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ABSTRACT

In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assess
students’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,
thereby continuously promoting the improvement of teaching quality. However, most existing multi-face expression
recognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,
and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single face
images, which are of low quality and lack specificity, also restricting the development of this research. This paper
aims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable for
smart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and apply
the model to group emotion assessment to expand its application value. To this end, we propose an end-to-end
multi-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide high-
quality and highly targeted data support for model research, we constructed a multi-face expression dataset in
real classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smart
classrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)
block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;
combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),
it strengthens the ability to extract key information; adopts asymptotic feature pyramid network (AFPN) feature
fusion tailored to classroom scenes and optimizes the head prediction output size; achieves high-performance end-
to-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessment
and provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED show
that the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,
improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version
8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC model
has obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-time
multi-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.
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1 Introduction

With the continuous development of educational informatization, the pace of smart classroom
construction is gradually accelerating, especially the empowerment of artificial intelligence technology,
which has also brought new opportunities for the development of smart classrooms. In this context,
classroom effect evaluation is becoming increasingly important to ensure the steady development of
education outcomes. Deep learning technologies are widely applied in classroom effect evaluation,
and the related computer vision technologies are receiving more and more attention. In modern
education, the intelligent analysis of students’ participation and emotional behaviors is of vital
importance to the evaluation of teaching effects. Psychological research shows that in human face-
to-face communication, the proportion of language information transmission is about 7%, while
non-verbal information such as facial expressions accounts for over 55% [1]. By studying multi-face
expression recognition technology, we can enable intelligent devices and human-computer interaction
systems to understand and interpret changes in students’ facial expressions and emotions more
accurately, intelligently and naturally. Emotion analysis and evaluation based on this can gradually
become an important parameter for evaluating teaching effectiveness.

In smart classrooms, recognizing students’ group facial expressions in a classroom environment
can provide important references for evaluating teaching quality and learning outcomes. By analyzing
the distribution of students’ group facial expressions, we can understand the overall learning status,
participation, and emotional attitudes of the students, thereby evaluating the emotional impact of
teaching activities on the overall students, examining students’ emotional feedback under different
teaching methods, and improving teaching design accordingly to effectively promote the development
of teaching quality. In addition, multi-face expression recognition can monitor students’ emotional
changes in real time, helping teachers understand students’ learning status in real time, respond to
negative emotions, and interact well with students. Meanwhile, distinguishing individual and group
expression situations also helps to discover different reactions of different students to teaching
activities and conduct personalized teaching guidance.

Earlier facial expression recognition relied on manually designed features and classifiers [2], with
poor accuracy and robustness. Since the popularity of deep learning, various convolutional neural
networks and recurrent neural networks have shown great advantages in facial expression feature
representation and classification, improving recognition performance [3,4]. With the introduction of
network architecture design, attention mechanisms, data augmentation and other technologies, facial
expression recognition has extended from basic expressions to more refined expression analysis, and
the technology has become more intelligent and generalizable. However, facial expression recognition
research has been mainly focused on recognizing expressions from single persons under well-controlled
conditions [5–7].

In contrast, multi-face expression recognition faces difficulties such as expression variations,
occlusions, high synchronization requirements, and high performance demands [8]. Most existing
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multi-face expression recognition methods adopt multi-stage processing, which is complex and ineffi-
cient. The accuracy and efficiency of multi-face expression recognition are limited, and there lacks
high-quality and highly targeted multi-face expression datasets [9–11]. Increasingly more research
applies facial expression recognition techniques to smart classrooms for analyzing student status and
evaluating teaching quality, demonstrating the necessity of combining facial expression recognition
and smart classrooms. However, in this field, methods based on deep learning have been extensively
studied, but problems like low dataset specificity, insufficient training samples, and poor model
generalization still restrict further development. Especially for multi-face expression recognition, most
current solutions require additional face detection models, lacking real-time performance, and end-
to-end solutions are still not mature enough. Moreover, in-depth research is lacking regarding group
emotion assessment and teaching guidance driven by students’ multi-face expressions, with most work
staying at the experimental stage [12–15].

In summary, the existing work faces the following main problems:

• The quality and applicability of existing datasets are limited, resulting in insufficient general-
ization capability of facial recognition algorithms.

• Multi-face expression recognition algorithms mostly adopt multi-stage processing, which is
complex in workflow. End-to-end solutions are not mature enough and the recognition effi-
ciency and real-time performance need to be improved.

• The application effects in actual scenarios are poor, lacking combination with practical appli-
cations in teaching effect assessment.

Therefore, we propose an end-to-end multi-face expression recognition algorithm model for
smart classrooms (E2E-MFERC), achieving end-to-end multi-face expression detection (MFED). We
constructed a multi-face expression dataset from real classroom scenarios to support model research,
and applied the model to smart classroom group emotion assessment, providing design references for
classroom effect analysis evaluation metrics.

More specifically, the main contributions of our work are summarized as follows:

• We constructed a multi-face expression dataset in real classrooms: MFED, containing 2,385
images and a total of 18,712 expression labels, collected from smart classrooms. The dataset was
accurately annotated and split using the hold-out method. MFED provided high-quality and
highly targeted datasets for algorithm research. We also provided the commonly used VOC and
TXT object detection annotation format labels, as well as labels in face rectangle segmentation
annotation format, which can be used by related research on multi-face expression recognition,
face detection, etc.

• We proposed an end-to-end multi-face expression recognition algorithm model for smart
classrooms: E2E-MFERC. We used RepVGGBlock, SPD-Conv and C2f_Attention modules to
form the backbone of E2E-MFERC; C2f_Attention is improved from the C2f module; AFPN
feature fusion technology is combined with RepVGGBlock in the neck for representation
enhancement; the output head size is scaled down. Through module optimization and ingenious
combination, the advantages of each part are leveraged, making the algorithm model fast,
efficient, high-performing, and easy to deploy. It realizes an efficient end-to-end multi-face
expression detection solution, improving recognition efficiency and real-time performance.

• We applied the model to smart classroom group emotion assessment scenarios, used E2E-
MFERC for multi-face expression recognition, designed a group emotion assessment scheme
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based on multi-face expression recognition results, and provided calculation methods of eval-
uation metrics for classroom effect analysis, further demonstrating the practical value of the
model.

