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ABSTRACT

In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled
semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front
side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit
substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover,
the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues,
this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips,
termed Van-YOLOWVS. Initially, to alleviate the influence of diminutive, low-resolution markings on the precision
of deep learning models, we utilize an upscaling approach for enhanced resolution. This technique relies on
the Super-Resolution Generative Adversarial Network with Extended Training (SRGANext) network, facilitating
the reconstruction of high-fidelity images that align with input specifications. Subsequently, we replace the
original YOLOv8s model’s backbone feature extraction network with the lightweight Vanilla Network (VanillaNet),
simplifying the branch structure to reduce network parameters. Finally, a Hybrid Attention Mechanism (HAM) is
implemented to capture essential details from input images, improving feature representation while concurrently
expediting model inference speed. Experimental results demonstrate that the Van-YOLOvV8 network outperforms
the original YOLOVS8s on a recycled chip dataset in various aspects. Significantly, it demonstrates superiority in
parameter count, computational intricacy, precision in identifying targets, and speed when compared to certain
prevalent algorithms in the current landscape. The proposed approach proves promising for real-time detection of
recycled chips in practical factory settings.
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1 Introduction

The escalating volume of discarded electronic devices has led to the emergence of a significant
reservoir of reusable semiconductor chips. Compared to their new counterparts, recycled chips come
at a markedly lower price, prompting numerous enterprises to adopt chip regenerating equipment for
cost reduction. Following successful functional testing, chips undergo tape-and-reel packaging for
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automated surface mounting on circuit boards. Ensuring precise chip orientation during this process
is crucial, as any deviation can result in severe consequences, including the scrapping of circuit boards.
To maintain consistent chip orientation, a small circular marker is typically placed on one end of
the chip to denote pin arrangement. Detecting and identifying the position of this circular marker
is essential for both testing and packaging. However, recycled chips often exhibit substantial surface
wear, leading to blurred and challenging-to-detect markers. Moreover, the computational resources
required by models for detection are substantial, posing difficulties and challenges during algorithm
deployment on computing-limited terminal apparatus. Therefore, a critical challenge in this field is
how to minimize the complexity and computational demands of detection models while ensuring
precision.

Recycled chip mark detection falls under the category of small object recognition in the field of
machine vision. The common methods include conventional image processing and deep learning. Con-
ventional image processing mainly involves image segmentation, texture analysis, image restoration,
and feature matching. Feature matching is widely used due to its adaptability in dealing with grayscale
changes, deformation, and occlusion. Cui et al. [ 1]employed diverse approaches for identifying distinct
irregularities on the exterior of mobile phone casings, including the least squares method, image
differential algorithm, and an improved traditional template matching algorithm for detecting IR
holes, ink spots, and LOGOs. Yao et al. [2] extracted the HU invariant moment features and template
features of target contours for coarse matching to obtain candidate part contours, used an improved
Harris corner detection method to obtain corners, and based on gray-scale fast matching, achieved
the effect of improving the precision of part image matching. While these conventional methods have
made progress in target feature matching, they perform well on clear chip surfaces but are less effective
on severely worn marks on recycled chips.

