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ABSTRACT

The rapid pace of urban development has resulted in the widespread presence of construction equipment and
increasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safe
operation of the power grid. Machine vision technology, particularly object recognition technology, has been widely
employed to identify foreign objects in transmission line images. Despite its wide application, the technique faces
limitations due to the complex environmental background and other auxiliary factors. To address these challenges,
this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replaced
with a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizing
low-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a Large
Selective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,
the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate faster
convergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves a
detection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which is
a significant enhancement compared to the unimproved algorithm. This improvement effectively enhances the
accuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.
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1 Introduction

Due to increasing urbanization, construction machinery operations may damage transmission
lines. Additionally, human activities have destroyed many natural habitats, causing birds to seek
alternative nesting sites, such as transmission towers. This scenario poses a threat to the safety of
transmission lines. Power failure problems caused by external factors not only cause huge economic
losses, but also threaten the safety of people’s lives, and have now become a hidden problem of
the power system that urgently needs to be solved. Therefore, it is necessary to detect faults [1] in
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transmission lines to ensure the stable operation of the power system. Traditional inspection methods
typically rely on manual inspection, which can be influenced by the environment and subjective
judgment. Therefore, it is essential to adopt more efficient and effective inspection methods for
transmission lines. The rapid development of unmanned aerial vehicles (UAVs) and machine vision has
made this possible. UAVs capture images of transmission lines, ensure the security, transparency, and
traceability of drone inspection data transmission through blockchain [2,3] technology, and machine
vision is used to identify foreign objects in the images.

Deep learning [4] is a research field of machine learning that is widely used in various applications,
including image recognition, speech recognition, and target detection. It is created using artificial
neural networks that simulate the neural structure of the human brain. This results in a multi-layer
neural network that extracts low-level features from data, such as images, speech, and text. These
features are then combined to form more abstract high-level features, which better represent the
distributional characteristics of the data. Traditional target detection methods depend on manually
designed features, which are inefficient and struggle to utilize the extensive image data available. In
recent years, deep learning has emerged as a rapid and powerful tool in image classification and
target detection and has gained popularity in agriculture, medicine, remote sensing, and other fields.
Its impressive feature learning capability has transformed image processing and target detection.
Compared to conventional image processing methods, target detection techniques based on deep
learning are characterized by stronger fault tolerance and robustness, as well as a more stable rate of
recognition accuracy. Additionally, these techniques possess the benefit of being more economically
viable and requiring lower labor costs.

Deep learning-based target detection algorithms can be broadly categorized into two groups.
Firstly, there are the two-stage detection algorithms based on candidate regions, which involve the
detection and recognition phases. Prominent examples of these algorithms include R-CNN [5], Fast
R-CNN [6], Faster R-CNN [7], R-FCN [8], and others. The algorithms utilize feature information,
including texture, color and image details. This data is initially divided into a range of proportionate
and sized region boxes for detecting target presence. These region boxes are then inputted into the
network for target detection. One-Stage detection algorithms, such as YOLO [9–12], SSD [13–15],
and OverFeat [16], can determine the location and category of a detected object within a single step.
These algorithms do not require the separate screening of candidate boxes to deliver a detection result,
resulting in a faster detection speed.