2 Related Work
2.1 Facial Expression Recognition Techniques

Our research is based on facial expression recognition. Facial expression recognition techniques
have evolved from traditional machine learning methods to deep learning methods. Earlier methods
used manual feature extraction and classifiers for facial expression recognition, such as Lyons et al. [16]
proposed a facial expression classification method based on tagged elastic graph matching, 2D Gabor
wavelet representation and linear discriminant analysis for expression classification. Shan et al. [2]
studied facial expression recognition based on local binary patterns (LBP). These early methods all
had problems like low accuracy and poor robustness. With the rise of deep learning, facial expression
recognition techniques have made qualitative leaps. Deep convolutional neural networks, recurrent
neural networks and others have shown powerful capabilities in facial expression feature learning
and classification tasks. For example, Zhang et al. [4] used a dual-layer recurrent neural network
(RNN) model to provide an effective way to utilize the spatial and temporal correlations of input
signals for emotion recognition. Khorrami et al. [17] demonstrated that convolutional neural networks
(CNN) can achieve strong performance in facial expression recognition tasks. However, the effects
and performance of facial expression recognition were poor, unable to meet higher requirements. By
exploring combinations of neural networks with long short-term memory (LSTM), attention mecha-
nisms, etc., to handle impacts from variations in image angles, lighting, and more, the performance of
facial expression recognition has been improved. For instance, Liu et al. [6] proposed the AU-aware
deep networks (AUDN) modeled with AU attention modules to guide the network to learn subtle
facial changes. Jaiswal et al. [7] used a combination of convolutional and bidirectional long short-term
memory neural networks in a deep learning way to jointly learn the shape, appearance and dynamics
of facial expression features. Meanwhile, facial expression recognition tasks have also expanded from
basic expression recognition to micro-expression and complex expression recognition. For example,
Liu et al. [18] designed a multi-stream convolutional neural network (MSCNN) for micro-expression
recognition, using eulerian video magnification (EVM) and optical flow to amplify and visualize the
subtle motion changes in micro-expressions, and extracting masks from optical flow images. However,
these methods have simple network structures and poor performance on complex tasks, and the facial
expression datasets used are small in scale, resulting in insufficient model generalization capability.
In recent years, researchers have also tried introducing new technologies like self-supervised learning,
keypoint labeling, feature fusion, etc., into facial expression recognition, in order to alleviate data
dependency and improve overall performance. Taherkhani et al. [19] trained convolutional neural
networks in a semi-supervised manner for classification tasks; Haghpanah et al. [20] realized real-time
facial expression recognition based on facial keypoints combined with neural networks. Hu et al. [21]
extracted features from facial expression images using deep separable convolutional modules, fused the
features to expand receptive fields, and obtained richer facial feature information. In summary, driven
by the advancement of deep learning, facial expression recognition techniques are developing towards
more accurate, comprehensive and intelligent directions, laying an important foundation for building
intelligent teaching environments. However, current techniques focus mainly on single-person facial
expression recognition in controlled environments. How to achieve accurate multi-face expression
analysis for complex application scenarios remains a research emphasis.
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2.2 Multi-Face Expression Recognition

Multi-face expression recognition is an important requirement for smart classroom scenarios.
Compared with single-face expression recognition, multi-face has difficulties such as expression
variations, occlusions, high synchronization requirements, performance demands, etc. Most multi-
face expression recognition techniques adopt a multi-stage processing approach, first performing ace
detection and localization, then extracting expression features for each face, and finally achieving
expression classification. For example, Jung et al. [22] adopted an ensemble method, first conducting
face detection and alignment, then classifying expressions; Li et al. [23] first performed face detection
and keypoint extraction, followed by expression classification; In a similar face mask detection
study, Kareem et al. [24] effectively applied a sequence model of Haar cascade classifiers to the
construction of a face detector, which was used to identify the presence of face masks on faces
based on face detection, and applied it to reduce the risk of COVID-19 transmission. Such methods
have relatively complex processing flows and lower robustness, and accumulated detection errors also
affect recognition results. Currently, some single-stage methods achieve facial expression recognition
through multi-module fusion, focusing on feature expression, and introducing attention mechanisms
or using contrastive learning methods. For example, Zhao et al. [25] proposed the global multi-scale
local attention network. This network consists of three important components: A feature extractor, a
multi-scale module, and a local attention module for facial expression recognition. Chen et al. [26]
proposed a feature fusion residual attention network that integrates global and local expressive
features through a feature fusion module and establishes residual links between the input and output.
Xia et al. [27] proposed a three-level hierarchical structure based on Transformer, which combines
multi-scale spatio-temporal aggregation for dynamic facial expression recognition. These methods
improve the overall efficiency of the model. However, overall, multi-face expression recognition still
faces problems such as insufficient training data and occlusion interference. Its accuracy and efficiency
need to be improved. There are still many challenges to achieve truly adaptive, end-to-end, and efficient
multi-face expression recognition in complex environments.

2.3 Multi-Face Expression Recognition for Smart Classrooms

For the complex classroom environment, researchers have proposed applicable multi-face expres-
sion recognition methods. For example, Bie et al. [28] improved YOLOv5 based on feature enhance-
ment ideas, effectively extracted and fused features, and applied it to classroom teaching scenarios to
recognize students’ facial expressions. Trabelsi et al. [29] proposed an improved multi-head attention-
based facial expression recognition model to identify students’ expressions in the classroom. Many
researchers focused on data augmentation and the combination of multi-source heterogeneous
information, fusing multi-modal information such as audio, text, and body gestures for emotion
understanding. And evaluate the teaching effect of smart classrooms from multiple aspects such as
student behavior analysis, teaching quality monitoring, and student emotional state, to provide a
basis for educational decision-making. For instance, Palash et al. [30] proposed an interpretable multi-
modal emotion recognizer with situational knowledge, using visual information for human emotion
recognition and explanation. Gupta et al. [31] evaluated three modalities based on deep learning
methods from real-time video streams, including facial expressions, blink count, and head motion,
to predict student status. Chen et al. [32] proposed a class expression recognition model based on
spatio-temporal residual attention network, and used deep convolutional neural networks to capture
student behaviors, combining student expressions and behaviors to intelligently evaluate classroom
status. These methods have preliminarily improved the accuracy of facial expression recognition
in classroom scenarios, and have demonstrated the possibility and urgency of in-depth integration
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of facial expression recognition and analysis technologies with smart classrooms. However, the
introduction of more information undoubtedly reduces efficiency. In addition, due to the changing
factors such as individual differences and scene changes in the classroom, the effects and real-time
performance of multi-face expression recognition for smart classrooms need to be improved. At the
same time, the application effects in actual scenes are poor due to the limitations of dataset specificity.

Today, the rapid development of deep learning has enabled algorithm models such as Single Shot
MultiBox Detector (SSD) [33], Faster-RCNN (FR-CNN) [34], Region-based Fully Convolutional
Networks (R-FCN) [35], You Only Look Once (YOLO) [36] and others to achieve fruitful results
in object detection tasks. In particular, the YOLO algorithm, owing to its single-shot regression
characteristic, has a series of advantages such as high speed, good performance, and simple network
structure. In recent years, it has received increasing attention and research, and more and more
practitioners have gradually applied it to fine-grained object detection tasks, which also inspired our
algorithm design.

3 Dataset Construction

Most publicly available facial expression datasets are single-face datasets, while attempts to syn-
thesize multi-face datasets lack details and authenticity, and cannot fully support algorithm research
for smart classroom scenarios. Therefore, we constructed a high-quality multi-face expression dataset
in real classrooms: MFED, to promote research on multi-face expression recognition techniques for
smart classroom scenarios. In the process of constructing the dataset, we have fully considered and
designed data collection, image preprocessing, and expression label annotation to ensure the quality
of the data to the greatest extent possible and meet our needs for features such as multiple faces, real
scenes, diversity, high quality, and easy promotion in the dataset.