With the progress of modern information technology and intelligent manufacturing techniques,
deep learning-based systems for detecting small targets in industrial products have found widespread
application [3]. Given that the hardware employed in industrial settings is often edge devices with
limited memory and computational power, considerations extend beyond the requirements of the
mechanical drive systems to encompass the computational demands of the models. Consequently,
reducing the size of the model proves advantageous for seamless integration into computing devices
[4]. The prevalent methodologies for object detection include multi-step strategies like Region-Centric
Convolutional Neural Network (R-CNN) [5], Fast R-CNN [6], Mask R-CNN [7], and one-step
methodologies such as One-Shot Multibox Detector (SSD) [§], You Only Look Once (YOLO) [9],
and Transformer-based object detection algorithms like Detection Transformer (DETR) [10]. Two-
stage algorithms first generate candidate boxes and then extract features from these boxes before
regressing the objects, which slows down the detection speed. Transformer-based DETR performs
poorly in small object detection and has extremely long training times, 10-20 times that of two-stage
algorithms. In contrast to alternative categories, object detection algorithms employing a single-stage
approach, grounded in regression, combine both localization and classification objectives, leading to
increased detection speed and significant advantages in terms of real-time object detection. Moreover,
the YOLO algorithm is highly scalable and easily extends to new detection tasks. Based on single-stage
algorithms, for more accurate specific target detection, Li et al. [11] proposed an aviation engine part
surface defect detection model, YOLO-KEB. This model incorporates the Efficient Channel Attention
Network (ECA-Net) into YOLO’s foundational feature extraction network to improve its capabilities
in feature extraction. Additionally, it integrates the Bi-directional Feature Pyramid Network (BiFPN)
module into the feature integration network for a comprehensive integration of multi-scale features,
thereby amplifying the model’s performance for object detection. Wang et al. [12] introduced a
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network for small defect detection, YOLOV4-SA, combining the Spatial Attention Module (SAM)
with YOLOV4. SAM corrects feature values and highlights defect areas, thus effectively recognizing
small defects. To address the deployment issue of object detection models on terminal devices with
limited computational resources, Zhou [13] and colleagues introduced the YOLOv5s-GCE lightweight
model designed to identify surface defects on strip steel. This model incorporates the Ghost module
and integrates the Coordinate Attention (CA) strategy, effectively decreasing the model’s dimensions
and computational demand without compromising detection accuracy. Yang et al. [14] proposed the
improved CBAM-MobilenetV2-YOLOVS model, introducing both the Mobile Network Version 2
(MobilenetV2) module and Convolutional Block Attention Module (CBAM) for a lighter strip steel
surface defect detection model. Following this, Zhang [15] improved YOLOVS by using a lighter
Shuffle Network Version 2 (ShuffleNetv2) as the backbone network, reducing model complexity
and having an advantage in detection speed. Zhou et al. [16] proposed the YOLOVS-EL object
detection method, using Generative Adversarial Network for Generative Art (GauGAN) for the
purpose of augmenting the dataset to rectify the imbalance of different defects in the dataset. The
method incorporates the Context Aggregation Module (CAM) in the backbone and feature extraction
networks to suppress background noise and builds a Multi-Attention Detection Head (MADH) to
effectively improve detection accuracy.

The aforementioned studies have undertaken significant efforts in the lightweight processing of
computationally intensive object detection models, offering valuable insights. Addressing challenges
related to the identification of small and heavily worn markings on semiconductor chips, as well
as the deployment complexities of generic detection algorithms on resource-limited devices, this
paper presents a novel lightweight chip marker detection algorithm. Leveraging the characteristics
of chip markings and building upon YOLOVSs as the baseline, our approach enhances the detection
performance of the original YOLOv8s method while reducing the computational load, rendering the
network more lightweight. The principal achievements of this study are delineated as follows:

(1) Effectively generating high-quality samples using the SRGANext sample generator to meet
the input size requirements of the detection model. Simultaneously, significantly enhancing image
resolution in this process contributes to providing a superior dataset for the detection model.

(2) Introducing the lightweight VanillaNet [17] as the backbone feature extraction network for
YOLOVSs, successfully reducing the number of convolutional layers and computational resources.
This adjustment results in a more lightweight detection model.

(3) Integrating the HAM [1§] into the foundational structure of YOLOvVS8s to enhance the
network’s proficiency in capturing target feature information. This technology elevates the model’s
predictive capacity, enabling the real-time and accurate detection of chip markings.

Section 2 of this paper outlines the chip marker detection approach, encompassing data collection,
image preprocessing, and the Van-YOLOVS detection model. In Section 3, the experimental details are
expounded, covering evaluation metrics, assessing the effectiveness of validation data preprocessing,
conducting ablation experiments, and comparing results with other experiments. Section 4 concludes
the paper and provides future prospects.

