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ABSTRACT

Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma
(PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methods
have been shown to perform well on diagnostic tasks. Existing DL pancreatic lesion diagnosis studies based
on Magnetic Resonance Imaging (MRI) utilize the prior information to guide models to focus on the lesion
region. However, over-reliance on prior information may ignore the background information that is helpful for
diagnosis. This study verifies the diagnostic significance of the background information using a clinical dataset.
Consequently, the Prior Difference Guidance Network (PDGNet) is proposed, merging decoupled lesion and
background information via the Prior Normalization Fusion (PNF) strategy and the Feature Difference Guidance
(FDG) module, to direct the model to concentrate on beneficial regions for diagnosis. Extensive experiments in
the clinical dataset demonstrate that the proposed method achieves promising diagnosis performance: PDGNets
based on conventional networks record an ACC (Accuracy) and AUC (Area Under the Curve) of 87.50% and
89.98%, marking improvements of 8.19% and 7.64% over the prior-free benchmark. Compared to lesion-focused
benchmarks, the uplift is 6.14% and 6.02%. PDGNets based on advanced networks reach an ACC and AUC of
89.77% and 92.80%. The study underscores the potential of harnessing background information in medical image
diagnosis, suggesting a more holistic view for future research.
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1 Introduction

Accurate differentiation between Mass-Forming Chronic Pancreatitis (MFCP) and Pancreatic
Ductal Adenocarcinoma (PDAC) is crucial in clinical practice due to the substantial differences
in treatment approaches and prognoses [1]. Both subtypes have similar features in various medical
imaging modalities, presenting as localized pancreatic masses [2]. This similarity increases the risk of
misdiagnosis [3]. For instance, some studies indicate that approximately 5% to 15% of pancreatitis is
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diagnosed as pancreatic cancer [4]. Accurate preoperative diagnosis is crucial for distinguishing MFCP
from PDAC [5].

Radiologists accurately differentiate MFCP and PDAC without invasive procedures, basing
their judgments on extensive experience and comprehensive references of multimodal data in the
preoperative period. It is time-consuming and makes it impossible to ensure stable diagnosis in clinical
practice. The application of deep learning in medical image analysis provides a solution to improve the
accuracy and efficiency of diagnosis. There are three main research directions for deep learning-based
image diagnosis of pancreatic lesions: 1) prior-free end-to-end diagnostic networks, 2) prior-injected
cascade diagnostic networks, and 3) prior-injected parallel diagnostic networks.

Prior-free end-to-end diagnostic networks use original images as the training set for the diagnostic
model, as shown in Fig. 1a. For example, Ziegelmayer et al. [6] used the VGG-19 [7] architecture, pre-
trained on ImageNet [8], to accomplish the task of feature extraction and diagnostic differentiation
between autoimmune pancreatitis (AIP) and PDAC. Such studies required large-scale datasets and
more complex network structures to avoid the interference of redundant information. Notably, the
relatively small percentage of the pancreatic lesion region in the image presents a challenge for prior-
free networks, making capturing detailed information difficult.

Prior-injected cascade diagnostic networks use a segmentation or detection model to identify
the lesion region in original images, are used as the training set for the diagnostic model, as shown
in Fig. 1b. For example, Si et al. [9] used a full end-to-end deep learning approach that consists
of four stages: Image screening, pancreas localization, pancreas segmentation, and pancreas tumor
diagnosis. Qu et al. [10] first reconstructed the pancreas region through anatomically-guided shape
normalization, then used an instance-level contrast learning and balance adjustment strategy for the
early diagnosis of pancreatic cancer. Li et al. [11] designed a multiple-instance-learning framework to
extract fine-grained pancreatic tumor features, followed by an adaptive-metric graph neural network
and causal contrastive mechanism for early diagnosis of pancreatic cancer. Chen et al. [12] designed
a dual-transformation-guided comparative learning scheme based on intra-space-transformation
consistency and inter-class specificity. This scheme aimed to mine additional supervisory information
and extract more discriminative features to predict pancreatic cancer lymph node metastasis.

Prior-injected parallel diagnostic networks process the segmentation or detection task in a cascade
network, running parallel to the diagnostic task. For example, Zhang et al. [13] first extracted
the localization information of the tumor through the augmented feature pyramid network. They
then enhanced this localization information with a self-adaptive feature fusion and dependencies
computation module, enabling the simultaneous performance of pancreatic cancer detection and
diagnosis tasks. Xia et al. [14] used a novel deep classification model with an anatomy-guided
transformer to detect resectable pancreatic masses. They classified it as PDAC, other abnormalities
(nonPDAC), and normal pancreas. Zhou et al. [15] proposed a meta-information-aware dual-path
transformer consisting of a Convolutional Neural Network (CNN) based segmentation path and a
transformer-based classification path. This design enabled the simultaneous handling of tasks related
to detecting, segmenting, and diagnosing pancreatic lesion locations.