In transmission lines scenarios, real-time and accurate detection and analysis of critical objects
and large construction machinery that may cause damage in the transmission lines is required, and
YOLO and convolutional neural (CNN) algorithms have the characteristics of fast detection, high
accuracy, and strong feature extraction ability, so they are being detected in the field of transmission
lines critical objects. Literature [1] proposes a genetic model that conditions the increase of the number
and diversity of training images. Literature [17] designs a system based on edge cloud collaboration and
reconuration of convolutional neural networks, combining pruned extraction network and compressed
sign fusion network to improve the efficiency of multi-scale prediction. However, CNN localization
targeting algorithms frequently involve varying parameters, resulting in optimal values differing across
different scenarios, and posing challenges in dense area targeting. Literature [18] calculates the shape
eigenvalues of insulators and backgrounds, and designed the classification decision conditions to be
able to recognize insulators accurately. Literature [19] uses techniques such as CoordConv, DropBlock
and Spatial Pyramid Pooling (SPP) to extract insulator features in complex backgrounds and trained
the YOLO system with the dataset, which greatly improved the accuracy of aerial insulator detection.
Literature [20] enhances the pyramid network by employing the attention mechanism as a feature
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extraction network, leading to a significant improvement in prediction accuracy. The identification and
detection of transmission lines has been a persistent issue, but literature [21] proposes improvements to
the miniature target detection YOLO model by simplifying the feature extraction network (Darknet)
and implementing a streamlined prediction anchor structure, resulting in effective transmission lines
detection. However, as the network structure of the target detection model deepens, its theoretical
performance is expected to gradually improve. Nevertheless, experiments have revealed that adding
more layers beyond a certain depth does not lead to performance enhancement. Instead, it slows down
the network training convergence process and ultimately reduces detection effectiveness. Empirical
evidence suggests that residual networks can effectively solve the aforementioned issues. Facing the
problem of low detection precision of some small and medium-sized targets such as detecting bird’s
nests, a new feature pyramid in feature fusion, path aggregation network and bidirectional feature
pyramid [22] are used to improve the precision of small target detection. In the face of the complexity
of the environment of the transmission lines, the loss function in the YOLOX algorithm is modified,
and the literature adds Convolutional Block Attention Module (CBAM) [23] attention mechanism to
the network to improve the feature extraction ability, while modifying the strong feature extraction
part and introducing MSR algorithm to further optimize the picture, which significantly improves
the recognition effect compared with the traditional YOLOX algorithm [24]. However, the CBAM
attention mechanism performs lines and spatial attention operations sequentially, ignoring channel-
space interactions and thus losing cross-dimensional information. In terms of the function of fast
and accurate identification and localization of dangerous objects in transmission lines, literature [25]
takes the YOLOv3 detection model as the basis and improves the bounding box non-maximum value
suppression algorithm with reference to the Soft-NMS algorithm and Generalized Intersection over
Union (GloU) algorithm to improve the detection model target detection precision rate and recall rate.
Tiny remote sensing objects may be incorrectly detected without reference to a long enough range,
and the range that needs to be referenced is mostly different for different objects, the introduction of
LSKNet [26] in the literature can dynamically adjust the spatial field of view so as to better detect the
research objects in different scenarios. In order to solve the limitation of using Complete Intersection
over Union (CIoU) Loss [27], literature [28] adopts Smoothed Intersection over Union (SIoU) Loss
instead of CIoU Loss function to improve the detection precision of the model and proposes the
YOlOv8n-GCBLock-GSConv model, which not only reduces the cost of use, but also can quickly
and accurately complete the detection of the target. Literature [29] uses a regression loss combining
Weighted Intersection over Union (WIoU) [30] and distributed focusing loss to improve the model
convergence ability and model performance superiority. Literature [31] used SIoU Loss instead of the
original CIoU Loss in YOLOv7 to speed up the convergence speed and finally used SIoU-NMS to
reduce the problem of detection omission due to occlusion. In the actual detection of transmission
lines hazards, there are usually occlusions and external interference factors, literature [32] uses SPD-
Conv combined with the CBAM attention mechanism so that the model can analyze the density in a
specific region.

According to previous studies, deep learning-based algorithms for detecting transmission lines
have many limitations, including decreased performance at lower resolutions, smaller objects, and
complex environmental backgrounds. In the present paper, the above issues can be addressed by the
following improvements:

(1) The SPD-Conv method is utilized to enhance the model’s scale and spatial invariance. This is
achieved by utilizing spatial pyramid pooling in combination with deep convolutional neural networks
to construct a feature pyramid for parameter sharing and convolutional kernel size adaption. As a
result, the accuracy and robustness of target detection are improved.
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(2) The LSK module efficiently weights the features generated by a series of large deep convo-
lutional kernels that are spatially merged through a spatially selective mechanism. The weights of
these convolutional kernels are dynamically determined based on the inputs, enabling the model to
adaptively use different large convolutional kernels and adjust the sensory field for each target as
needed.

(3) The CIoU Loss is replaced with the SIoU Loss. The SIoU Loss takes into account angular
loss, distance loss, and shape loss. It penalizes the size of the target frames and is more reflective of
the true similarity between target frames. This replacement will speed up convergence and improve
detection accuracy.

The paper is organized as follows: Section 2 introduces the YOLOv8n model. Section 3 details the
proposed model, including the LSK Module, SPD-Conv module, and SIoU Loss. Section 4 presents
the experimental results and analysis. Section 5 concludes the research.

