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ABSTRACT

Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lacking
unique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenes
severely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deep
learning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheral
computing devices. To address these challenges, this study proposes a novel unsupervised image stitching method
based on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networks
and attention mechanisms. The methodology is partitioned into three distinct stages. The initial stage combines the
attention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objects
in images, the task of the deep homography networks module is to estimate the global homography of the input
images considering multiple viewpoints. The second stage involves preliminary stitching of the masks generated in
the initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.
The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.
Comprehensive experiments across multiple datasets are executed to meticulously assess the proposed model. Our
method’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%
and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
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1 Introduction

In the AutoStitch approach proposed by Tian et al. [1], key point recognition and matching were
utilized to establish correspondences between two images. Although this method marked a significant
advancement in image stitching technology, it was noteworthy that it could lead to ghosting artifacts
in the final stitched images.

Convolutional Neural Networks (CNNs) excel in feature extraction, applied in diverse fields
like depth estimation, optical flow estimation [1], and deformation correction. In image stitching,
researchers explored CNNs and Fully Convolutional Networks (FCNs). Hoang and Tran focused on
feature extraction [2,3]. An improved underwater terrain stitching algorithm using spatial gradient
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feature blocks was proposed [4]. Evolutionary computing aided in deep learning model design [5].
Nie’s view-agnostic approach employed depth homography modules, spatial transformers, and depth
image refinement [6,7]. Nie’s unsupervised framework addressed baseline changes and pixel-level
misalignment in two stages [8]. However, the substantial dimensions of the model posed practical
challenges for deployment in real-world scenarios. The extensive size of the model trained through this
methodology proved to be impractical for various applications, resulting in suboptimal performance in
practical settings. The pixel-wise image stitching network proposed in [9] adopted a large-scale feature
extractor and an attention guidance module to obtain high resolution and accurate pixel-level offsets.
However, splicing in pixel-level end-to-end networks was not implemented.

To address the issue of the unwieldy size of existing unsupervised image stitching models, we
propose a novel unsupervised image stitching method based on the YOLOv8 [10] framework, incor-
porating a deep homography network and attention mechanism. Recent studies had demonstrated
the versatility of the YOLO series algorithms in various detection scenarios [11]. In remote sensing, it
had been used for object detection and classification in satellite and aerial images, aiding in land use
mapping, urban planning and environmental monitoring [12]. Aboah developed a real-time helmet
detection model using YOLOv8 [10], improving both accuracy and speed. A detection function that
automatically identifies regions of interest (ROI) has been added, while unnecessary objects were
effectively removed [13]. This study aims to augment image stitching through the integration of
YOLOv8 edge detection and a deep homography network. The deep homography module handles
rotations, scaling, and translations effectively. We introduce an attention mechanism with a pooling
pyramid module for improved small object detection. Through meticulous consideration of the
vanishing gradient problem, our approach reconceptualizes the calculation of the loss function,
thereby enhancing the accuracy of image detection. This method enables precise mask generation for
image reconstruction and cropping in stitching scenarios, with the added benefit of reducing the model
size. The main contributions of this paper are summarized as follows:

• We design a new unsupervised image stitching method based on the YOLOv8 framework,
integrating the deep homography network into the YOLOv8 framework. This method is able to
naturally distort the target image to align with the reference image, thereby exhibiting robustness
against image distortion problems.

• The attention mechanism is introduced into the YOLOv8 framework, wherein the deep homog-
raphy network is integrated, and the attention mechanism is combined with the pooling pyramid
model to capture multi-scale information while retaining spatial details.

• The calculation of the loss function and the differentiation between images are improved to be
more suitable for image stitching tasks.

2 Related Work

This section reviews developments in image stitching and deep homography estimation, focusing
on two primary feature-based techniques.

2.1 Feature-Based Image Stitching

Adaptive Warping, such as Dual-Homography Warping (DHW) [14], was designed to address
parallax issues by aligning different scene planes independently. While these methods were effective in
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simpler scenes, their performance tended to diminish in more complex environments. Techniques like
Smoothly Varying Affine (SVA) transformations and As-Projective-As-Possible (APAP) warping, as
described by Zaragoza et al. [15], enhanced local alignment by assigning homography to image grids.
However, APAP encountered difficulties proximate to object boundaries, particularly in regions with
depth variations [15].