Prior-injected diagnostic networks align better with radiologists’ diagnostic mode. Focusing the
analysis on the lesion region may avoid the interference of non-pathological changes in the image
or irrelevant physiological information on the model training. However, these deep learning-based
approaches have some limitations: 1) the diagnostic model’s performance strongly depends on the
accuracy of segmentation or detection results, and biases in these results may mislead the diagnostic
model, and 2) pancreatic lesions may cause nearby organs or tissues’ morphologic and physiologic
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alterations [16,17]. For example, PDAC, when infiltrating the duodenum, typically encircles the
stomach and duodenal artery, resulting in bile duct dilation and pronounced jaundice. In contrast,
the MFCP may not exhibit these effects [18]. The model, which relies primarily on the lesion region,
may ignore contextually significant diagnostic information. Therefore, efficiently leveraging this prior
information while preserving information integrity and minimizing redundancy presents a critical
challenge.

Figure 1: Existing deep learning-based diagnostic frameworks for pancreatic lesions. (a) the prior-free
diagnostic network, (b) the prior-injected diagnostic network, and (c) the prior difference guidance
network (ours)
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For this purpose, the study involves the collection of an authentic dataset from MFCP and
PDAC patients in a clinical environment. The dataset undergoes two initial exploratory experiments to
assess the influence of prior information on diagnostic models’ performance. Such prior information,
acquired before the deep learning model training, encompasses lesion regions in MFCP and PDAC,
identified directly by radiologists through annotations based on their expertise, and background
regions, which are calculated indirectly by masking these lesion areas. Preliminary experiments indicate
that background regions, typically considered “noise” in deep learning, offer valuable clues essential
for the diagnostic process.

Drawing on the insights, this study introduces the Prior Difference Guidance Network (PDGNet),
as shown in Fig. 1c. Unlike existing models, the PDGNet utilizes decoupled lesion and background
information to direct the model to concentrate on beneficial regions for diagnosis. The Prior Nor-
malization Fusion (PNF) strategy, the component of this network, integrates the prior information of
lesions and backgrounds with the original image before the data is fed into the model. The strategy
enables the model to access richer contextual information than the original image. Additionally,
the Feature Difference Guide (FDG) module, which employs comparative learning, is proposed.
The module further utilizes the prior-augmented lesion and background information, capturing
the difference between the lesion region’s and the background region’s augmented features. These
differences guide the model to adjust the focus region adaptively according to the importance of the
decisions, to achieve a more accurate identification and differentiation between MFCP and PDAC.
The main contributions of this study are summarized as follows:

• The study introduces a novel diagnostic framework, the Prior Difference Guidance Network
(PDGNet), which uniquely utilizes decoupled lesion and background information to improve
the accuracy of differentiating between MFCP and PDAC.

• The study develops the Prior Normalization Fusion (PNF) strategy, an innovative approach
within PDGNet that integrates the prior information of lesions and backgrounds with the
original image before processing, to enrich the model’s input with a broader context.

• The study implements the Feature Difference Guide (FDG) module, introducing a comparative
learning approach that exploits the differences between the augmented features of the lesion and
background regions, to direct the model to concentrate on beneficial regions for diagnosis for
decision-making adaptively.

2 Materials and Preliminary Analysis

The study investigates the impact of prior information on deep learning-assisted diagnosis for
MFCP and PDAC tasks. Authentic datasets of MFCP and PDAC patients from clinical settings
are collected. Based on these datasets, two validation experiments are designed: One to examine the
influence of images without the lesion region on the diagnostic model, and the other to assess the
effect of the background region on the diagnostic model.

2.1 Dataset

A comprehensive dataset is collected from the Second Affiliated Hospital of Kunming Medical
University, including arterial-phase abdominal Magnetic Resonance Imaging (MRI) sequences of 31
MFCP patients and 62 PDAC patients. The dataset includes 3,872 slices, with 375 slices annotated to
indicate lesion regions. Fig. 2 illustrates the slice-image with the lesion region.
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Figure 2: Illustration of MFCP and PDAC lesions. The top row shows the MFCP lesion slice-image,
and the bottom row shows the PDAC lesion slice-image. (a) shows the original image, (b) Shows the
lesion region with a masked background, (c) shows the lesion region after crop and resize, and (d)
shows the background region with a masked lesion

Inclusion criteria: 1) Patients with MCFP and PDAC confirmed by surgery and/or biopsy
histopathology, and 2) MRI scanning within 1 month before neoadjuvant chemotherapy or surgery.