3.1 Data Collection

Considering the specificity and practicality of the dataset, this study chose university students in
real smart classrooms as data collection objects, collecting 2,721 images and screening out 2,385 valid
images with 18,172 facial expression labels. The collection involved 81 university students, divided
into 10 groups of 6–10 people, and crossover replacement between groups was carried out on this
basis, forming 34 group sessions. Student positions were also alternated within groups, corresponding
expressions were provided in response to different classroom content and evaluation feedback needs,
effectively increasing data diversity and ensuring reliability. In selecting collection objects, we fully
considered factors like student gender, nation, age, glasses-wearing, hat-wearing, facial occlusion, etc.,
to maximize coverage of the dataset. For the collection environment, we chose 5 real smart classrooms
as collection scenarios, and considered different time periods, complex lighting conditions, positions,
angles, atmospheres, classroom content, etc., to retain the authentic classroom environment and
process to the greatest extent. The whole dataset collection lasted 3 weeks, using intelligent classroom
cameras, cameras, webcams and other devices for image capture.

3.2 Image Processing

Out of the originally collected 2,721 images, we performed filtering to exclude low-quality images,
such as those that were blurry, heavily occluded, or had high content redundancy. As a result, we
retained 2,385 high-quality and valid images. To ensure consistency, these images were uniformly
resized to a width of 3,024 pixels, serving as input data for multi-face expression analysis. Fig. 1 shows
partial images in the dataset.
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Figure 1: Sample images of our MFED dataset

3.3 Expression Label Annotation

After image data preprocessing, we manually annotated all images. To meet the end-to-end
multi-face expression recognition requirement, we simultaneously annotated the location coordinates
and expression categories for multiple faces in each image. The annotation format for a single facial
expression is: (category_label,x,y,w,h), where category_label is the numeric code corresponding to the
expression category. In the basic class data, the 7 expressions of happy, sad, surprise, natural, disgust,
fear, angry correspond to numeric codes 0–6, respectively; in the classroom evaluation data, the 5
expressions of happy, sad, alert, natural, averse correspond to numeric codes 0–4, respectively. x and
y are the normalized horizontal and vertical coordinate values of the center point of the annotated
object. w and h are the normalized width and height values of the bounding box of the annotated
object. The calculation methods for each parameter are shown in Eq. (1), (X1,Y1) and (X2,Y2) are
the coordinates of the top-left and bottom-right corners of the bounding box of the annotated object.
W and H are the width and height of the original image, respectively. The annotation data of multiple
facial expressions in each image are saved as multi-face expression labels in TXT files corresponding
to the images, with one annotation per line.

x = X1 + X2

2W
y = Y1 + Y2

2H
w = X2 − X1

W
h = Y2 − Y1

H
(1)

For expression category annotation, first according to mainstream research, we included 7
basic expressions: Happy, sad, surprise, natural, disgust, fear, angry, as the foundation categories.
Meanwhile, to meet research needs, we also used 5 expression categories commonly seen in classroom
scenarios that have important impacts on classroom evaluation: Happy, sad, alert, natural, averse,
to process the annotations. These 5 basic expression categories, on the one hand, can well cover the
main expression categories of students in the classroom, and balance positive and negative expressions,
while also considering intermediate states, which effectively reflect students’ emotional states in the
classroom: “Happy”, “Sad”, “Alert” are mainly facial expressions in response to special teaching



1112 CMC, 2024, vol.79, no.1

scenarios, content and forms; “Natural” is an ordinary neutral expression state, while “Averse” is a
negative expression state. By analyzing the matching degree between expression states and teaching
scenarios, content and forms, classroom effects can be effectively analyzed. On the other hand, these 5
expressions have clear distinctions, which facilitates model recognition, and the annotation difficulty is
not high, which benefits application promotion. Analyzing student emotions and evaluating classroom
effects based on these 5 expressions, compared to simple expressions like “Attentive”and “Distracted”,
can more comprehensively and profoundly analyze students’ real emotional states, which essentially
interprets “Attentive” or “Distracted” states. And these expressions are relatively hard to fake, which
facilitates accurate recognition. These indicators can also more accurately and flexibly adapt to
classroom effect analysis under different teaching scenarios, content and forms.

To ensure annotation quality, preliminary annotations were first conducted by the collection
subjects on their own expressions. On this basis, 3 personnel who were not collection subjects
conducted secondary independent labeling on all images. For labels with major disputes, the final labels
were determined through cross-checking with the subjects themselves and comprehensive evaluation
with other subjects in the same image. Finally, the average of the 3 annotation results was taken as the
standard label for the sample, provided in both TXT and VOC label formats. Statistically, the 2,385
images contain a total of 18,712 face samples. The distribution of annotated instance quantities is
shown in Fig. 2. The distribution of the center coordinates and bounding box sizes of the annotated
objects is shown in Fig. 3. Subfigure (a) shows the distribution of the x-axis and y-axis values of the
center coordinate of the annotated object, while subgraph (b) shows the width and height distribution
of the bounding box of the annotated object. It can be seen that the distribution of annotated object
positions is uniform, the sizes are reasonable, mainly small objects, conforming to reality.

(a) Basic expression classes (b) Classroom evaluation expression classes
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Figure 2: Bar chart of annotated instance quantities in MFED

4 Method
4.1 Framework

Currently, most multi-stage methods first introduce face detection or segmentation models to
extract multi-face and convert them into single face, and then use expression recognition models for
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classification and recognition. The use of multiple steps and models involves multiple encode-decode
processes and relies on multiple loss constraints to obtain high-quality prediction results, which limits
the improvement of algorithm efficiency and generalization capability, and cannot meet the real-time
needs in actual application scenarios. In order to achieve end-to-end multi-face expression recognition
and solve the above problems, we need to find a way to transform the complex multi-step face detection
and expression classification problem adopted in a large amount of previous research into one step.
For this purpose, inspired by the model framework design of the YOLO algorithm, we propose an
end-to-end multi-face expression recognition algorithm model for smart classrooms: E2E-MFERC.
It treats different facial expressions on the same image as detection objects, and simultaneously
performs location, size detection and classification, converting multiple encode-decode processes into
one solution. This allows greater room for improvement in both algorithm efficiency and accuracy.