2 Experimental Setup and Methodology
2.1 Data Collection

As depicted in Fig. 1, the experimental platform primarily consists of an industrial camera, a light
source, a vibrating disk, a fiber optic sensor, and a feed box. Chips are transported along the track of
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the vibrating disk and, once detected by the fiber optic sensor, trigger the industrial camera to capture
an image. The indicator on the front side of the chip is used to identify the position of the first pin.
Accurate detection of this circular mark is essential. Therefore, the YOLOvV8 network is used to detect
the position of the chip mark. When the indicator is positioned in the lower-left corner, chips continues
to move forward and is placed into the tray by a robotic arm to proceed to the next inspection process.
Otherwise, the chip is blown back to the vibrating disk by air holes. The detection continues until
all the chips on the vibrating disk are checked. The company requires an image processing speed of
200 pcs/min, and to improve the speed of image capture and transmission, the image resolution is set
to 304 pixels x 168 pixels.
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Figure 1: Experimental platform for chip symbol detection

2.2 Image Preprocessing

In practical applications, low-resolution images may hinder deep learning models from effectively
capturing and identifying critical features, thereby impacting the ultimate detection performance. To
surmount this challenge, the paper introduces SRGANext technology, enhancing the quality and
clarity of chip marker images significantly. The specific process is illustrated in Fig. 2, where a 128
128-sized block is extracted from the image’s bottom-left corner, and the circular marker is magnified.
If the template matches the marker in this region, it indicates correct positioning. The YOLOvVS model
uses the Letterbox [19] function to process images to fit the model’s input size. This function maintains
the original aspect ratio of the image by adding padding on one or both necessary sides to adjust the
size to meet the input dimensions. This method introduces additional non-informative areas, reducing
the effective resolution. Therefore, to improve recognition accuracy, this paper first enlarges the image
to 512 x 512 before inputting it into the YOLOv8 model. To enhance the clarity of the enlarged image,
a super-resolution magnification method based on the SRGANext network is used. The images are
then annotated to construct a training set for network training, followed by chip detection.

The SRGANext architecture represents an enhanced iteration of the Super-Resolution Generative
Adversarial Network (SRGAN) [20], with structural improvements facilitated by the Convnext [21]
network. It comprises a generative network and a discriminative network. The framework takes in
low-resolution images with three channels, and the generator network reconstructs high-resolution
images from these. The discriminator serves as a tool to help the generator produce better quality
images. The discriminator only guides the generator during the training phase. In the inference stage,
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the generator independently reconstructs high-resolution images. The specific structure is illustrated
in Fig. 3.
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Figure 2: Overall framework for data preprocessing
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Figure 3: SRGANext network architecture

The generative module in the SRGANext architecture is derived from the Convnext network,
incorporating internal adjustments in channel quantity, as illustrated in Fig. 3a. The generator network
sequentially goes through a stem module, four Stage modules, and an upsample module. Each Stage
module contains a certain number of SRGANext Block modules in the ratio of 3:3:9:3. As shown
in Fig. 3b, the SRGANext Block is a residual module that includes DW Conv and PW Conv for
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adjusting the channel count. Additionally, the LayerNorm component is employed for channel-wise
normalization, thereby diminishing the model’s intricacy and lessening computational demands.

The discriminative component within the SRGANext architecture draws inspiration from the
SRGANext Block as its foundational module. It incorporates Depthwise Convolution modules that
substantially decrease the parameter count and diminish the interdependence among channels, thereby
expediting model training, as illustrated in Fig. 3c. Unlike the generator, the discriminator network
undergoes downsampling, reducing the feature map size to half of its original. Ultimately, it undergoes
global average pooling for feature map size reduction to 1 x 1, bringing the reconstructed repre-
sentation closer to the actual image. Fig. 4 shows the image reconstruction effect of the SRGANext
network after 100 training cycles, demonstrating a notable improvement in the resolution ratio of the
reconstructed images.
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Figure 4: SRGANext network processing effect

In this study, inputting low-resolution ratio chip marker images into the SRGANext network
effectively increases pixel density, thereby enhancing image clarity and detail. This super-resolution
enhancement technology not only aids in compensating for information loss caused by low resolution
in deep learning models but also strengthens the accuracy of the model in chip marker detection tasks.