Exclusion criteria: Lesions were poorly visualized or showed non-mass-like enhancement that was
difficult to outline.

Scanning machine: Planar and dynamic enhancement scans of the upper abdomen were performed
using a Siemens Sonata 1.5 Tesla (1.5 T) MR scanner.

Scanning sequence and parameters: Transverse, coronal, and sagittal scans were performed in VIBE
sequence using gadopentetate dextran (0.2 ml/kg) during the arterial phase (25–30 s).

The lesion region annotation criteria: Initially, an experienced radiologist utilizes 3D Slicer software
(https://www.slicer.org/) to label the entire tumor as comprehensively as possible, avoiding areas of
necrosis, calcification, and gases that can obscure the lesion. To ensure accuracy, the labeled tumor
area is subsequently reviewed by another radiologist.

2.2 Preliminary Experiment

This study involves randomly selecting 300 slice-images that contain lesion regions from the
dataset. This selection establishes the base training for a preliminary diagnostic model for PDAC with
MFCP. The percentage of slice-images without the lesion region in the training set is incrementally
increased, to train multiple diagnostic models, as shown in Fig. 3a. These models undergo evaluation
using the same test set, with specific experimental results presented in Table 1, and visualized as shown
in Fig. 4a.

https://www.slicer.org/
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Figure 3: Schematic diagram of experimental designs: (a) Experiment 1 investigates the impact of non-
lesion images on the diagnostic model. (b) Experiment 2 investigates the impact of the background
region on the diagnostic model

Table 1: Diagnostic performance using varying IMAGE proportions in the training set. Where n1

represents the number of images with lesion region, n2 represents those without lesion region, defined
by the equation n2 = 300 × r

Test w. lesion (n = 49) Test w/o lesion (n = 49)

ACC AUC ACC AUC

r = 0 (n1 = 300, n2 = 0) 0.7142 0.7390 0.6122 0.6355
r = 20% (n1 = 240, n2 = 60) 0.7551 0.7795 0.6122 0.6360
r = 40% (n1 = 180, n2 = 120) 0.6938 0.7185 0.6734 0.6980
r = 60% (n1 = 120, n2 = 180) 0.6530 0.6770 0.7142 0.7385
r = 80% (n1 = 60, n2 = 240) 0.6938 0.7190 0.7346 0.7588
r = 100% (n1 = 0, n2 = 300) 0.6326 0.6565 0.7551 0.7790

In another experiment, the lesion regions from 300 slice-images are extracted and utilized to create
the new training set. The proportion of background region within this lesion region is progressively
increased, to train several diagnostic models, as shown in Fig. 3b. These models are evaluated on the
same test set, with specific experimental results presented in Table 2, and visualized as shown in Fig. 4b.

The VGG-11 architecture serves as the foundational diagnostic network for this study. All training
sessions are conducted under uniform parameter settings. The slice-images designated for the training
and test sets originate from distinct patients.

The experimental results lead to the following conclusions and insights: 1) the prior information
plays an important role in deep learning-assisted diagnosis, according to the experimental results in
Tables 1 and 2. The model’s performance fluctuates when the proportion of lesion and background
region in the training data changes, 2) the model’s performance is not optimal when only lesion region
images are used for training, according to the experimental results in Table 1. With the increase of non-
lesion region images, the model’s performance is improved in some cases, indicating that it is beneficial
to maintain a certain balance of diseased and non-diseased images for the diagnostic task of PDAC
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with MFCP, and 3) the model’s performance starts to decrease when the proportion of background
region increases to a certain extent, which indicates that the background information holds significant
value in the diagnostic task, according to the experimental results in Table 2. However, exceeding a
specific percentage interferes with the model’s performance.

Figure 4: Visualization of experimental results: (a) ACC curve of the testing set as r varies with the
proportion of non-lesion images in the training set, and (b) ACC curve of the testing set as r varies
with the proportion of the background region in the training set

Table 2: Diagnostic performance using varying REGION proportions in the training set. Where r =
0% represents using the lesion region’s maximum diameter as the side length of the cropped rectangle.
The proportion of background in the rectangle is increased by r times this side length

Test w. lesion (n = 49) Test w/o lesion (n = 49)