Figure 3: Distribution graphs of center coordinates and bounding box sizes of annotated objects in
MFED

The overall framework of E2E-MFERC is shown in Fig. 4. Considering the characteristics of
facial expression objects like small feature differences, high fine-grained recognition requirements,
low obviousness of regional differences, category overlaps, and requirements like high efficiency,
lightweight, and multiple demands on recognition effects in actual application of the algorithm. Our
backbone structure adopts RepVGGBlock, SPD-ConvBlock and the improved C2f_Attention module
to leverage the advantages of each part, expand the receptive field, reduce model parameters, while
enhancing feature representation capability, making the model highly performant, with good recogni-
tion effects and high deployment efficiency. C2f_Attention is optimized from the Cross Stage Partial
Network Fusion (C2f) module by introducing Polarized Self-Attention mechanisms. The application
of attention mechanisms enables the model to focus on features and subsets more important for the
multi-face expression recognition task. To further enhance the model’s representation capability and
recognition performance and strengthen detection of small objects, we adopt AFPN feature fusion
technology in the model neck structure, introduce RepVGGBlock for representation enhancement,
and scale down the output head size.
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Figure 4: Framework of E2E-MFERC

E2E-MFERC uses the backbone network structure to extract features from preprocessed images
or videos and obtain feature maps. Feature maps of three different scales are selected from the
feature maps, and feature fusion is performed through the progressive feature pyramid network
structure in the neck part to obtain three new feature maps. The new feature maps are input into the
decoupled prediction branches in the head part to obtain the predicted boxes and confidences. Non-
maximum suppression is performed on the predicted boxes to obtain multi-face expression recognition
results. Finally, we calculate the group emotion indices based on the multi-face expression recognition
results to obtain the classroom effect evaluation metrics. Next, we will elaborate the construction
characteristics and advantages of each structure of E2E-MFERC in detail.

4.2 Representation Enhancement

In order to meet the important requirements of speed and accuracy for multi-face expression
recognition oriented to smart classrooms, we introduced RepVGG Block and SPD-Conv modules
in the model to enhance representational capability and improve the overall performance of E2E-
MFERC. RepVGG is a lightweight network structure, whose innovation lies in drawing on the idea of
residual neural network’s (ResNet) residual structure design [37]. We use RepVGGBlock in both the
backbone and neck of the model. During training, a modular structure with branched paths and final
element-wise addition is used. This residual structure can perform high-quality feature extraction.
During inference, it is converted into an equivalent convolution to significantly reduce the model’s
computational cost and memory consumption. This ensures accuracy while effectively improving
algorithm efficiency. The use of this module provides more room to expand network width and depth
under the same computational cost, allowing greater space to improve network performance. The
module structure of RepVGGBlock and the conversion from multi-path models during training to
single-path models during inference is illustrated in Fig. 5. 1 × 1 convolution layers are converted into
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3 × 3 convolution layers by setting the parameters to zero; identity layers are first converted into 1
× 1 convolution layers by setting the convolution kernel parameters of the current channel to 1 and
other channels to 0, then further converted into 3 × 3 convolution layers; finally, merging several 3 ×
3 convolution layers can convert the multi-branched into equivalent convolutions.

Figure 5: Structure and path conversion of RepVGGBlock

When combining the convolution layer and batch normalization layer, the convolution formula
is:

Conv(x) = Q ∗ x + b (2)

where Q is the weight, and b is the bias.

The batch normalization layer formula is:

BN(x) = γ × x − mean√
σ 2 + ε

+ β (3)

where γ and β are learning parameters, mean is the mean of the batch sample data, σ is the variance,
ε is an extremely small but non-zero number.

Substituting the convolution layer result into the BN(x) result is:

BN(Conv(x)) = γ × Q ∗ x + b − mean√
σ 2 + ε

+ β (4)

Let BN(Conv(x)) = y, Qfused, bfused be as, respectively:

Qfused = γ × Q ∗ x√
σ 2 + ε

(5)



1116 CMC, 2024, vol.79, no.1

bfused = γ × (b − mean)√
σ 2 + ε

+ β (6)

The final result can be obtained with:

y = Qfused ∗ x + bfused (7)

Similar to YOLO, most algorithms perform downsampling operations like strided convolutions
or pooling with increased strides, which can cause problems like loss of fine-grained information and
inefficient feature representation learning, affecting algorithm performance. We introduce the SPD-
Conv module, which consists of a spatial-to-depth (SPD) layer and a non-strided convolution (Conv)
layer [38], enhancing the model’s perception capability and feature representation capability to better
solve these problems. This module introduces a spatial depth operation, whose mapping is:

f0,0 = X [0 : S : scale, 0 : S : scale] , f1,0 = X [1 : S : scale, 0 : S : scale] , . . . ,

fscale−1,0 = X [scale − 1: S : scale, 0 : S : scale] ;

f0,1 = X [0 : S : scale, 1 : S : scale] , f1,1, . . . ,

fscale−1,1 = X [scale − 1: S : scale, 1 : S : scale] ;

. . .

f0,scale−1 = X [0 : S : scale, scale − 1: S : scale] , f1,scale−1, . . . ,

fscale−1,scale−1 = X [scale − 1: S : scale, scale − 1: S : scale]. (8)

In our backbone network, RepVGGBlock is ingeniously combined with SPD-Conv to replace
commonly used strided convolutions or pooling, avoiding the negative impacts of losing fine-grained
information and inefficient feature representation learning. By introducing more extensive contextual
information, the convolution kernels can more comprehensively capture the relationships between
features, improving the model’s perception capability and feature representation capability, thereby
enhancing the extraction and understanding of subtle features. This adapts to the requirements of
facial expression objects having small feature differences and high fine-grained recognition needs.

In order to effectively avoid image distortion caused by cropping and scaling operations on image
regions, and solve the problem of convolutional neural networks extracting graph-related redundant
features, the model adopts the spatial pyramid pooling—fast (SPPF) module. The structure of this
module is shown in Fig. 6. After passing through a ConvModule, three MaxPooling operations are
performed in parallel. The feature map without MaxPooling and the feature map obtained after
each additional MaxPooling are concatenated, and finally output after passing through another
ConvModule. It should be noted that our algorithm has actually focused on lightweight design, so
we use this module when the algorithm model is relatively large.

4.3 C2f Optimization

The C2f module structure is shown in Fig. 7. First pass through a ConvModule, the structure
of ConvModule is shown in Fig. 4, consisting of a convolution layer + Batch Normalization layer +
SiLU activation function; then use the chunk function to evenly split the output into two vectors; input
the latter half to the Bottleneck Block, which contains n Bottlenecks, concatenate the output of each
Bottleneck to a list, so the concatenated output channel number is 0.5 × (n + 2); then output through a
ConvModule, so the output is h×w×c_out. Compared with traditional detection algorithms, C2f has
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significant advantages in both detection accuracy and speed, which plays a vital role in the construction
of our algorithm model.

Figure 6: Structure of SPPF

Figure 7: Structure of the C2f module

Attention mechanisms originate from research on human vision. In cognitive science, due to bot-
tlenecks in information processing, humans selectively focus on part of the available information while
ignoring other visible information. To reasonably utilize the limited visual information processing
resources, humans need to select specific parts in the visual area and concentrate attention on them. For
example, when performing facial expression recognition, humans usually only pay close attention to
the relevant facial information. Considering the important requirement of key information extraction
for multi-face expression recognition in complex actual scenarios, the introduction of attention
mechanisms through weight allocation can help algorithm models selectively focus on parameters that
have greater impacts on final results like humans, improving the overall performance of the algorithm.
After comparing several attention mechanisms suitable for algorithm requirements, we introduced the
Polarized Self-Attention (PSA) module in the C2f module for optimization. PSA is a self-attention
mechanism, whose main feature is decomposing the attention vector into two subspaces, highlighting
pixel classifications from the channel perspective, while detecting pixel positions belonging to the same
semantics as much as possible from the spatial perspective. It uses an orthogonal method to make the
information more complete without increasing computational complexity, reducing computational
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and optimization difficulties, improving model training efficiency, and is highly compatible with our
algorithm requirements. The detailed structure of this module is shown in Fig. 8. Its characteristic
is completely folding features in one direction while maintaining high resolution in its orthogonal
direction.