Seam-Driven Methods were focused on minimizing stitching artifacts [16]. Seam-based alignment
was combined with global homography by Zhang et al. [17], a method also applicable to stereoscopic
stitching as explored in [18]. Furthermore, iterative warp and seam estimation were implemented
by Lin et al. [19] to identify optimal stitching areas while preserving key structural elements such
as curves and lines. While these methodologies generally exhibited effectiveness, their efficacy was
strongly contingent on the accuracy of feature detection and may have been constrained in scenarios
with sparse features or low resolution.

2.2 Deep Homography Schemes

In the development of deep homography estimation, the initial approach described by Detone
utilized a VGG-style network to predict homography by determining offset for the four vertices of an
image [20,21]. Expanding upon this, an unsupervised approach with a comparable architecture was
introduced in [22], incorporating a novel unsupervised loss function.

In contrast, deep stitching schemes, which were not reliant on the continuous design of geometric
features, automatically extracting high-level semantic features from extensive datasets. These methods
operated in supervised [19,23–26], weakly-supervised [27], or unsupervised [18] modes, making them
adaptable to various complex scenes. However, it faced challenges in handling large parallax, limited
by the homography-based alignment model, which could lead to undesirable blurring in areas of
parallax during reconstruction. In [28], an adaptive selection algorithm was proposed that sequentially
performed fast feature extraction and feature matching, a local deformation method was introduced
to smoothly transition overlapping areas, achieving high-precision image alignment. The first unsu-
pervised image stitching framework, introduced in [8], features the design of an unsupervised image
reconstruction network aimed at eliminating artifacts from features to pixels. To better realize the
stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,
reference [4] proposed an improved algorithm for underwater terrain image stitching based on spatial
gradient feature block.

3 Improved Image Stitching Model

The section constructs an image stitching method based on the YOLOv8 framework. The
methodology is depicted in Fig. 1. Initially, the YOLOv8 framework is customized for image stitching
tasks by integrating a depth homography estimation network. This addition complements the existing
object detection network and instance segmentation model within the framework. Subsequently, to
fully leverage and reuse multi-scale features and enhance small object detection, we introduce the
Squeeze-and-Excitation (SE) attention mechanism to address these challenges.
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Figure 1: Our image stitching algorithm is divided into three stages, namely the alignment stage,
the fusion stage, and the pruning stage. The YOLOv8 algorithm needs to be used in the first and
second stages. The YOLOv8 algorithm’s network architecture comprises three main components:
Input, Backbone, and Head. In the alignment stage, a regression network, which is composed of both
convolutional layers and fully connected layers, forecasts offsets, generates mask masks, and learns
image structures to train the fusion network for structure splicing; in the construction stage, the spliced
structures are the application completes content modification on real data sets

3.1 Improvement of the Backbone

YOLOv8 introduced a distinctive feature with the separation of the detection head into classi-
fication and detection heads [29]. For classification loss, it used Binary Cross-Entropy (BCE), while
regression loss utilized Generalized Intersection over Union (CIoU) supplemented by Distribution
Focal Loss (DFL). The model enhanced small object detection and overlapping area identification by
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incorporating an attention mechanism in the backbone network. The amalgamation of upsampling
steps prioritized the accentuation of low-resolution target features. Employing triangular grids effec-
tively addresses nonlinear distortion. The triangular grids can flexibly adapt to irregular shapes in the
image and achieve smooth transitions to distortion. In computer graphics and computer image pro-
cessing, triangular mesh processing and rendering algorithms have been widely optimized and applied.
Thin-plate spines may require more complex mathematical operations, and their computational costs
may be higher. By defining triangles on the image and matching and transforming these triangles
during the stitching process, the error during stitching can be reduced. The triangular mesh can help
adjust the transformation within each small area, thereby improving the overall stitching accuracy.
Additionally, VariFocal Loss (VFL) introduces an asymmetric weighted operation to further refine
model performance, as shown in Eq. (1):

VFL (si, si+1) = − ((yi+1 − y) log (si) + (y − yi) log (si+1)), (1)

where si and si+1 represent continuous points in pixels, y is a parameter that influences the transition,
yi and yi+1 are to be the drift terms associated with states si and si+1. Upon examining the complete
network structure of YOLOv8, it is evident that its backbone is very similar to YOLOv5. Inspired
by the Cross Stage Partial (CSP) concept, the C3 module was replaced by the C2f module, which
integrates the Efficient Layer Aggregation Networks (ELAN) concept from YOLOv7. For the neck
part, YOLOv8 still employed the Path Aggregation Network with Feature Pyramid Network (PAN-
FPN) [30,31] feature fusion method. Although feature fusion techniques retain both deep and
shallow information, they automatically filter out less apparent and smaller-sized information, making
it a primary reason for the non-smooth detection of small objects. Addressing the challenges in
unsupervised image stitching with YOLOv8, this method assesses, and reuses features of various scales
to achieve more complex and lightweight feature fusion without excessively increasing parameters.