ACC AUC ACC AUC

r = 0 0.7755 0.8012 0.5306 0.5530
r = 30% 0.8163 0.8391 0.5918 0.6145
r = 60% 0.8571 0.8813 0.5714 0.5940
r = 90% 0.7551 0.7809 0.5102 0.5325
r = 120% 0.7551 0.7811 0.5510 0.5740
r = 150% 0.7346 0.7598 0.5918 0.6148
Only background (mask lesion) 0.6734 0.7167 0.7142 0.7382
Whole image 0.7142 0.7384 0.6122 0.6350

The insights from the comparative analysis of two sets of experiments inform subsequent model
design enhancements. These improvements include: 1) a data augmentation strategy that maximizes
the utilization of contextual information during training, to intensify the focus on identified lesion
regions, thereby augmenting the recognition of these critical regions, and 2) an attention fusion module
that enables it to dynamically adjust its focus on the lesion region and the relevant portions of the
contextual regions, allowing for a more accurate diagnosis of PDAC and MFCP.
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3 Methods

The analysis leads to the proposal of a Prior Difference Guidance Network (PDGNet), with its
structure illustrated in Fig. 5. The Network consists of two main components: The Prior Normaliza-
tion Fusion (PNF) strategy and the Feature Difference Guidance (FDG) module.

Figure 5: The structure of the prior difference guidance network (PDGNet), with two components:
The prior normalization fusion (PNF) strategy and the feature difference guidance (FDG) module

3.1 Prior Normalization Fusion (PNF) Strategy

The Prior Normalization Fusion (PNF) strategy for data augmentation is proposed, as shown
in Fig. 6. Before the data is input into the model, it tries to fuse the prior information of lesion and
background with the original image, which enables the model to obtain richer contextual information
than the original image when performing diagnosis.

Specifically, the lesion region is initially selected based on the optimal background occupancy
ratio (r = 60%), as determined in preliminary experiments. Subsequently, the background region is
extracted by masking the lesion region in the original image. The original image is then overlaid
with the prior images (both lesion and background). Normalization is conducted within the prior
local region, considering only non-zero regions to prevent the diluted effect of a global homogeneous
background on the normalized fused image.
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Figure 6: The structure of the prior difference guidance network (PDGNet), with two components:
The prior normalization fusion (PNF) strategy and the feature difference guidance (FDG) module

Given an image I , let the lesion region be D. μprior is the average of the gray values of all pixels in
the lesion (or background) region. σprior is the standard deviation of the gray values of all pixels within
the lesion (or background) region.

μD
prior = 1

|D|
∑

i∈D
I(i), (1)

σ D
prior =

√
1

|D|
∑

i∈D

(
I (i) − μD

prior

)2
, (2)

Ifusion = I (i) × 2, i ∈ D, (3)

Inorm
fusion = Ifusion − μD

prior

σ D
prior + ε

. (4)

where I(i) denotes the gray value of pixel i in image I , |D| denotes the number of pixels in the lesion
region, and ε is a very small value used to avoid the case where the denominator is zero. The PNF
strategy is essentially a linear contrast stretching method that augments the contrast by stretching the
range of pixel values of the image. This strategy augments the feature recognizability of the prior region
while preserving the full contextual information of the original image.
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3.2 Feature Difference Guidance (FDG) Module

The PDGNet introduces a Feature Difference Guidance (FDG) module to utilize the prior-
augmented lesion and background information further, as shown in Fig. 7. The module further utilizes
the prior-augmented lesion and background information, capturing the difference between the lesion
region’s and the background region’s augmented features. These differences guide the model to adjust
the focus region adaptively according to the decisions’ importance.

Figure 7: The structure of the prior difference guidance network (PDGNet), with two components:
The prior normalization fusion (PNF) strategy and the feature difference guidance (FDG) module

The module combines the original image with prior-augmented lesion and background infor-
mation fusion images as inputs. This integration offers richer and multi-perspective contextual
information for model training. Features z1, z2, and z3 are extracted from these images using distinct
encoders. z2 and z3 represent the full image encoding of lesion-augmented and background-augmented
images, respectively. The magnitude of the difference between z2 and z3 reflects the relative importance
of specific regions in the image for diagnostic decisions, guiding the model to focus more on regions
with significant differences.

The channel-fused features z′
2 and z′

3 are obtained by inputting z2 and z3 into the FDG module. The
difference value d is calculated through element-wise subtraction. To further leverage this difference, d
is weighted onto z1 after conversion to a weight via max-min normalization, resulting in the weighted
representation z′

1. Consequently, the construction of z′
1 incorporates both the global contextual

information provided by z1 and considers the local prior information after weighting the d values.

z′
2 = SA(z2) = Conv(Maxpool(z2), Avgpool(z2)), (5)

z′
3 = SA(z3), (6)

z′
1 = z1 × Max − Min(z′

2 − z′
3). (7)

The overall framework is shown in Fig. 4, defines the backbone network comprising n blocks,
with an FDG module added after each block. In the first n-1 blocks, z2, z3, and weighted z′

1 as inputs
to the next block. In the last (nth) block, feature splicing of z2, z3 and weighted z′

1 and then input them
to the classifier to get the diagnosis. Loss calculation is done using the cross-entropy loss function.