Figure 8: Structure of polarized self-attention block

The calculation method for the channel-only branch is:

Ach(X) = FSG

[
Wz|ϑ1

(σ1(Wv(X)) × FSM(σ2(Wq(X))))
]

(9)

The calculation method for the spatial-only branch is:

Asp(X) = FSG

[
σ3(FSM(σ1(FGP(Wq(X)))) × σ2(Wv(X)))

]
(10)

W q, W k, W v are 1×1 convolution layers, ϑ1 is intermediate parameters for channel convolution.
σ1, σ2, σ3 are three reconstruction operations. FSM is the softmax operator as:

FSM(X) =
Np∑
j=1

exj∑Np
m=1 exm

xj (11)

FGP is global pooling operation:

FGP(X) = 1
H × W

i=1∑
H

j=1∑
W

X( : , i, j) (12)

The output of the channel branch Zch is:

Zch = Ach(X) �ch X ∈ RC×H×W (13)
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The output of the spatial branch Zsp is:

Zsp = Asp(X) �sp X ∈ RC×H×W (14)

We adopt a parallel manner to fuse and output the two branches: PSAP(X) = Zch + Zsp.

The C2f_Attention module structure optimized with attention mechanism is shown in Fig. 9.
Thanks to two features of PSA module, one is Polarized filtering: Keeping high internal resolution
in both channel and spatial attention computation while completely collapsing input tensors along
their counterpart dimensions, the other is composing non-linearity that directly fits the output
distribution of typical fine-grained regression, it effectively enhances the algorithm’s ability to extract
key information. It has stronger representation capabilities, which significantly facilitates solving
several prominent problems in multi-face expression recognition.

Figure 9: Structure of the C2f_Attention module

Table 1 shows the “add” and “n” parameters corresponding to the 4 C2f_Attention modules in
E2E-MFERC.

Table 1: C2f_Attention module parameters

ID Layers Out channel add n

1 3 128 ∗ W TRUE 3 ∗ D
2 6 256 ∗ W TRUE 6 ∗ D
3 9 512 ∗ W TRUE 6 ∗ D
4 12 512 ∗ W ∗ R TRUE 3 ∗ D
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4.4 Feature Fusion

In the mainstream YOLO series algorithm models, the common way of feature fusion is upsam-
pling followed by concatenation with adjacent level features. This can cause problems like feature
information degradation. For general object detection, the differences between target categories are
large, so the negative impacts are not obvious. However, for multi-face expression recognition, the
differences between expression objects we want to recognize are small, requiring high-quality feature
information passing. Therefore, we adopt the Asymptotic Feature Pyramid Network (AFPN) struc-
ture [39] for feature fusion. It first fuses adjacent low-level features, then progressively incorporates
high-level features during fusion, rather than crudely directly concatenating and fusing non-adjacent
level features with large differences, aiming to maximize high-quality feature information passing.
Meanwhile, this method uses the ASFF structure to allocate different spatial weights to non-same-level
features during multi-level fusion, increasing the importance of key levels and reducing contradictory
information. As shown in Fig. 10, it illustrates 2-level and 3-level feature fusion, respectively.

Figure 10: Structure of ASFF

In E2E-MFERC, we first fuse the adjacent low-level features from layers 6 and 9 outputs of the
backbone network and after downsampling by RepVGGBlock, using the ASFF-2 module. Then the
high-level features from layer 13 output and after downsampling by RepVGGBlock are incorporated
through ASFF-3 for fusion. In the multi-face expression recognition scenario for classrooms, facial
expression objects are generally small as recognition targets. To improve the detection effects of the
algorithm model on small objects, we adjusted the output head size. Referring to the YOLO design,
we used RepVGGBlock to control the output head size instead, discarded the large object detection
output head sized 20 × 20, and added the small object detection output head sized 160 × 160, which
effectively improved the overall performance of the algorithm model.

4.5 Loss Function

For the head of E2E-MFERC, we adopted a decoupled head design during prediction, whose
structure is shown in the head part of Fig. 4. The classification and detection heads are separated, and
the idea of distributional focal loss (DFL) is also used, so the number of channels in the regression head
becomes 4 ∗ reg_max, to meet the needs of our algorithm to value both classification and detection.
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For the loss function, we use varifocal loss (VFL) in the classification head, calculated as:

VFL(p, q) =
{

−q(q log(p) + (1 − q) log(1 − p) q > 0
−αpγ log(1 − p) q = 0

(15)

where q is the label, q = 0 for negative samples. It has the characteristics of focal loss, and can effectively
focus the network on high-quality samples.

The regression loss function used in the detection head includes DFL and Focal-efficient inter-
section over union (Focal-EIOU) [40] which performs better for the E2E-MFERC algorithm. Among
them, DFL mainly models the box position as a general distribution, allowing the network to quickly
focus on the distribution of positions close to the target position. It is calculated as:

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y − yi) log(Si+1) (16)

Which means optimizing the probabilities of the closest left and right positions to the label y in the form
of cross-entropy, thereby allowing the network to quickly focus on the distribution of areas adjacent
to the target position.

For our algorithm improvement, we also compared multiple different mainstream IOU loss
functions, and finally chose Focal-EIOU loss with better performance. This loss function considers
overlap loss, center distance loss, width and height loss, resulting in faster convergence.The EIOU
Loss is calculated as:

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU + ρ2(b, bgt)

c2
+ ρ2(w, wgt)

c2
w

+ ρ2(h, hgt)

c2
h

(17)

where Cw and Ch are the width and height of the smallest enclosing box covering the two boxes.

Considering the problem of imbalanced training samples also exists in BBox regression, Focal-
EIOU loss separates high-quality anchors and low-quality anchors from the perspective of gradients.
It is calculated as:

LFocal-EIOU = IOU γ LEIOU (18)

where IOU = |A∩B|/|A∪B|, γ is a parameter controlling the degree of outlier suppression. As can be
seen from the formula, the higher the IOU, the greater the loss, which is equivalent to a weighting
effect and helps improve regression accuracy.

4.6 Model Application

In order to analyze classroom effects, we apply the model to group emotion evaluation scenarios
oriented to smart classrooms, and design classroom effect evaluation index calculation methods as
parameters to measure teaching outcomes. First, we use E2E-MFERC to recognize students’ multi-
face expressions. Input sources can be images, videos, camera real-time data, etc. Fig. 11 shows the
results of multi-face expression recognition using E2E-MFERC.