2 Basic Structure of YOLOv8n

Ultralytics released YOLOv8 in January 2023, following the success of YOLOv5. YOLOv8 offers
5 official configurations, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, to
cater to various scenario requirements. YOLOv8 introduces new features and improvements, such
as a new backbone network, decoupled detection heads, and a new loss function, building on the
previous version. YOLOv8n adopts a lightweight design that reduces the computational and storage
requirements of the algorithm, which can enable the UAV to better process image and video data,
improve the real-time and efficiency of the inspection, and enable the UAV to respond quickly and
detect problems in a timely manner. Compared with YOLOv7, YOLOv8n improves the detection
of small targets by improving the network architecture and training strategy, which increases its
usefulness in the inspection process. Overall, the application of YOLOv8n in UAV inspection has
higher accuracy, faster speed, and better adaptability and practicality. Therefore, YOLOv8n is selected
as the basic training model in this paper.

The YOLOv8n detection model is comprised of four main components: Input, Backbone, Neck,
and Head.

(1) Input. The data augmentation technique Mosaic [24] is often utilized in Input, with the anchor-
free mechanism being employed to predict the object’s center directly in lieu of the offset of the known
anchor frames. This results in a reduction in the number of predicted anchor frames, thereby expediting
non-maximal suppression NMS [33]. Data augmentation with Mosaic is discontinued in the final ten
epochs.

(2) Backbone. The primary purpose of the Backbone is to extract features, and it comprises
modules like Conv, C2f, and SPPF. Among them, the Conv module performs convolution, BN, and
SiLU activation function operations on the input image. YOLOv8n introduces a new C2f structure as
the main module for learning residual features, following YOLOv7s ELAN module. The C2f structure
enriches the gradient flow rate by connecting more branches across layers, resulting in a neural network
with superior feature representation capability. The SPPF module, also recognized as spatial pyramid
pooling, expands the sensory field and captures feature information at various levels within the scene.

(3) Neck. The primary function of the Neck is to merge multi-scale features to produce a feature
pyramid. This is achieved by implementing a path aggregation network, which involves using the C2f
module to combine the feature maps that are obtained from three distinct phases of the Backbone.
These measures facilitate the gathering of shallow data into more profound features.
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(4) Head. The current prevalent decoupled header structure is employed by Head to separate the
classification and detection headers, thus mitigating any potential disagreements between classification
and localization tasks.

3 YOLOv8n Algorithm Improvement Strategy

In light of the lacklustre performance of conventional neural networks in handling low-resolution
images and small objects, the SPD-Conv [34] module is applied. This module is capable of dynamically
adapting its vast spatial perceptual field to better replicate the range context of diverse targets in a
given scene. The Selective Attention LSK module is introduced to enhance the precision of the target
detection and accelerate the training process of the neural network. Meanwhile, CIoU Loss is replaced
by SIoU Loss to accelerate the convergence and improve detection precision. Based on the above work,
the YOLOv8n network model has been improved, as depicted in Fig. 1.

Figure 1: Improved YOLOv8n network mode

3.1 LSK Module

Current improvements for target detection algorithms often ignore the unique a priori knowledge
of what occurs in a scene; aerial imagery is often captured in a high-resolution bird’s-eye view, and
many of the objects in the imagery may be small in size, making it difficult to accurately identify them
based on appearance alone. Instead, the recognition of these objects often relies on their context, tiny
remotely sensed objects may be mistakenly detected without reference to a sufficiently long range, and
the long-range required may vary for different types of objects. But the surrounding background can
provide valuable clues as to their shape, orientation and other characteristics. Therefore, this paper
introduces the Large Selective Kernel Network (LSKNet) depicted in Fig. 2 [26], which can adaptively
modify its expansive spatial sensing field to more accurately represent the remote sensing scene of
diverse objects within the scene.
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Figure 2: Conceptual drawing of the LSK module

The specific implementation of LSK is as follows: Firstly, two different feature maps are obtained
by ordinary convolution and expansion convolution respectively, then the number of channels of the
two are converted to the same size by the convolution kernel size of 1∗1, and then the two are stacked
to obtain the feature map corresponding to c. Then, average pooling and maximum pooling are carried
out on the feature map. Then, the two are stacked, convolved and sigmoid so that the selection weights
for different convolution kernel sizes are obtained, and finally, the final output Y is obtained by
multiplying and summing the weights with the proposed feature map and multiplying it with the initial
input X.

3.2 SPD-Conv Module

Because of the advantages for processing low-resolution images and small target objects, SPD-
Conv is introduced to replace the step-size convolution and pooling layers in the traditional CNN
architecture. The structure of SPD-Conv is shown in Fig. 3 [34], which consists of a space-to-depth
(SPD) layer and a non-step-size convolution (Conv) layer. The input feature maps are first transformed
through the SPD layer. Then the convolution operation is performed through the Conv layer. The
combination of SPD and Conv layer can reduce the number of parameters without losing information.