CMC, 2024, vol.79, no.1 419

4 Results
4.1 Implementation Details

The training and test sets are divided by case with a 9:1 ratio to prevent mutual data leakage within
the same case. The training set contains arterial-phase abdominal MRI sequences of 82 patients (27
MCFP, 55 PDAC), with a total of 3,432 slices (326 slices annotated with lesion areas), and the test set
contains 11 cases (4 MCFP, 7 PDAC), with a total of 440 slices (49 slices annotated with lesion areas).
A total of 440 slices (49 with lesion areas labeled).

For preprocessing, the image resolution is adjusted to 224 × 224, and image augmentation is
applied using restricted contrast adaptive histogram equalization. In the experiments, the total number
of epochs is set to 300. The learning rate is initialized at 1e-4 and dynamically adjusts using a cosine
function, with a minimum value set at 1e-6 and a loop count of 50. An early-stopping mechanism
is employed to prevent overfitting, terminating training if the loss value of the validation set does
not decrease for 30 epochs. The batch size is 64, and the model is optimized using adaptive moment
estimation (AdamW) [19] with a weight decay of 1e-3. Additionally, all experiments use the PyTorch
framework on an NVIDIA GeForce RTX 4090 graphics processing unit.

4.2 Evaluation Metrics

This study employs a comprehensive evaluation of the diagnostic performance of the model
using several metrics: Accuracy (ACC), area under the subject operating characteristic curve (AUC),
sensitivity/recall (SEN/REC), specificity (SPE), precision (PREC) and F1 score (F1). These metrics
are defined below:

Accuracy (ACC): Accuracy measures the proportion of all cases (both MFCP and PDAC) that
are correctly identified by the model at a specific threshold, calculated as ACC = (TP + TN)/(TP +
FP + TN + FN). High accuracy in differentiating MFCP from PDAC indicates the model’s overall
effectiveness in distinguishing these two conditions.

Area Under the Curve (AUC): AUC refers to the area under the Receiver Operating Characteristic
(ROC) curve, a graphical representation of a model’s diagnostic ability. It measures the model’s
capability to discriminate between two classes (MFCP and PDAC) across all possible threshold
values. A higher AUC value implies that the model performs better in distinguishing between negative
(MFCP) and positive (PDAC) cases, regardless of any specific threshold set for classifying cases as
positive or negative.

Sensitivity/Recall (SEN/REC): This metric quantifies the model’s ability to correctly identify
positive cases (PDAC), calculated as SEN = REC = TP/(TP + FN). High sensitivity in diagnosing
PDAC means the model can effectively identify most true PDAC cases, reducing the risk of missed
diagnoses, which is vital for timely and accurate diagnosis.

Specificity (SPE): Specificity measures the model’s ability to correctly identify negative cases
(MFCP), calculated as SPE = TN/(TN + FP). In this study, high specificity indicates that when
the model identifies a sample as not being PDAC (i.e., MFCP), this judgment is likely correct. This
is crucial for preventing misdiagnosis of MFCP as PDAC, which could lead to unnecessary and
potentially harmful treatments.

Precision (PREC): Precision reflects the proportion of cases identified as positive (PDAC) that
are indeed PDAC, calculated as PREC = TP/(TP + FP). High precision is particularly important in
diagnosing PDAC to ensure that most cases diagnosed as PDAC are indeed PDAC, minimizing false
positives.
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F1 Score (F1): The F1 score is the harmonic mean of precision and recall, calculated as F1 =
2 × (REC × PREC)/(REC + PREC). In distinguishing MFCP from PDAC, the F1 score provides
a composite measure that balances recall and precision, helping to assess the model’s performance in
maintaining a balance between these two metrics.

TP, TN, FP, and FN represent the number of true-positive, true-negative, false-positive, and false-
negative samples, respectively.

These metrics are intended to offer a holistic view of the model’s performance, covering various
aspects of diagnostic accuracy. Each metric offers insights into different dimensions of the model’s
effectiveness, ensuring a thorough evaluation of its capabilities in medical diagnosis.