2.3 Van-YOLOv8 Detection Model

The challenge of detecting small and heavily worn markings on recycled chips has given rise to
issues of false positives and negatives, underscoring the pressing need for enhanced precision in detec-
tion. At the same time, prevalent target identification methodologies present issues such as heightened
intricacy and considerable computational demands, rendering the deployment of algorithms on edge
devices notably challenging. Therefore, this paper proposes a lightweight YOLOVSs network structure,
namely Van-YOLOVS, as illustrated in Fig. 5, to address these issues.

The primary detection process involves three key steps: Image preprocessing, model refinement,
and model testing. In the first step, low-resolution ratio images undergo super-resolution ratio
enlargement to reconstruct a high-quality dataset. After selecting specific images, the circular markings
within them are annotated using the Labellmg annotation software. Notably, some heavily worn
chips that, even after preprocessing, fail to exhibit a complete marking are manually identified,
with those meeting the circular marking criteria deemed qualified. Transitioning to the subsequent
stage, the categorized images, both after preprocessing and in their original state, are utilized for
the training and validation procedures, and subsequently input into the Van-YOLOv8 model for
training. The detection framework consists of a simplified VanillaNet, an amalgamated Attention
Mechanism (HAM) element, and the YOLOvV8s convolutional neural architecture component. The
VanillaNet significantly reduces the model’s volume, thus lowering computational resource demands.
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The backbone network, augmented with the HAM module at the bottom, enhances feature extraction
capabilities. The input is processed through the Neck network and detection head, ultimately providing
predicted bounding box coordinates and class labels for the targets. In the third step, the trained model
undergoes evaluation using the test set, allowing for an analysis of its detection performance.
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Figure 5: Topology of the Van-YOLOvV8 model

2.3.1 Baseline-YOLOv8s Network

In this manuscript, we utilize the single-stage detection algorithm YOLOVSs as the reference
model. Asillustrated in Fig. 6, this framework comprises three fundamental elements: Backbone archi-
tecture, Neck module, and Head component. In the Backbone architecture, in contrast to YOLOVS,
YOLOv8s adopts a more lightweight C2f module in lieu of the C3 module. In the Neck network,
YOLOv8s omits the 1 x 1 convolutional downsampling unit observed in YOLOVS and substitutes the
C3 with a C2f. In the Head network, YOLOVSs utilizes a disentangled head configuration, segregating
the tasks of classification and regression, and shifts from Anchor-Based to Anchor-Free.

2.3.2 Integrated VanillaNet Minimalist Network

Considering the limited computational resources typically found in endpoint devices within
conventional enterprises, deploying complex chip marker detection models that demand significant
computing power often becomes a constrained task. In response to this challenge, this paper addresses
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the issue by introducing a streamlined neural network module, VanillaNet, into the backbone feature
extraction network of the baseline model YOLOVSs. In contrast to intricate residual and attention
modules, VanillaNet comprises basic convolutional and pooling layers, eliminating complex connec-
tions and skip connections. Such a design streamlines the network structure, significantly reducing the
model’s volume and parameter count, consequently lowering the computational intricacy.
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Figure 6: YOLOvV8s network structure diagram

The architecture of VanillaNet is depicted in Fig. 7 (using a 6-layer structure as an example), and
it mainly consists of three parts: A backbone block, which converts the input image from 3 channels
to multiple channels and performs downsampling; a main body that extracts useful information; and
a densely connected layer for generating classification results. For the backbone block, a 4 x 4 x 3
x C convolution layer with a stride of 4 is used to downsample the original 3-channel image into a
feature map with C channels. In the primary segments—stage 1, stage 2, and stage 3—max-pooling
layers with a 2-unit stride are implemented to modify the dimension of the feature map and double
the number of channels from the preceding layer. In stage 4, an average pooling operation is employed
without augmenting the channel quantity. Finally, the fully connected layer outputs the classification
result.
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Figure 7: VanillaNet network structure
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To preserve feature map information at each layer while minimizing computational costs, we opted
for 1 x 1 convolutional kernels. Following each 1 x 1 convolutional layer, we applied the Series
Informed Activation Function (SIAF), expressed mathematically as shown in Eq. (1). This choice
aims to effectively activate the neural network’s response, rendering the network more flexible and
responsive during the information propagation process. To further simplify the training process, we
introduced batch normalization after each convolutional layer.

