convergence and enhance robustness, leading to the development of HCSP-Net (ESPPF) and achieving
favorable diagnostic outcomes. All training images were sourced from individuals diagnosed with
AMD, and professional ophthalmologists meticulously labeled the dataset. HCSP-Net (ESPPF)
exhibited exceptional classification precision (99.2%), recall (98.2%), F1-Score (98.7%), PPV (99.2%),
and NPV (99.6%). Compared with other studies, our research obviated the need for complicated data
preprocessing steps, such as single-channel data extraction or vascular localization [17]. Furthermore,
HCSP-Net avoided the complexity of ensemble learning or the construction of dual models to enhance
accuracy [18,19]. While multimodal approaches were explored for accuracy improvement, acquiring
diverse data types posed significant challenges in the medical domain [20]. Therefore, a straightforward
and efficient diagnostic method that circumvented the complexities associated with data preprocessing
and model assembly was presented in this study.

Nevertheless, there are still some limitations in this study. Firstly, although DL has been immensely
successful in many domains, acquiring large amounts of data is frequently challenged due to ethical
and privacy concerns. This study used data augmentation to increase image diversity during the data
preprocessing step and data inversion to extend the dataset. However, the experimental results showed
that it was still necessary to improve HCSP-Net (SPPF) by increasing the number of training rounds to
deal with fluctuations in accuracy during the pre-training period. This ongoing need for improvements
highlighted the complexity of working with limited data in the context of DL-based research. Secondly,
a three-class classification study was conducted based on the leading criteria. Expanding the dataset
with more diverse cases may help further verify the robustness of the proposed methods. Thirdly,
after compressing the depth and width of the model, the diagnostic accuracy of SCSP-Net decreased
significantly. Further balancing the accuracy and efficiency of the model was another limitation of
this study. Finally, it is required to perform the integration of the model into clinical workflows and
user studies to assess its acceptance. This will be an essential direction for further research.
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This initial study focuses on model development and evaluation on a limited dataset. An important
direction for future work is integrating the model into clinical workflows and evaluating its acceptance
by healthcare professionals through user studies. Besides, as more AMD data with refined grading
become available, the model can be retrained and modified to enhance accuracy and maintain long-
term reliability. In meantime, SCSP-Net can be enhanced by leveraging the success achieved in HCSP-
Net, thus providing improved support for medical professionals in diagnosing AMD.

5 Conclusion

In conclusion, AMD is a prevalent retinal disease that can cause blindness, making prompt
diagnosis critical. In this study, the viability of using DL technology to aid in the classification of AMD
was demonstrated. Besides, an HCSP-Net, a classification model combining a convolutional neural
network and a transformer, was constructed to achieve the AMD diagnosis accuracy of 99%. This
model can fulfill functions in the early diagnosis of AMD based on color fundus photography, offering
valuable assistance to clinicians. In particular, it can offer strong support for the early diagnosis and
screening of AMD in primary care, assist in detecting early AMD, and provide reasonable treatment
recommendations, thereby enhancing the visual quality of patients.
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