4.3 Effectiveness of the Prior Normalization Fusion (PNF) Strategy

The study explores the effectiveness of the Prior Normalization Fusion (PNF) strategy by selecting
ResNet-18 [20] as the baseline model, and comparing various data input types as the training set. These
include the original image, the cropped and resized lesion region, the background region obtained by
masking the lesion region, the lesion-augmented and background-augmented images obtained by the
PNF strategy, and the lesion-augmented and background-augmented images obtained by the global
normalization fusion strategy (GNF).

Furthermore, to examine the impact of attention mechanisms on the models, the study evaluates
Squeeze-and-Excitation (SE) [21] without the prior information condition, Convolutional Block
Attention Module (CBAM) [22], Channel Prior Convolutional Attention (CPCA) [23], and Vision
Transformer (ViT) [24] based on the global spatial attention mechanism Self-Attention [25]. The
corresponding results are shown in Table 3.

Table 3: Performance comparison using different data types as inputs and augmented by different
attention mechanisms

Input data type Model ACC AUC SEN SPE PREC F1

Original image ResNet-18 0.7931 0.8234 0.7877 0.8041 0.8876 0.8345
Only lesion (crop
and resize)

ResNet-18 0.8136 0.8396 0.8151 0.8108 0.8947 0.8532

Only background
(mask lesion)

ResNet-18 0.7772 0.8047 0.7774 0.7770 0.8732 0.8222

Original image ResNet-18 + SE 0.8022 0.8282 0.7952 0.8189 0.8945 0.8423
Original image ResNet-18 + CBAM 0.7795 0.8079 0.7726 0.7973 0.8728 0.8192
Original image ResNet-18 + CPCA 0.7863 0.8012 0.7795 0.8045 0.8803 0.8264
Original image ViT base 0.7795 0.7988 0.7726 0.7973 0.8728 0.8192
GNF, lesion ResNet-18 0.8250 0.8571 0.8151 0.8378 0.9051 0.8582
GNF, background ResNet-18 0.8250 0.8457 0.8205 0.8311 0.9002 0.8589
PNF, lesion ResNet-18 0.8477 0.8645 0.8404 0.8514 0.9158 0.8765
PNF, background ResNet-18 0.8409 0.8663 0.8336 0.8446 0.9101 0.8704

Table 3 indicates that ResNet-18, when trained with lesion-augmented and background-
augmented images using the PNF strategy, surpasses the performance of models trained with images
augmented by the GNF strategy or models trained with original images. In particular, the lesion-
augmented image obtained by the PNF strategy achieves an ACC of 84.77%, a 5.46% improvement
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compared to the original image, and a 3.41% improvement compared to using only the lesion region.
These results validate the superiority of the PNF strategy. Without utilizing the prior information,
the SE attention mechanism improves the ACC of ResNet-18 to 80.22%, while the performance of
CBAM, CPCA, and ViT is lower than that of the benchmark network model.

4.4 Effectiveness of the Feature Differential Guidance (FDG) Module

This study utilizes the lesion-augmented and background-augmented images obtained by the PNF
strategy, and the original image as the training set, with ResNet-18 serving as the baseline model, to
assess the role of the Feature Difference Guidance (FDG) module.

Additionally, the impact of various fusion strategies on diagnostic performance is examined. These
strategies include: 1) Slicer-Dimension Concatenate: Connect the three images in the slicer dimension
before modeling, 2) Channel-Dimension Concatenate: Connect the three images in the channel
dimension, and 3) ResNet-18 + Feature Concatenate: Extract features using different encoders for
each input image type, and then connect the features after each block of the model. The results are
displayed in Table 4.

Table 4: Performance comparison using different fusion strategies

Input data type Model ACC AUC SEN SPE PREC F1

Slicer-dimension
concatenate

ResNet-18 0.8431 0.8612 0.8364 0.8495 0.9078 0.8705

Channel-dimension
concatenate

ResNet-18 0.8522 0.8691 0.8452 0.8595 0.9147 0.8782

Separately input ResNet-18 + feature
concatenate

0.8613 0.8811 0.8549 0.8675 0.9178 0.8856

Separately input ResNet-18 + FDG 0.8750 0.8998 0.8811 0.9251 0.8958 0.8884

As described in Tables 3 and 4, ResNet-18, based on FDG modules, demonstrates the best
performance with an ACC of 87.5%, higher than the other strategies. In addition, the other fusion
strategies also brought performance improvements, reaching an ACC of 86.13% when feature linking
was performed within the model.

4.5 Ablation Experiments

The study conducts ablation experiments on four mainstream backbones, ResNet, ViT, Swin
Transformer [26], and ConvNeXt [27], to further explore the benefits of the PNF strategy and the
FDG module. The relevant results are listed in Table 5, and the ROC curves are shown in Fig. 8.