A, (x) =D aA(x+b) (1

i=1

Here, n denotes the quantity of cascaded activation functions, and a;, b; represent the scaling and
offset for each activation, preventing mere accumulation.

2.3.3 Introduction of Hybrid Attention Mechanisms

In order to concentrate on the regions of the image that include circular marks, to enhance
the network’s feature extraction capabilities, a HAM module is utilized. HAM incorporates an
attention mechanism, integrating both channel and spatial attention mechanisms to retrieve crucial
relevant details from initial images’ channel and spatial properties. In contrast to traditional attention
mechanisms, this approach is more flexible and adaptive, offering a balance between adaptability and
computational efficiency.

Part A: Channel Attention (CAM). Channel attention chiefly concentrates on modifying the
weights of individual channels at each spatial location. Channel attention distributes weights to
convolutional feature maps. Following the convolution of the original image, global average pooling
is executed to derive a vector with dimensions [C,1,1]. The resulting tensor quantity undergoes
convolutional and activation processes to produce the weight vector corresponding to the channels “s’.
As depicted in Fig. 8, the [C, H, W] dimensional input feature ‘X’ undergoes global average pooling
(GAP) for dimension reduction and information condensation. Interactions among neighboring
channels are delineated by contemplating each individual channel alongside its surrounding ‘A’
channels. Efficient prediction of channel-based attention mechanism is achieved through a ConvlD
convolution employing a kernel with dimensions ‘k” x ‘k’, where the kernel dimension is proportionate
to the channel dimension ‘C’. The input representation map ‘X’ undergoes multiplication with the
weight vector ‘s’ associated with channels to produce the output representation map ‘Y’. The equation
is expressed as [22]:

s=F,,(X) =0 (ConvlD (GAP (X))) 2)
Y=sX 3)
k=¢(C)=log2—(C)+§ 4)

Here, o represents the Sigmoid activation operation. The dimension of the convolutional kernel
k adjusts proportionally to the channel dimension, with the model parameters y =2 and » = 1. The
symbol ||..; specifies that &k must exclusively be positive odd integers. The adopted channel attention
strategy in this investigation utilizes a regional inter-channel communication approach, maintaining
optimal effectiveness while concurrently diminishing model complexity.



540 CMC, 2024, vol.79, no.1

Adaptive Selection
of Kemel Size:
k=p(C)

Element-wise product o o

Ix1=xC IxIxC

Figure 8: CAM diagram

Part B: Spatial Attention (SAM). Spatial attention is concerned with adjusting the importance of
different spatial positions within each channel. The attention mechanism based on spatial attributes
filters out less relevant portions of the background in an image and directs attention towards and
transforms regions of significance. In Fig. 9, the feature maps are subjected to processing through Max
Pooling (MaxPool) and Mean Pooling (AvgPool) to produce two arrays with dimensions [1,H, W],
aggregating every channel at the same representation point. The pair of representation maps are
later merged to generate a unified representation map with dimensions [2,H,W], and subsequently
transformed to [1,H,W] through a convolutional stratum. The spatial influence is employed to
modulate the original feature map with dimensions [C,H,W] for refinement. By backpropagating
the effective receptive field to the initial image, the network can dynamically concentrate on crucial
portions [23].

T, (X) = o (/™" ([AvgPool(X); MaxPool (X)))) ®)
Y =GX) T.(X) ©)

Figure 9: SAM diagram

Here, /™ denotes a convolutional operation employing a kernel dimension of n x n. X represents
the input representation map, while Y indicates the resulting representation map. G(X) denotes the
segmentation of the input representation map into a lattice of points.
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3 Experimental Study

The Van-YOLOVS8 network is deployed and trained on the TensorRT (version 8.4) framework,
using FP16 optimization mode. The experiment employed an NVIDIA GeForce RTX 3060 GPU; an
Intel Core 17-12700H CPU with a base frequency of 2.70 GHz and 16 GB of RAM; the operating
system was Windows 11. The programming software used was PyCharm 2021.3.1, and the CUDA
version was 11.8. The dimensions of the input image were configured to 512 pixels x 512 pixels, with
the count of iterations (Epoch) designated as 300. The size of the training batch was established as
8, while the quantity of threads (Num workers) was defined as 4. During the model training process,
the weights trained on the COCO dataset were used as pre-trained weights. Additionally, 600 images
generated by the SRGANext network were utilized as training samples for the detection model, with
a subset of 150 original images employed for testing and validation purposes.