When recognizing students’ multi-face expressions, the program saves the recognition results
in CSV file format for more intuitive analysis of group emotions and to provide source data for
calculating classroom effect evaluation indices. Table 2 shows a schematic of multi-face expression
detection results per 1 s.
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Figure 11: Multi-face expression recognition results

Table 2: Multi-face expression recognition results

Id Happy Sad Alert Natural Averse Sum

1 2 1 2 4 0 9
2 1 1 3 4 0 9
3 2 1 3 2 1 9
... ... ... ... ... ... ...
87 4 0 0 4 1 9
89 5 0 2 2 0 9
90 5 0 1 3 0 9
SUM 260 121 101 314 8 804

We designed index calculation methods and procedures for classroom effect evaluation based on
group emotion analysis, using the multi-face expression recognition results by the model as input data.
C is the numeric encoding corresponding to the expression category: Happy, sad, alert, neutral, averse
correspond to numeric codes 0–4, respectively; the expected proportion parameters P for emotions
corresponding to customized classroom content, PC is the expected proportion for each expression,
this parameter reflects whether the feedback to the classroom content meets expectations, rather than
simply categorizing expressions as positive or negative; NUM is the total number of expressions,
NUMC is the number for corresponding category; set an allowable deviation factor D, DC is generally
a small number in (0, 0.05], with a default value of 0.05, taking effect when PC is 0, the product of
expression number and it indicates the allowable deviation, also preventing zero denominators.

A is the ratio of actual percentage to set percentage for expression quantities, calculated as:

AC = NUMC

NUM(PC + DC)
(19)

Set expression penalty parameters M, these parameters mainly evaluate AC, with default values
set as M0 = ∞, M1 = 2, M2 = 2, M3 = 2, M4 = ∞, when AC exceeds the penalty parameter MC for
that category, the scoring direction or weight intensity will be changed.
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G is the weight parameter using a piecewise function to define the scoring intensity and direction
more closely to reality, calculated as:

GC =

⎧⎪⎨
⎪⎩

(AC)
2 0 < αC ≤ 1

(AC)
1
3 1 < αC < MC

− (AC)
1
3 αC ≥ MC

(20)

S is the final calculated total score, calculated as:

S =
∑3

C=0 GCNUMC − G4NUM4

NUM
(21)

The final score can be used as a parameter for horizontal comparison between different teachers,
and for vertical comparison and evaluation of classroom effects over time based on custom scoring
levels. Taking the results NUM = [260, 121, 101, 314, 8] shown in Table 2 as input, using default penalty
parameters M, and setting different expected proportion parameters P for emotions, the calculation
results of index S are demonstrated in Table 3. From the results, it can be seen that the closer the
overall classroom emotion proportion is to the set expected proportion parameters, the more positive
emotions, the less negative emotions, the better the classroom effect, and the larger the index parameter
value. This verifies the applicability of our index calculation design.

Table 3: Calculation results of index S with different emotion expected proportion parameters P

ID P DC G S

1 [0.32, 0.15, 0.13, 0.39, 0.01] 0.02 [1.00, 1.00, 0.93, 1.00, 0.99] 0.97
2 [0.50, 0.15, 0.10, 0.25, 0.00] [0.41, 1.00, 1.07, 1.16, 0.24] 0.87
3 [0.40, 0.05, 0.15, 0.40, 0.00] [0.65, −1.44, 0.70, 0.95, 0.24] 0.45
4 [0.50, 0.05, 0.05, 0.4, 0.00] [0.41, −1.44, −1.34, 0.95, 0.25] 0.12

5 Experimental Results and Discussion
5.1 Dataset and Preprocessing

In experiment, we use our self-constructed MFED as the dataset. MFED contains 2,385 images
and 18,712 facial expression samples. The expression categories adopt two sets of classification criteria
as described previously, and each sample is simultaneously annotated with the precise face rectangle
location and size. To facilitate the research of this model and improve the specificity and applicability
of the dataset, we adopted the hold-out method to split the dataset into training and validation subsets
with a ratio of 8:2.

The allocation of the dataset into basic expressions and classroom scenario expressions categories
is shown in Figs. 12 and 13, respectively, with specific data as shown in Table 4. It can be seen that
our constructed dataset has sufficient number of images and abundant facial expression samples; the
category distribution conforms to the real environment in actual classrooms, and the number of faces
contained in each image is also adequate. These ensure sufficient scale and diversity of the dataset,
improve its applicability, and provide a solid foundation for algorithm research.
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Figure 12: Basic expression category allocation in dataset
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Figure 13: Classroom expression category allocation in dataset

Table 4: Dataset statistical characteristics and allocation details

Parameter Training set Validation set Statistical value

Number of images 1908 477 2385
Number of emoticon samples 14995 3717 18712
Average number of faces 7.9 7.8 7.8
Expression category 7 for base/5 for class

Category_label-
base

Happy 1970 556 2526
Sad 2589 673 3262
Surprise 1702 405 2107
Natural 3887 847 4734
Disgust 2151 566 2717
Fear 1102 290 1392
Angry 1594 380 1974
Happy 1970 556 2526

Category_label- Sad 2589 673 3262
class Alert 2804 695 3499

(Continued)
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Table 4 (continued)

Parameter Training set Validation set Statistical value

Natural 3887 847 4734
Averse 3745 946 4691

5.2 Implementation Details

The experimental operating system is Windows, the CPU is Intel i7-10700F 2.90 GHz, the memory
is 16 G, and the GPU is NVIDIA GeForce RTX 2060 SUPER. The Python version is 3.9.13, and the
deep learning framework used is PyTorch 1.10.0. In this experiment, the input image size is 1280 ∗
1280. The initial batch size is set to 8, and later adjusted accordingly based on GPU performance to
keep the batch size the same under comparable model scales. The AdamW optimizer with an initial
learning rate lr = 1e-3 is used. The number of iterations is 200, the number of waits is 40, that is, the
training stops when there are no better training metrics in 40 consecutive iterations.

5.3 Evaluation Metrics

To validate the performance of the algorithm, we conducted a series of experiments using the
trained E2E-MFERC model on the validation set. In the experiments, we use model size, number
of parameters, model computations (FLOPs), single image (per frame) detection time (ms), mean
average precision mAP, and multi-class metric F1-score for comprehensive evaluation. The calculation
methods for each metric are as follows:

precision = TP
TP + FP

(22)

recall = TP
TP + FN

(23)

AP =
∫ recall

0

precision(recall)d(recall) (24)

mAP = 1
C

C∑
i=1

AP (25)

F1 − score = 2 × precision × recall
precision + recall

(26)

where TP, FP, TN, and FN represent true positives, false positives, true negatives, and false negatives,
respectively. precision represents the detection precision for the current class, recall represents recall
rate, C represents the number of detected expression categories.

5.4 Results Analysis

5.4.1 Comparison Experiment Results

E2E-MFERC architecture design was inspired by the YOLO series of algorithms. We focused on
in-depth comparison with v5 and v8 versions of YOLO series which have the highest research popu-
larity and current optimal performance, respectively, including different scales of the corresponding
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algorithms. Experiments were conducted on the MFED dataset, for both classification criteria. Note
that E2E-MFERC is committed to providing lightweight, high-performance solutions, so the provided
model scales are Default and Plus, with number of parameters comparable to YOLO’s “n” and “s”
scales respectively. E2E-MFERC’s “m”, “l” and “x” scales are only for experimental comparison
purposes, given based on YOLO. The experimental results are shown in Table 5.