Table 5: Results of the ablation experiments for the prior normalization fusion (PNF) strategy and the
feature difference guidance (FDG) module based on different backbone network

Model Description ACC AUC SEN SPE PREC F1 #epochs Params

ResNet-18 2016, CVPR 0.7931 0.8230 0.7877 0.8041 0.8876 0.8345 79 49.07 M
+ PNF, lesion – 0.8477 0.8745 0.8404 0.8514 0.9158 0.8765 82 49.07 M
+ PNF, background – 0.8409 0.8640 0.8336 0.8446 0.9101 0.8704 101 49.07 M

(Continued)
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Table 5 (continued)
Model Description ACC AUC SEN SPE PREC F1 #epochs Params

+ FDG – 0.8750 0.8825 0.8685 0.8811 0.9251 0.8958 108 130.84 M
ViT base 2020, arXiv 0.7795 0.8040 0.7726 0.7973 0.8728 0.8192 153 330.23 M
+ PNF, lesion – 0.8318 0.8548 0.8249 0.8390 0.9000 0.8612 146 330.23 M
+ PNF, background – 0.8272 0.8550 0.8205 0.8345 0.8970 0.8570 134 330.23 M
+ FDG – 0.8545 0.8790 0.8477 0.8611 0.9130 0.8792 300 690.91 M
Swin transformer tiny 2021, ICCV 0.8113 0.8395 0.8040 0.8200 0.8945 0.8470 159 104.97 M
+ PNF, lesion – 0.8545 0.8785 0.8477 0.8611 0.9130 0.8792 150 104.97 M
+ PNF, background – 0.8500 0.8770 0.8435 0.8570 0.9090 0.8750 153 104.97 M
+ FDG – 0.8818 0.9090 0.8753 0.8885 0.9310 0.9020 277 305.88 M
ConvNeXt tiny 2021, NeurIPS 0.8227 0.8565 0.8160 0.8310 0.9040 0.8580 161 106.12 M
+ PNF, lesion – 0.8636 0.8955 0.8567 0.8710 0.9195 0.8870 159 106.12 M
+ PNF, background – 0.8522 0.8860 0.8453 0.8595 0.9128 0.8778 164 106.12 M
+ FDG – 0.8977 0.9280 0.8904 0.9050 0.9401 0.9147 300 318.33 M

Figure 8: Average ROC curves and AUC values of the ablation experiments based on different
backbone network
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Table 5 and Fig. 8 illustrate that the implementation of the PNF strategy and the FDG module
significantly improves the performance of models based on the CNN architecture, specifically ResNet-
18 and ConvNeXt, as well as those based on the transformer architecture, such as ViT and Swin Trans-
former. This evidence underscores the effectiveness, superior generalization ability, and compatibility
of these strategies across various network architectures.

4.6 Comparison with Other Methods

The study aims to differentiate between MFCP and PDAC using arterial phase MRI scans. The
PDGNet is compared to other pancreatic lesion diagnostic models, including the prior-free diagnostic
network by Ziegelmayer et al., which employed VGG-19 to distinguish between AIP and PDAC [6].
Si et al. [9] used a prior-injected diagnostic network, which was first trained using the U-Net32 [28]
to train a pancreas segmentation model, and then input the segmentation results into ResNet34 to
distinguish between five different pancreatic lesions. The study employs manual annotation instead of
the segmentation results from U-Net.

As described in Table 6, the PDGNet based on ConvNeXt outperforms other models on all
evaluation metrics for MFCP and PDAC classification tasks. This further demonstrates that the
implemented strategies can effectively alleviate the problem of the difficulty of discriminative feature
extraction.

Table 6: Performance comparison with other deep learning-based pancreatic lesion diagnosis methods

Model Description ACC AUC SEN SPE PREC F1 #epochs Params

Ziegelmayer et al. [6] Prior-free 0.7772 0.8047 0.7774 0.7770 0.8732 0.8222 98 532.49 M
Si et al. [9] Prior-injected 0.7863 0.8236 0.7739 0.8108 0.8898 0.8278 86 92.97 M
Ours – 0.8977 0.9280 0.8904 0.9050 0.9401 0.9147 300 318.33 M

The comparison may not be fair since the studies used different datasets, but it can still provide
valuable references for future research.