3.1 Evaluation Metrics

In this experiment, we introduced evaluation criteria for gauging the efficacy of image reconstruc-
tion and object detection. To evaluate the fidelity of reconstructed images, this study incorporates two
metrics: Structural SIMilarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

SSIM (an/) = [l (X,J’)a : C(X,J’)ﬁ : S(x:y)y] (7)
_ @ -1

Here, /, ¢, and s denote the resemblance in brightness, contrast ratio, and composition, respectively.
MSE stands for Mean Square Error.

For measuring the performance of object detection, this paper introduces five evaluation metrics:
Detection precision (Precision), mean Average Precision (mAP), Frames Per Second (FPS), model
parameter count (Params), and computational load (GFLOPs).

TP
Precision = ——— 9)
TP+ FP
1 _
mAP = - Z AP(i) (10)
FrameNum
FPS= ——— 11
ElapsedTime an
Params = Cy x (k, x k, x C;+ 1) (12)
FLOP
GFLOPs = ——22>__ /1 (13)
ElapsedTime

Here, TP refer to correctly identified positive instances. FN indicate incorrectly missed positive
instances. FP signify incorrectly identified negative instances. k£ symbolizes the quantity of categories,
and AP(i) denotes the Average Precision value corresponding to the i-th category. ElapsedTime
encompasses the total duration for image preprocessing, inference, and post-processing. Floating Point
Operations Per Second (FLOPs) correspond to the quantity of floating-point operations conducted.
C, signifies the count of resultant channels, C; denotes the quantity of initial channels, k,, denotes the
convolution kernel width, and k, indicates the convolution kernel height.
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3.2 Effectiveness of Image Preprocessing

In this part of our study, we examine how well the SRGAN and SRGANext models reconstruct
images across various datasets. We tested these models using several datasets: DIV2K, ImageNet100,
COCO02017, Set5, and Setl4. According to Table 1, the SRGANext framework uniformly surpasses
the SRGAN framework in both SSIM and PSNR across all these datasets. These metrics are important
for evaluating the quality of image reconstruction.

Table 1: Comparison of SRGAN and SRGANext model performance

DIV2K ImageNet100 COCO2017 Set5 Set14

SSIM SRGAN 0.70 0.50 0.49 0.69  0.63
SRGANext  0.81 0.57 0.56 084  0.73

PSNR (dB) SRGAN 23.53 17.81 18.39 23.24  22.78
SRGANext 27.41 18.63 19.17 2771 25.82

Moreover, this study delves into a comprehensive examination of the comparison between images
preprocessed using the SRGANext network and the original images in the Van-YOLOv8 model for
chip datasets. The preprocessed images exhibit sharper and more accurate features in chip marker
detection tasks, contributing to an improved ability of the model to recognize subtle markings. Table 2
clearly illustrates the substantial improvements of preprocessed images over original images across
various performance metrics, emphasizing the notable role of SRGANext preprocessing in enhancing
chip marker detection effectiveness.

Table 2: Influence of preprocessed and original images on detection performance

Data Precision/% mAP_0.5/% mAP_0.75/% mAP_0.5:0.95/%
Preprocessed images  90.2 91.9 89.7 83.3
Original images 83.1 76.9 77.0 70.1

3.3 Ablation Experiment

In this study, YOLOVSs is employed as the foundational model, and the VanillaNet element is
integrated into the core feature extraction network to streamline the model’s intricacy. Simultaneously,
a HAM is incorporated to focus on local information and enhance feature extraction capabilities. To
affirm the efficacy of the enhancements implemented on the foundational model, ablation studies were
conducted from two perspectives:

1) Derived from the foundational model, each enhancement module was introduced one at a
time to validate the influence of individual modules on model identification accuracy, number of
parameters, detection speed, etc.