Fundamentally, in deep learning, attention mechanisms quickly survey the entire image and
quickly extract valuable data from the vast amount of available information. In the SE layer, features
extracted from the input image are subjected to average pooling and then processed through two fully
connected layers. The second layer mirrors the neuron count of the input feature layer, maintaining
the channel count of the image. The application of the sigmoid function limits the output to a
range between 0 and 1, which is then used as a weight multiplier for the original image through
the channel attention mechanism. The addition of a Spatial Pyramid Pooling-Fast (SPPF) pooling
pyramid module in the last layer of the convolutional neural network presents a method for handling
multi-scale features. This module executes pooling operations at various scales, capturing multi-scale
information while preserving spatial details. The improved image masks generated through this process
are illustrated in Fig. 2.

Represent the input feature image as IA and a target feature image as IB, suppose their camera
matrices are as Eq. (2):

P = K [IA|0] ,
P′ = K ′ [IB|t], (2)

where K ∈ RH×W×C and K ′ ∈ RH×W×C are two calibration matrices, P and P′ represent the output images
of IA and IB, respectively. R represents the corresponding image, H, W and C represent the three color
channels of the picture, and t ∈ R3×3 is translation.
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Figure 2: Mask renderings

To enhance the robustness of the fitting method and mitigate calculation errors resulting from
incorrectly matched feature pairs, it is imperative to implement a rigorous approach that filters out
outliers during the feature-matching process. This involves calculating the mapping error for each
feature pair (IA, IB) and employing a robust fitting method. The mapping error of a feature pair can
be defined and calculated as follows Eq. (3):

Ei = ‖ V
(

IA + e′

z (IA)
− IB

)
‖, (3)

where Ei is output as the result,
e′

z (IA)
performs triangular transformation on the input image IA to

calculate the difference with IB, V (·) normalizes the difference, and outputs it as a mask image, e′ is
the coordinate pole of IA. A threshold can be set based on statistical considerations or domain-specific
knowledge. Feature pairs with mapping errors exceeding this threshold are considered outliers and are
excluded from the subsequent fitting process.

3.2 Improvement of the Head

YOLOv8 introduced a novel state-of-the-art (SOTA) model, encompassing object detection
networks with P5 640 and P6 1280 resolutions, as well as the instance segmentation model [32].
YOLOv8 adopts scaling factors akin to YOLOv5, facilitating the creation of models of varying scales.
However, this model’s performance falls short in image stitching tasks. Therefore, we are revamping
the header functionality, removing all header structures, and incorporating a core deep homography
estimation network, with the Identity module serving as a pass-through layer.

Deep homography networks are often used as part of a viewless image-stitching framework.
Nonetheless, deep homography for image stitching presents greater challenges, as the baseline of the
input images is typically extensive. A homography network is crucial to free CNNs from complex tasks.
At this stage, our objective is to derive the projective transformation between images, which furnishes
alignment data for subsequent stitching procedures. This stage is critical for enabling our network
to conduct viewless image stitching. Current unsupervised deep homography approaches used image
patches as input, as outlined in [22,33]. The objective function for these methods can be represented
by the following as Eq. (4):

LPW = ‖ P
(
IA

) − P
(
H

(
IB

)) ‖1, (4)

where P(·) represents extracting an image patch from a complete image and H(·) distorting one shape
and aligning it with another image. Utilizes extra content around the target patch to fill inactive pixels
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in the distorted target patch. This is called the constraint strategy based on padding. This approach
performs effectively in homography estimation with small baselines [33] or medium baselines [22],
but does not perform well with large baselines. Especially when the baseline difference is too large
and there is not much overlapping area before the input image, the homography estimation of these
patches will be meaningless.