Figure 3: SPD-Conv structure

The process of the SPD-Conv can be summarized as follows: For an intermediate feature map X
of arbitrary size, a sub-map consisting of and can be formed by scaling, and each sub-map is down-
sampled proportionally to X. When scale = 2, 4 sub-maps are obtained, and the scale of each sample
is 1/Scale of the original sample, and then the sub-feature maps are spliced along the lines to obtain
the feature map X′, whose scale is s/2 × s/2 × 4C1. Then the scale of the feature map X′ is changed
to s/2 × s/2 × C2, where C2 < 4C1, by using a non-step-size convolutional layer to preserve the key
information as much as possible.
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3.3 SIoU Loss

The CIoU Loss is a target detection loss function that integrates bounding box regression metrics.
It is used by the traditional YOLOv8n model as its regression loss. Eq. (1) shows the loss function.

CIOU = IOU −
(

ρ2 (b, bgt)

c2

)
+ αυ (1)

υ = 4
π 2

(
arctan
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hgt
− arctan

w
h

)2

(2)

α = υ

(1 − IOU) + υ
(3)

The coordinates of the center point of the prediction frame are denoted by b, while bgt denotes
the coordinates of the center point of the real frame. The Euclidean distance between the prediction
frame and the center point of the real frame is denoted by ρ2, and c represents the diagonal length of
the prediction frame and the real frame with the smallest external frame. The width and height of the
frame are denoted by w and h, respectively. Additionally, υ represents the shape loss, and α represents
the weight.

However, the approach has three obvious disadvantages: Low convergence and efficiency, due
to its complex structure; highly sensitive to changes in target box scale, making it challenging to
adapt the model to varying target box sizes; the misleading results when the aspect ratios of different
prediction boxes and real frames are equal. To address the above issues, the SIoU Loss is applied as
an alternative approach to CIoU Loss. SIoU Loss considers the vector angle between the actual frame
and the predicted frame, redefines the penalty indicator in the loss function, and resolves the problem
of mismatched directions that occur with un-framed frames in CIoU Loss. Moreover, SIoU Loss helps
to avoid the predicted frame from training process of unstable drift during the training process, which
improves the convergence speed of the model. SIoU Loss is calculated as:

USIO = UIO − (Δ + Ω) /2 (4)

where Δ is the distance loss, Ω is the shape loss, UIO is the IoU loss.

4 Result and Analysis
4.1 Preparation before Calculation

4.1.1 Experimental Environment Configuration

The computing is conducted using Python and the Pytorch deep learning framework, the
computing environment can be seen in Table 1.

Table 1: Experimental environment configuration

Parameter Configuration

CPU AMD Ryzen 758008-Core Processor
GPU NVIDIA GeForce RTX 3070 Ti
CUDA 12.2

(Continued)
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Table 1 (continued)

Parameter Configuration

Pytorch 1.13
Epochs 200
Workers 0
Batch size 16
Image-size [640, 640]
Optimizer auto

4.1.2 Dataset Construction

Currently, the foreign hazards of transmission lines mainly stem from improper construction
practices employed by large machinery as well as short circuits caused by avian nesting. This paper
presents six target datasets of transmission lines captured through UAV, featuring excavators, trucks,
bulldozers, tower cranes, bird nests, and cranes. The issue of a high number of images that were
similar due to being captured by the same camera in a single scene was addressed by varying the
angle and distance of the camera when taking shots. Images with different poses, including close-up,
wide-angle, and side views, were collected. A dataset of 7,425 unique images was ultimately obtained.
The categories and amounts of their datasets are displayed in Fig. 4, and some representative images
are shown in Fig. 5.

Figure 4: Type and number of data sets

The previous studies suggest that the application of combined data enhancement strategies
can effectively improve the performance of machine learning models in tasks requiring precise
image recognition capabilities. In this research, a methodological approach combining mosaic data
augmentation with traditional data enhancement techniques was utilized to augment the diversity of
the target sample dataset. This process entailed a sequence of transformations applied to the image,
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encompassing operations such as flipping, scaling, and adjustments in the color gamut. The altered
images were then merged with their corresponding bounding boxes. This amalgamation notably
contributed to an enhancement in the model’s generalization ability and robustness, as demonstrated
in Fig. 6.