2) In the conclusive model (Van-YOLOVS), each enhancement module was systematically
excluded one by one (except for the exclusion of the VanillaNet module) to evaluate the influence
of specific improvement modules on the final model’s performance. The outcomes of the experiments
are illustrated in Table 3.
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Table 3: Ablation experimental study

Model VanillaNet SAM CAM Precision/%s mAP_0.5/% Params (M) GFLOPs FPS
YOLOv8s+ — - - 85.4 87.5 239 50.7 39.5
YOLOVSs+ / 84.7(=0.7) 87.8(+0.3) 11.1(=12.8) 19.6(=31.1) 49.6(+10.1)
YOLOVSs+ J 87.2(+1.8) 88.3(+0.8) 26.7(+2.8) S18(+1.1) 44.7(+5.2)
YOLOVSs+ J 85.9 (+0.5) 85.1(=2.4) 30.7(+6.8) 54.1(+3.4) 40.6(+1.1)
YOLOVSs+ J J 89.3 (+3.9) 90.0(+2.5) 33.5(+9.6) 55.4(+4.7) 47.3(+7.8)
YOLOVSs+ / J 86.7(+1.3) 88.2(+0.7) 12.7(—=11.2) 20.7(—30.0) 50.3 (+10.8)
YOLOVSs+ / J 86.0 (+0.6) 87.7(+0.2) 12.3(=11.6) 21.0(=29.7) 48.2(+8.7)
YOLOVSs+ X A 90.2 (44.8)  91.9 (+4.4) 13.1(=10.8) 21.3(=29.4) 50.8 (+11.3)

The experimental findings indicate that by exclusively integrating the VanillaNet component
within the feature extraction network of the backbone, the parameter count decreased from 23.9 M in
the baseline to 11.1 M, resulting in a reduction of 12.8 M. VanillaNet uses a sequence of convolution-
pooling structures to extract features, without direct connections between different blocks. The feature
map is continuously downsampled through convolution and pooling layers to subsequent blocks,
avoiding branched structures and thereby reducing a significant amount of computation. Hence,
incorporating the simplified VanillaNet module into the backbone for feature extraction efficiently
diminishes the model’s intricacy and enhances inference speed. Furthermore, integrating the HAM
component within the structure explicitly establishes the interrelation among image channels and
spatial dimensions. It aggregates information from multiple convolution kernels in a nonlinear manner,
focusing more quickly on local information. The HAM module, composed of SAM and CAM, only
slightly increases the parameters and computational cost, enhancing the model’s inference velocity. The
ultimate model proposed in this manuscript, incorporating both the VanillaNet and HAM modules,
achieves a detection accuracy of 90.2% and an mAP of 91.9%, respectively, increasing by 4.8% and
4.4%. Moreover, the final model maintains a lower number of parameters and computational load,
only 54.8% and 42.0% of the baseline, with an FPS increase of 11.3 fps compared to the baseline. In
summary, the lightweight chip mark detection model presented in this study efficiently simplifies the
model’s structure while preserving robust detection accuracy and real-time efficiency.

3.4 Comparison with Current Advanced Algorithms

In our study, we compared the performance of various advanced object detection algorithms with
our Van-YOLOV8 network. This encompassed the two-step algorithm Fast RCNN and various single-
step algorithms: SSD, YOLOv4-Tiny [24], YOLOvS5s, YOLOvV7s [25], and YOLOVS8s. The results of
these comparative tests are condensed in Table 4.