5 Discussion

The study investigates a concept frequently overlooked in existing research on deep learning for
pancreatic lesion diagnosis: Background region considered as “noise” can actually provide valuable
information for diagnostic models. As shown in Tables 1 and 2, the ACC and AUC of the diagnostic
model reach 63.26% and 65.65%, even though the training set consists entirely of images without lesion
regions. When masking the lesion region from the complete image containing the lesion region, the
ACC and AUC are 67.34% and 71.67%, underlining the significance of the background region in the
diagnostic modeling dataset.

Consequently, the Prior Normalization Fusion (PNF) strategy is proposed. The strategy, which
fuses prior information before data input into the model, augments the feature recognizability of
the prior (lesion and background) region while preserving the complete contextual details of the
original image. As shown in Table 3, without utilizing the prior information, channel attention
SE can only bring relatively limited performance improvement, with ACC and AUC increasing
by 0.91% and 0.48%, respectively. In contrast, introducing spatial attention leads to a decline in
model performance. This could be attributed to inherent noise in the image, causing a bias in the
attention mechanism without prior information. However, the GNF and PNF strategies demonstrate
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significant performance gains, particularly the PNF strategy, which improves the ACC and AUC of
the benchmark network model by 5.46% and 4.11%, respectively.

Otherwise, the study observes that both lesion-augmented and background-augmented images
generated by the PNF strategy are able to improve the diagnostic model’s performance. To explore the
potential of this prior-augmented information more deeply, a Feature Difference Guidance (FDG)
module is introduced. The module combines the original image with the lesion-augmented and
background-augmented images so that they jointly participate in the model training process. The
superiority of this fusion strategy is further confirmed by the data in Table 5, where the FDG module
demonstrates the best performance.

Ablation experiments on convolutional neural networks such as ResNet-18, ConvNeXt, and
Transformer-based ViT, Swin Transformer, show that the proposed Prior Difference Guidance
Network (PDGNet) with the PNF strategy and the FDG module achieve significant improvements
on all four frameworks. Especially on ConvNeXt, the ACC and AUC of the model are improved to
89.77% and 92.80%, respectively.

In summary, the study confirms that the background region carries useful information for
diagnosis, which the model should more fully utilize. The PDGNet, incorporating the PNF strategy
and FDG module, significantly improves the diagnostic accuracy for MFCP and PDAC, uniquely
leveraging prior information from lesion and background regions.

Although the model achieves excellent performance, it has some limitations. For example, the
clinical datasets utilized might lack diversity and size. Nevertheless, the network demonstrates robust-
ness and effectiveness in data diversity and size constraints by accurately extracting and analyzing
key discriminative features. This offers promise for application in a wider range of clinical scenarios.
Secondly, a notable shortcoming of the proposed approach is the extensive training time and large
model parameters. Therefore, with continued optimization and algorithmic improvements, there is
an expectation of significant reductions in training time and improvements in model efficiency.
Thirdly, extensive testing in real-world clinical settings is yet to be conducted for the model. However,
preliminary findings and the model’s theoretical design indicate that, with further refinement and
validation, it will serve as an effective tool for assisted diagnosis in clinical environments. Future
research will focus on collecting more clinical data to enhance the model’s generalization ability,
exploring more efficient algorithms and network architectures to optimize the training process and
minimize computational resource requirements, and conducting validations in actual clinical settings
to confirm its effectiveness and feasibility. The ultimate goal is to improve the accuracy and reliability
of automated diagnosis, aiming to implement these models in clinical practice and offering more
effective diagnostic tools for physicians and patients.

6 Conclusions

This study proposes a novel approach for deep learning pancreatic lesion diagnostic research,
focusing on the lesion region and fully utilizing the information in the background region. The study
observes that even in background regions without obvious lesions, valuable information exists that
helps with diagnosis. Drawing on this insight, the Prior Difference Guidance Network (PDGNet)
significantly improves the performance of MFCP and PDAC diagnostic models through the Prior
Normalization Fusion (PNF) strategy and the feature difference guidance (FDG) module.

The PNF strategy preserves the complete contextual information of the original image. It
augments the feature recognizability of the prior region by fusing the prior information of the lesion
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and the background region. The FDG module, on the other hand, combines the original image with
the augmented lesion and background fusion image so that both of them participate in the model’s
training process, further improving the model’s accuracy. Ablation experiments conduct on various
prominent deep learning networks, including ResNet-18, ConvNeXt, Vision Transformer (ViT), and
Swin Transformer, substantiate the effectiveness of this approach.

In conclusion, the study emphasizes the importance of contextual information in deep learning
pancreatic lesion diagnosis and proposes new methods to utilize this information more fully to improve
model performance. The study provides a valuable reference for future medical image diagnosis. It
suggests that scholars should not only focus on salient target regions but also pay full attention to the
background information that is often overlooked.
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