Table 5: Comparison experimental results between E2E-MFERC and YOLO with different scales

ID Model Parameters
(M)

FLOPs
(G)

Model size
(M)

Class (5) Base (7)

mAP (%) F1-score mAP (%) F1-score

1 YOLOv5n 2.39 7.8 5.3 76.8 0.71 64.7 0.62
2 YOLOv8n 2.87 8.2 6.3 81.1 0.73 70.1 0.65
3 E2E-MFERC-Default (ours) 2.89 7.9 6.3 83.6 0.77 72.5 0.69
4 YOLOv5s 8.69 24.2 18.5 79.6 0.73 68.5 0.64
5 YOLOv8s 10.62 28.7 21.5 83.3 0.76 71.7 0.68
6 E2E-MFERC-Plus (ours) 10.51 27.9 23.1 84.5 0.77 73.8 0.69
7 YOLOv5m 23.89 64.6 50.5 81.4 0.75 70.5 0.66
8 YOLOv8m 24.66 79.1 49.7 83.8 0.77 73.4 0.68
9 E2E-MFERCm (Exp only) 24.41 78.7 51.6 83.8 0.78 73.9 0.69
10 YOLOv5l 50.68 135.6 106.8 82.3 0.76 71.5 0.66
11 YOLOv8l 41.61 165.4 87.6 82.3 0.76 73.6 0.69
12 E2E-MFERCl (Exp only) 39.74 160.0 83.9 84.1 0.77 73.7 0.69
13 YOLOv5x 92.72 247.3 195.0 81.9 0.75 71.8 0.68
14 YOLOv8x 65.00 258.1 130.5 83.7 0.76 73.3 0.68
15 E2E-MFERCx (Exp only) 61.85 249.4 124.3 83.7 0.77 73.8 0.69

The experimental results show that E2E-MFERC achieved the design goals and algorithm require-
ments of balancing lightweight, high-performance, and superior effects. Overall, under comparable
model size and similar number of parameters and computations, E2E-MFERC demonstrated superior
recognition performance.

As shown in Fig. 14, the horizontal axis is number of parameters. It can be seen that E2E-
MFERC has performance advantages under comparable scales. On classroom evaluation category
data, E2E-MFERC-Default improves mAP by 6.8% and 2.5%, respectively over same-scale YOLOv5
and YOLOv8, and improves F1-score by 0.06 and 0.04, respectively; on basic category data, mAP is
improved by 7.8% and 2.4%, respectively, and F1-score is improved by 0.07 and 0.04, respectively,
showing significant algorithm performance improvement. The mAP and F1-score values of E2E-
MFERC-Plus are greater than other algorithms at all scales, and the performance improvement is still
significant at the same scale. It achieved the best results among networks of all scales, while having
far fewer parameters and computations than larger-scale other algorithms, which also verifies the
advantage of lightweight design of E2E-MFERC.

Fig. 15 shows the PR curves of YOLOv5n, YOLOv8n, E2E-MFERC-Default on MFED. The
horizontal axis is recall rate R, the vertical axis is precision P, and the curve represents the precision P
when recall rate is R. The larger the area in the lower left corner, the better the model performance on
the dataset. It can be clearly seen that the model effect of E2E-MFERC is superior to the other two.
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Figure 14: Comparison charts of experimental results for YOLOv5n, YOLOv8n, E2E-MFERC-
Default

Figure 15: PR curves of YOLOv5n, YOLOv8n, E2E-MFERC-Default on MFE

Through comparative experiments, we mainly conducted detailed comparisons between E2E-
MFERC and mainstream algorithms YOLOv5 and YOLOv8. From the experimental results, it can
be seen that under comparable conditions of number of parameters, computations, and model size,
the mAP and F1-score metrics of E2E-MFERC have obvious advantages. Under comparable mAP
and F1-score metrics, the number of parameters, computations, and model size of E2E-MFERC are
significantly less than the other two. The PR curve comparison further verifies the comprehensive
performance advantage of E2E-MFERC. Our algorithm model has achieved significant improvements
in both speed and accuracy. However, while the lightweight design philosophy brings performance
improvements, it also leads to some performance advantage decline when the model scale becomes
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larger. Therefore, balancing algorithm efficiency and accuracy, we recommend using E2E-MFERC
Default and Plus scales for actual applications.

5.4.2 Ablation Experiments

In the algorithm model design, we constructed the backbone using RepVGGBlock, SPD-Conv
and C2f_Attention modules, and used the AFPN structure in the neck for efficient feature fusion,
while optimizing the output head size for the actual smart classroom scenarios. To verify the validity
and criticality of different module designs in the algorithm, we conducted ablation experiments on
both sets of classification criteria in MFED, with results shown in Tables 6 and 7. It should be noted
that we referenced the architecture design of YOLOv8 for our algorithm design, so we chose it as the
baseline for comparison.

Table 6: Ablation experiment results of E2E-MFERC on MFED classroom evaluation category data

ID RepVGG Block SPD-Conv C2f_Attention AFPNhead- Parameters (M) FLOPs (G) Time (ms) mAP (%) F1-score

1 2.87 8.2 6.6 81.1 0.73
2 √ 3.36 6.1 6.5 81.9 0.74
3 √ √ 3.92 10.6 7.8 82.1 0.75
4 √ √ √ 4.05 10.9 9.6 82.5 0.75
5 √ √ √ √ 2.90 7.9 7.4 83.6 0.77

Table 7: Ablation experiment results of E2E-MFERC on MFED basic expression category data

ID RepVGG block SPD-Conv C2f_Attention AFPNhead- Parameters (M) FLOPs (G) Time (ms) mAP (%) F1-score

1 2.87 8.2 6 70.1 0.65
2 √ 3.36 6.1 6.1 71.0 0.67
3 √ √ 3.92 10.6 7.8 71.5 0.67
4 √ √ √ 4.05 10.9 9.6 72.1 0.68
5 √ √ √ √ 2.90 7.9 7.6 72.5 0.69

The results show that thanks to its unique branched structure and branch fusion during infer-
ence, the introduction of RepVGGBlock reduces computations while improving both mean average
precision and F1-score. The SPD-Conv module, used to compensate for the negative effects of
convolution downsampling operations with stride 2 on feature information, plays an important role
in improving recognition accuracy. C2f_Attention is an optimization based on the C2f structure. By
introducing attention mechanisms, it enhances the network’s ability to extract important features,
and promotes improvements in mAP and F1-score in experiments. The neck based on the AFPN
structure along with RepVGGBlock for adjusting the output head, not only improves algorithm
accuracy, but also significantly reduces parameters, computations and detection time, even slightly
lower than the baseline network in parameters and computations. The ingenious combination of
modules enables E2E-MFERC to achieve a higher balance of accuracy and speed. This also lays
the technical foundation for applying the algorithm to complex smart classroom environments and
performing real-time multi-face expression analysis under limited hardware conditions.
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5.4.3 Experiment Results of Different Attention Mechanisms in C2f_Attention

In order to optimize the C2f module, we investigated several currently high-performing attention
mechanisms, and screened out several that were more compatible with our research needs and data,
including CBAM [41], SimAM [42], CoTAttention [43] and Polarized Self-Attention [44], etc. Among
them, Polarized Self-Attention has sequential and parallel implementations. We introduced the above
attention mechanisms respectively into the C2f_Attention module of E2E-MFERC, and conducted
comparative experiments on the MFED dataset.