To mitigate the challenges, we adopt an ablation-based strategy for unsupervised homography
estimation. Concretely, we ingest the complete image as our input, ensuring the inclusion of all
overlapping regions. As the warped target image converges towards alignment with the reference image,
the conventional practice of populating invalid pixels in the warped image is discontinued. Rather,
we opt for an ablation approach, wherein the content of the reference image is selectively excised in
the areas corresponding to the invalid pixels in the warped target image. Formally, our unsupervised
homography objective function is articulated as Eq. (5):

L′
PW = ‖ H (N) · IA − H

(
IB

) ‖, (5)

where H (N) · IA is multiply pixels between different images and N is an all-one matrix with identical
size with IA and IB.

In line with other homography estimation techniques, grayscale images are also employed as input
to the network. Initially, a feature extractor is employed to learn the features and the dimensionality
of the feature map in the blue section. This involves incorporating two convolutions and a pooling
layer within each small blue block, followed by using three convolutions and two fully connected
layers. A regression network is composed to process and predict offsets. The calculated global
homography furnishes comprehensive homography data and can be readily applied in the subsequent
mask-stitching phase. However, feature mismatch may lead to large errors or even inaccuracies in
homography estimation, leading to the unavoidable occurrence of ghosting artifacts. Therefore, we
improve the structure of the framework to improve the above problems. Our improved structure
diagram is shown in Fig. 3.

Figure 3: Our-YOLO structure diagram
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3.3 The Loss Function

There are permanent problems with backpropagation, such as the vanishing gradient problem.
To overcome the vanishing problem, a new anti-vanishing backpropagation learning algorithm called
directed random loss descent was introduced in [34]. We redefined the way the loss function is
calculated. The loss function calculation in the alignment stage first performs mask processing,
thresholds the values, and creates a binary mask, where values greater than one are considered valid
pixels. Initialize each element in the loss calculation to a zero tensor and perform different levels of loss
calculations. Iterate over the elements and calculate the loss at each level and the mean absolute error
with the corresponding region using functions in the framework. Finally, the total loss is computed as
the weighted summation of the individual losses at different levels. The formula is shown in Eq. (6):

Loss
(
IA, IB

) = 1
n

∑n

i=1
| IB

i − f
(
IA

i

) |, (6)

where the n is the total number of data points, IB
i is the target image of the i-th input, f

(
IA

i

)
is the

predicted value of the i-th input data IA
i by the model, | IB

i − f
(
IA

i

) | represents the difference between
the test and the true value. The differences of the points are summed and averaged to ensure that the
loss does not increase infinitely as the number of data points increases.

Seam mask processing is performed on the image and mask generated in the alignment stage,
the loss component is calculated from the low resolution and the loss of the original image, and the
losses from various components are calculated by hyperparameter weighting. This formula is shown
in Eq. (7):

Loss
(
IA, IB

) = 1
n

∑n

i=1

(
IB

i − f
(
IA

i

))2
, (7)

when the image is processed into a mask, the n is the total number of data points.
(
IB

i − f
(
IA

i

))2
is

to calculate the square of the difference between the predicted and actual values for each data point.
Summing the squared differences of all data points and taking the averages.

4 Experiments

This section introduces the data set, experimental platform, evaluation indicators and comparative
experimental results used in the experiment. There are performance comparisons of baselines with our
model, and ablation experiments. Experimental results verify the effectiveness of the proposed model
in target detection tasks.

4.1 Information about Datasets and Dataset-Related Specifics

This study employs the Warped COCO dataset for pre-training. Then it fine-tunes and trains
our model on the UDIS [8] dataset (UDIS dataset collected by Nie Lang’s team at Beijing Jiaotong
University, China) and MVS-Synth dataset [35]. In this part of the dataset, the average overlap rate
exceeds 90%, including indoor, outdoor, night, dark, and other variable scenes. Fig. 4 shows some
scenes included in the dataset, and Fig. 5 shows the overlap rate of some scene images.

The training set of the UDIS dataset comprises 10,500 samples, while the test set comprises 1100
samples. The training set of the MVS-Synth dataset includes 6200 samples, and the test set includes
150 samples. Due to the presence of numerous small objects or targets in sample images, the samples
are resized or standardized to dimensions of 640 × 640 to uphold the accuracy of the entire detection
process.



CMC, 2024, vol.79, no.1 1327

Figure 4: Dataset scenario

Figure 5: Overlap rates

Each stage is refined in comparison to YOLOv8, with training conducted for the warped and fuse
networks using the Adam optimizer [36]. The iterative training spans 100 epochs and 50 epochs for
the respective networks, incorporating an exponential decay learning rate schedule.