Figure 5: Partial images of transmission lines from UAV

Figure 6: Data enhancement

To refine the accuracy of the target detection model and assist the neural network in assimilating
attribute and locational data of the targets, precise labeling of the objects within the images is
imperative. For this purpose, the current study employed the Make Sense web platform for the
annotation of the dataset, subsequently acquiring labels in the CoCo format. These labels encompass
essential details, including the object name and its spatial coordinates within the image.

Additionally, the dataset underwent a random partitioning in an 8:1:1 ratio, resulting in the
formation of a training set comprising 5,940 samples, a validation set comprising 742 samples, and a
test set comprising 743 samples. Given the substantial dimensions of tower cranes and the pronounced
issues of occlusion they present, a deliberate emphasis was placed on augmenting the representation
of tower crane samples within the dataset. This approach is aimed at enhancing the model’s capability
to accurately identify and analyze such large-scale objects, despite the challenges posed by their size
and potential for partial visibility in object detection.

4.2 Evaluation Indicators

To evaluate the model’s performance objectively, we introduce several evaluation metrics, includ-
ing precision, recall, F1, mAP50, mAP50-95, and frames per second transmitted (FPS). Precision,
recall, and F1 are calculated as follows:

P = TP
TP + FP

(5)
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R = TP
TP + FN

(6)

F1 = 2 ∗ P ∗ R
P + R

(7)

where TP represents the count of detection frames that match the actual labelling and are predicted as
positive samples; FP represents the count of detection frames that are predicted as positive samples but
do not match the real labelling, and FN represents the count of real labelling that cannot be detected.

The graph in question is structured to represent Precision and Recall metrics along the horizontal
and vertical axes, respectively. Within this framework, the area enclosed by the plotted curve is
indicative of the Average Precision (AP) value for a given category. The mean Average Precision (mAP)
is subsequently derived as the mean of the AP values across all categories. Specifically, mAP50 denotes
the average of Precision values for all categories at the 50% Intersection over Union (IoU) threshold,
while mAP50-95 represents the mean of mAP values calculated at various IoU thresholds, ranging
from 50% to 95%.

Furthermore, the calculation of mAP is governed by the following formula, which quantitatively
assesses the model’s accuracy by averaging the precision across different recall levels and categories,
thereby providing a comprehensive evaluation of the model’s performance in object detection tasks.
This formula encapsulates the integral aspects of precision and recall, offering a robust metric for the
assessment of detection algorithms.

mAP = 1
n

n∑
i=1

APi (8)

where P is the proportion of prediction frames that exactly detected the target out of all prediction
frames, and R is the proportion of prediction frames that actually detected the target out of all true
labelled frames.

FPS indicates the number of frames processed per second, which is used to measure the speed
of the detection performance; the higher the value, the faster the detection speed and the better the
detection performance.

4.3 Comparison of the Effects of Improved Methods

The effect of common loss functions, including CIoU, SIoU, DIoU, GIoU and WioU, is assessed
by comparing the IoU loss function, and the results can be seen in Table 2.

Table 2: Comparison of model performance using different IoU loss functions

Method Loss
function

P R mAP50 mAP50-95 FPS F1

1 CIoU 0.905 0.81 0.873 0.643 60.6 0.855
2 DIoU 0.884 0.809 0.866 0.638 61.73 0.845
3 SIoU 0.886 0.83 0.891 0.647 65.35 0.857
4 GIoU 0.903 0.807 0.871 0.643 60.98 0.852
5 WIoU 0.896 0.817 0.867 0.637 61.35 0.84
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As illustrated in Table 2, the YOLOv8n+SIoU model, which uses the SIoU loss function, achieves
the highest mAP50 compared to the original YOLOv8n+CIoU model. Although the accuracy
decreases slightly, the mAP50, mAP50-95, Recall, FPS, and F1 improve by 1.8%, 0.4%, 2%, 7.8%, and
0.2%, respectively. Compared to the traditional model, the proposed method (YOLOv8n+SIoU Loss)
achieves higher detection speed and precision. The use of SIoU effectively improves model fitting and
recognition accuracy. Compared to models with different loss functions, the model incorporating SIoU
demonstrates superior comprehensive performance and the greatest ability to improve the original
model.

To evaluate the efficacy of the LSK attention mechanism, a few other common attention
mechanisms are used to compare the detection ability. Specifically, the LSK and CBAM along with
the SE [35], and EMA [36] attention mechanisms are added to the final layer of the backbone. The
results are shown in Table 3.