According to the results provided in Table 4, the framework within this investigation demonstrated
superior execution concerning detection accuracy, mAP, model parameter count, computational load,
and FPS. Compared to the baseline YOLOVSs, it increased detection accuracy by 4.8%, mAP by
4.4%, diminished the quantity of model parameters by 10.8 M, and lowered the computational load
from 50.7 GFLOPs to 21.3 GFLOPs, a decrease of 29.4 GFLOPs, while FPS increased by 11.3 fps.
In comparison with YOLOVS5s, another one-stage object detection algorithm, our approach showed
even more significant advantages in chip mark detection, with notable improvements in detection
accuracy and mAP. The model’s parameter count was reduced by 14.8 M, only 46.9% of YOLOVS5s,
and the computational load decreased by 43.8 GFLOPs, only 32.7% of YOLOvS5s, with an increase of
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24.1 fps. Furthermore, Van-YOLOVS reduces the parameter count by 13.1 M compared to YOLOVT7s,
3.2 M compared to YOLOv4-tiny, 17.0 M compared to SSD, and 44.7 M compared to Faster RCNN.
The frames per second (FPS) are enhanced by 30.7 fps over YOLOV7s, 7.2 fps over YOLOv4-tiny, 33.5
fps over SSD, and 33.8 fps over Faster RCNN. Additionally, Fig. 10 presents the detection accuracy
and mAP curve of the Van-YOLOvVS model training. The curve showing the changes in detection
accuracy over iterations indicates that the Van-YOLOvV8 model quickly improves in target detection
accuracy and can achieve a result close to 1 when stabilized. To more intuitively display the differences
between each model, examples of the detection process are illustrated in Fig. 11.

Table 4: Experimental comparisons

Models Precision/% mAP_0.5/% Params (M) GFLOPs FPS (GPU)
Faster RCNN  79.1 (—11.1) 75.9 (—16.0) 57.8 (+44.7) 82.7(+61.4) 12.0 (—38.8)
SSD 77.9 (—12.3) 73.2 (—18.7) 30.1 (+17.0) 72.3 (+51.0) 17.3 (=33.5)
YOLOvV4-Tiny 81.3(—8.9) 79.9 (—12.0) 16.3 (4+3.2) 30.4 (+9.1) 43.6 (—7.2)
YOLOVS5s 84.7 (-5.5) 85.6 (—6.3) 27.9 (+14.8) 65.1 (+43.8) 26.7 (—24.1)
YOLOvVT7s 82.4 (—7.8) 83.1 (—8.8) 26.2 (+13.1) 61.9 (+40.6) 20.1 (—30.7)
YOLOvSs 85.4 (—4.8) 87.5(—4.4) 23.9 (+10.8) 50.7 (+29.4) 39.5(—11.3)
Van-YOLOv8  90.2 91.9 13.1 21.3 50.8
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Figure 10: Van-YOLOv8 model training results

Through detailed results and comparative analysis, the Van-YOLOvVS model significantly curtails
computational costs while ensuring enhanced detection precision compared to other cutting-edge
algorithms. This not only underscores the outstanding performance of Van-YOLOvVS8 in object
detection tasks but also indicates its effective management of computational resources while enhancing
accuracy. The successful manifestation of this balance highlights the unique design and excellent
performance advantages of the Van-YOLOv8 model.
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Figure 11: Detection results of different models. The boxes indicate the locations of detected marks,
and the numbers signify the model’s confidence level in the detected objects

4 Conclusion

The Van-YOLOvV8 model, leveraging SRGANext for processing the chip dataset, integrates
VanillaNet and a hybrid attention mechanism, demonstrating outstanding performance in detection
accuracy. Simultaneously, Van-YOLOvV8 achieves a significant improvement in computational costs,
striking a balance between efficiency and performance. This is particularly crucial for implementing
target detection tasks in resource-constrained environments, offering a balanced solution that meets
high accuracy requirements while effectively managing computational expenses.

While Van-YOLOVS excels in object detection tasks, its design is more tailored to specific
recycled chip detection, and adaptability differences may exist for other types of object detection
tasks. Additionally, Van-YOLOVS8’s performance is sensitive to certain key hyperparameters, requiring
careful tuning for optimal performance, thereby increasing the difficulty of model optimization. In
the future of object detection, it is recommended to improve the framework’s versatility to ensure
broader applicability in diverse object detection scenarios. Moreover, exploring automated methods
for hyperparameter optimization, such as reinforcement learning or optimization algorithm-based
auto-tuning tools, can assist in reducing the complexity of model tuning while enhancing performance
stability and generalization.
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