The value is set to 10-4, the first stage batch-size = 340, epoch = 100, the second stage batch-size =
300, epoch = 50. The complete training procedure is unsupervised, signifying that only target images
are required as input, not labels. In the test, stitching two input images with a resolution of 640 × 640
took about 0.3 s. To guarantee fairness and comparability when comparing models, no pre-training
weights are utilized consistently in all ablation experiments and various model training processes in
the comparison experiments.

4.2 Experimental Platform

Regarding hardware and software, we employ an Intel(R) Xeon(R) Platinum 8255C processor
with 12 cores and 24 threads, 24 GB of system memory, a GeForce RTX 3090 graphics processor
with 24 GB of video memory, and the deep learning model framework PyTorch 1.11.0, YOLOv8’s
benchmark version and Ultralytic. The system is Ubuntu 18.04.
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The experiment utilizes metrics such as PSNR, SSIM and Giga Floating-Point Operations Per
Second (GFLOPs) as evaluation indicators. A higher PSNR value indicates a better image quality with
less distortion or noise. SSIM values fall on a scale from 0 to 1, and a value closer to 1 suggests that
the image is more like the original. The calculation formula of PSNR is to evaluate the performance,
which can be calculated as Eq. (8):

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[T (i, j) − F (i, j)]2 ,

PSNR
(
IA, IB

) = 10 · log10

(
MAX 2

T

MSE

)
,

(8)

where the T(·) is the pixel value of row i and column j in the original image, the F(·) is the value of the
corresponding pixel in the image after rotation, m and n represent input image IA and IB, respectively.
The MSE formula calculates the square of the difference between each corresponding pixel, and then
substitutes the result into the PSNR formula. The MAX 2

T is the maximum possible pixel value of the
image. MAX in PSNR is the maximum pixel value, which is 255.

The SSIM calculation formula evaluates performance, which can be calculated as Eq. (9):

SSIM
(
IA, IB

) = l
(
IA, IB

)α · c
(
IA, IB

)β · s
(
IA, IB

)γ

, (9)

where l
(
IA, IB

)α

is used to compare the brightness of two images, c
(
IA, IB

)β

is used to compare the
contrast of two images, and s

(
IA, IB

)γ

is used to compare the structural information of two images. α,
β and γ are used to adjust the weight of the comparison function.

The PSNR (IA, IB) and the SSIM (IA, IB) contribute to the calculation of PSNR and SSIM
between two images, respectively.

4.3 Comparison Experiment

A series of empirical investigations are undertaken to assess the efficacy of the Our-YOLO
methodology. The comparative methodologies encompass global homography (Homo), APAP [15],
USIS-RSFI [8], and the benchmark YOLOv8 model [37]. The experimentation involves subjecting
all evaluation methodologies to scrutiny across two distinct datasets. Emphasizing precision in image
alignment, the resultant stitch outputs are derived through the computation of the mean blend of their
respective datasets.

Table 1 presents the tabulated outcomes of diverse methodologies. In specific instances, APAP
[15] exhibit suboptimal performance, manifesting in pronounced misalignment and consequential
insubstantial indexing, denoted by “−”. Homo demonstrates limited efficacy in addressing substantial
disparateness and mitigating local structural misalignment, thereby yielding the lowest scores.

Table 1: Comparative test of PSNR and SSIM in each model

Dataset Indicators Homo APAP [15] UDIS-RSFI [8] Our model

UDIS [8] PSNR (↑) 21.25 21.84 23.80 26.34
SSIM (↑) 0.7105 0.6952 0.7929 0.8414

MVS-Synth [35] PSNR (↑) 17.80 21.25 24.56 26.42
SSIM (↑) 0.6308 0.8434 0.8345 0.8494

(Continued)
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Table 1 (continued)

Dataset Indicators Homo APAP [15] UDIS-RSFI [8] Our model

Model size
(MB)

– – 2105 188.3

GFLOPs – – 10.5 14.5

Conversely, the three extant methodologies showcase superior alignment quality, resulting in
elevated scores. Notably, our proposed methodology consistently attains the highest scores across most
test cases, substantiating its superior alignment quality and efficacy. The model’s test outcomes are
displayed in Table 1.