The results in Table 8 show that using the parallel implementation of Polarized Self-Attention
in the C2f_Attention module can achieve the highest mAP and F1-score, with overall optimal
performance compared to other attention mechanisms. Fig. 16 compares Epoch-mAP curves of
several schemes, with training Epoch as the horizontal axis and mAP as the vertical axis. Considering
all metrics comprehensively, the parallel Polarized Self-Attention, with its feature of computing global
and local dependencies in parallel, enhanced the ability of the C2f_Attention module to focus on and
represent key information in facial areas. Therefore, we chose the parallel Polarized Self-Attention as
the final scheme for optimizing the C2f_Attention module.

Table 8: Experiment results of different attention mechanisms (AM) in C2f_Attention

ID Method Parameters (M) GFLOPs (G) Time (ms) mAP (%) F1-score

1 C2f_CBAM 2.9 7.9 13.1 82.3 0.75
2 C2f_SimAM 2.84 7.8 7.6 83.2 0.77
3 C2f_COT 3.07 8.5 11.4 82.4 0.76
4 C2f_Polarized-

Sequential
2.89 7.9 7.5 82.6 0.76

5 C2f_Polarized-
Parallel

2.89 7.9 7.5 83.6 0.77

Figure 16: Comparison of Epochs-mAP between different attention mechanisms in C2f_Attention
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5.5 Result Demonstration

We designed a prediction program to perform recognition prediction using the trained model
on images and videos, display the prediction results in real time, and save the prediction results for
subsequent analysis. As shown in Fig. 17, it demonstrates the recognition results of models trained
under classroom evaluation and basic expression classification criteria on MFED using E2E-MFERC-
Default.

Figure 17: Recognition results of E2E-MFERC-Default model

In addition, we also compared the visualized feature maps of E2E-MFERC-Default and
YOLOv8n. Figs. 18 and 19 show a feature map from the corresponding output head of each model
when processing the same image on the left side of Fig. 17. Comparing the feature maps shows that
our network has stronger representation capabilities through module combination and introduction
of attention mechanisms, especially with more concentrated attention on important features related
to facial expressions and better extraction results.

Figure 18: Visualized feature map from output head of E2E-MFERC-Default model
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Figure 19: Visualized feature map from output head of YOLOv8n model

6 Conclusion

Analyzing student group emotions by recognizing student facial expression states, evaluating
teaching effects, and promoting the improvement of education quality play an important role in the
development of smart education. However, the low efficiency, insufficient generalization capability of
existing multi-face expression recognition methods, and the lack of high-quality and highly targeted
multi-face expression datasets to provide experimental support, as well as the complex multi-stage
algorithm process, restrict the improvement of its overall performance. The exploration in actual
smart classroom application scenarios is still insufficient, and its practical application value cannot
be realized. To this end, we propose the end-to-end algorithm model E2E-MFERC for multi-face
expression recognition in smart classrooms, providing a theoretical reference for end-to-end solutions,
expanding the technical approach; constructing the large-scale, high-quality and highly targeted
dataset MFED to establish data foundations; and applying the model to actual smart classroom
scenarios to expand its application value.

In order to study multi-face expression recognition and student group emotion assessment in
smart classroom scenarios, we proposed an end-to-end multi-face expression recognition algorithm
model for smart classrooms: E2E-MFERC. To simultaneously improve performance while ensuring
algorithm speed, we adopted RepVGGBlock and SPD-Conv modules in the backbone, compared
different attention mechanisms and introduced Polarized Self-Attention to improve the C2f module,
utilized AFPN feature fusion technology combined with RepVGGBlock for representation enhance-
ment and down-scaled the output head size. To provide high-quality and highly targeted data support
for algorithm research, we constructed the multi-face expression dataset from real classrooms: MFED,
which contains a total of 2,385 images and 18,712 facial expression samples, basic expression and
classroom evaluation expression classification criteria data, and provides VOC and TXT label formats.
Finally, we applied the model to group emotion evaluation scenarios oriented to smart classrooms, and
designed classroom effect evaluation index calculation methods as parameters to measure teaching
outcomes.

The experimental results demonstrate that in multi-face recognition oriented to smart class-
room scenarios, our proposed algorithm model design is reasonable and shows obvious advantages.
Compared with existing mainstream methods, the performance of our algorithm has significantly
improved. It has obvious advantages in both algorithm speed and accuracy, providing theoretical and
technical support for real-time accurate analysis in smart classroom scenarios. The MFED dataset
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we constructed is of high quality, highly targeted, and collected from real scenarios. It not only lays
the data foundation for our research, but can also provide experimental data for related research
on facial expression recognition, face detection, etc. We also designed a teaching effect evaluation
index system based on multi-face expression recognition results, exploring the utility of multi-face
expression in smart education effect evaluation, and expanding its application value. Our research is
forward-looking. The potential applications and practical value of E2E-MFERC in smart classrooms
are not limited to group emotion assessment. It can also be combined with multi-modality for more
comprehensive analysis, such as combining speech recognition and text analysis to evaluate students’
answer quality, analyzing students’ learning mastery; or combining analysis of students’ gestures and
motions to detect students’ interest and participation, evaluating the appeal of teaching activities.
Likewise, long-term analysis of students’ emotional changes can also be conducted to understand
teaching feedback from different periods and different student groups. Combined with learning
performance data, automatic diagnosis and targeted improvement of student learning outcomes can be
achieved. Thanks to its excellent performance, practical applications can avoid hardware constraints.
Even in traditional teaching scenarios, our model can be well promoted by simply adding a computer
and image acquisition device.

Of course, our research also has some limitations. In designing E2E-MFERC, we focused on
balancing algorithm speed and adopted modules more advantageous for lightweight networks, but
the advantages are not obvious when the model size increases. With the development of hardware
devices and improved computing capabilities in smart classrooms, research on large-scale algorithms
is gradually becoming important. In addition, we only considered a single modality of facial expression
data, while multi-modal learning methods are also a trend. For evaluating teaching effects in smart
classrooms, our current capabilities are still limited to multi-face expression recognition and related
evaluation parameter design. The actual application can be further expanded. In the future, we will
focus on the following work:

• Research algorithm models for large-scale multi-face expression recognition with more obvious
advantages.

• Try to integrate information including gestures, speech, classroom content, etc., for more
accurate and comprehensive analysis using multi-modal data.

• Expand practical application value based on theoretical and technical research, integrating
more modal data.
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