Fig. 6 illustrates the comparative outcomes of the outdoor test case, characterized by diminutive
targets, including intricate textures on floor tiles. Two discernible regions within the overlapping
domains of each panorama are delineated through colored boxes and corresponding arrows. Ghosting
effects, denoted by red arrows, are evident to varying degrees in the results produced by the four extant
methodologies. Both global homography and APAP exhibit challenges in aligning structures such as
buildings, while UDIS-RSFI demonstrates a capacity to mitigate structural misalignment, as indicated
by the red box. Leveraging the attention mechanism, our local deformation model adeptly identifies
and aligns diminutive targets and objects, surpassing all other methodologies’ performance.

Figure 6: Image stitching quality comparison
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4.4 Ablation Experiment

This section presents an ablation experiment conducted to evaluate the performance enhance-
ments of our proposed YOLO model over the baseline models. The modifications include the addition
of an Attention Mechanism Module (A) and a Deep Homography Networks Module (B). The
performance of each model is assessed using two datasets, UDIS and MVS-Synth, and two indicators,
PSNR and SSIM.

The datasets used in our experiments are UDIS and MVS-Synth. The performance indicators
include PSNR for image quality assessment and SSIM for perceived image quality.

From Table 2, we can draw the following conclusions, the computational complexity is 14.1 for
YOLOv5, 14.3 for YOLOv8, YOLOv8+A, and YOLOv8+B, and marginally higher at 14.5 for Our
model. This indicates a slight increase in computational demand for the added modules.

Table 2: Comparative analysis

Dataset Indicators YOLOv5 YOLOv8 YOLOv8 +
A

YOLOv8 +
B

Our model
(A + B)

UDIS [8] PSNR (↑) 22.23 22.42 23.13 25.42 26.34
SSIM (↑) 0.7305 0.7329 0.7529 0.8103 0.8414

MVS-Synth
[35]

PSNR (↑) 22.12 22.13 23.36 25.11 26.42
SSIM (↑) 0.7408 0.7483 0.7645 0.8173 0.8494

GFLOPs 14.1 14.3 14.3 14.3 14.5

• Ablation experiments of our model with the baseline model, adding attention mechanism
module (A), deep homography networks module (B), and Our model (A+B).

The ablation study demonstrates that integrating the attention mechanism and deep homography
networks modules systematically enhance the model’s performance across both datasets and evalu-
ation metrics. Our YOLO model, which incorporates both modules, achieve the highest PSNR and
SSIM values. This validates our hypothesis that these modules contribute significantly to the model’s
effectiveness in object detection tasks.

The results, presented in Fig. 7, showcase the stitching outcomes obtained through the proposed
algorithm, utilizing randomly selected images. Incorporating deep homography estimation, we learned
content mask rules to enhance the precision of edge region recognition. Utilizing convolutional
operations and attention mechanisms, we determined the image edges and overlapping areas. The mask
images outputted by the deep homography networks module represent pixel-level reconstructions of
the input images, demonstrating the consistency and effectiveness of our approach in image stitching
across multiple horizontal and vertical perspectives.
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Figure 7: Image stitching quality comparison

5 Conclusion

This study systematically validates the effectiveness of our image stitching methodology, sup-
ported by a notable improvement of 10.6% and 6% in PSNR and SSIM metrics on the UDIS dataset,
and a significant enhancement of 7.5% and 1.7% on the MVS-Synth dataset. These improvements
surpass established methodologies, including global homography, APAP, USIS-RSFI, and YOLOv8.
Our approach, characterized by an intricate attention mechanism, adeptly addresses challenges
inherent in traditional methods, specifically disparities and local structural misalignments. Notably,
it excels in the precise alignment of diminutive targets and intricate details, showcasing superior
performance. The method exhibits proficiency in discerning image splicing nuances through content
masks and homography estimation, employing convolution operations and attention mechanisms
to identify edges and overlapping areas. Pixel-level reconstructions underscore its high coherence,
demonstrating effective image stitching across diverse perspectives. Nevertheless, challenges arose
during our experiments. Limited image overlap may lead to increased homography errors, heightened
splicing artifacts, and potential failures. Subsequent research endeavors will prioritize the mitigation
of these challenges and the refinement of specialized detection tasks.

In conclusion, our unsupervised framework and attention to complex image attributes set a new
standard in the field, offering a robust, efficient, and versatile solution for computer vision and image
processing applications.
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