Table 3: Performance comparison of models incorporating different attention mechanisms

Method Attention
mechanism

p R mAP50 mAP50-95 FPS F1

1 – 0.905 0.81 0.873 0.643 60.6 0.855
2 CBAM 0.919 0.812 0.88 0.65 59.17 0.862
3 SE 0.881 0.822 0.872 0.642 60.6 0.85
4 EMA 0.905 0.8 0.881 0.647 57.47 0.849
5 LSK 0.918 0.813 0.881 0.647 62.5 0.862

Table 3 shows that, with the exception of the SE attentional mechanism, the accuracy of models
incorporating the other three attentional mechanisms improved to varying degrees compared to the
original model. The models that integrated the CBAM and LSK attentional mechanisms improved
by 1.4% and 1.3%, respectively, in terms of accuracy. In terms of mAP50, the CBAM, EMA, and
LSK attention mechanisms improved the model by 0.7%, 0.8%, and 0.8%, respectively. The models
that utilized both CBAM and LSK attention mechanisms showed a 0.7% improvement in F1 score.
Regarding recall, the models that employed CBAM, SE, and LSK attention mechanisms showed
improvements of 0.2%, 0.12%, and 0.3%, respectively. Furthermore, the model that utilized LSK atten-
tion mechanism demonstrated the fastest detection speed, with a 3.1% improvement compared to the
original YOLOv8n model. In conclusion, the model that incorporates the LSK attention mechanism
provides a better trade-off between speed and accuracy and has the best overall performance.

To better illustrate the impact of integrating the attention mechanism on model detection
effectiveness, GradCAM [37] heat maps are utilized to visually analyze and compare the detection
outcomes of the unimproved model and the model enhanced with the LSK attention mechanism.
Fig. 7 displays the detection outcome before enhancement. Conversely, Fig. 8 illustrates the detection
outcome after integrating the attention mechanism. The red area highlights the region towards which
the model pays more attention while the lighter area shows the opposite. The application of the LSK
attention mechanism indicates that the model focuses more on the area nearby to the target, which
also helps to suppress the computational power occupied by non-target region.
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Figure 7: Test results of traditional YOLOv8n

Figure 8: Test result of proposed YOLOv8n

4.4 Ablation Study

To further validate the efficacy of the various improvement methods of the YOLOv8n model,
ablation experiments were conducted using different combinations of multiple enhancement modules.

To substantiate the effectiveness of the diverse enhancement methodologies applied to the
YOLOv8n model, a series of ablation studies were conducted. These studies involved the utilization
of various combinations of enhancement modules, providing a comprehensive evaluation of each
method’s impact on model performance.

The ablation experiments were conducted using the same training and test sets. YOLOv8n was
used as the base framework, and different attentional mechanisms and loss functions were sequentially
adopted to obtain new models for training. The results are shown in Table 4.

Upon adding SPD-Conv to the original model, all indexes, except for mAP50, were reduced to
varying degrees. The reason for this is unclear. SPD-Conv is a type of spatial depth convolution that
can alter the feature map representation, making it difficult for the network to accurately learn target
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boundaries or features. To address this issue, this paper proposes adding an attention mechanism
to enhance the model’s focus on important features, thereby improving target detection accuracy.
The table data shows that the model with LSK attention mechanism has significantly improved
comprehensive performance compared to the original model. Although there is a slight decrease in
detection speed and recall rate, the detection accuracy, mAP50, mAP50-95, and F1 have all improved
to varying degrees. Specifically, the detection accuracy has improved by 1.2%, mAP50 by 0.8%,
mAP50-95 by 1%, and F1 by 0.3%. Compared to the original model, the model that introduces SIoU
Loss has shown improvement in all aspects except for a slight decrease in mAP50-95. The detection
accuracy has reached 91.7%, while mAP50 has reached 88.8%. The experimental results indicate that
the combination method containing the SPD-Conv module, the LSK attentional mechanism, and the
SIoU Loss has achieved the highest accuracy level, demonstrating the effectiveness of the improved
model.

Table 4: Ablation study results

Method SPD LSK EMA SIoU P R mAP50 mAP50-95 FPS F1

1 0.905 0.81 0.873 0.643 64.93 0.855
2 √ 0.918 0.813 0.881 0.647 65.36 0.844
3 √ √ 0.917 0.806 0.881 0.653 58.47 0.858
4 √ √ 0.874 0.825 0.88 0.641 54.35 0.849
5 √ 0.894 0.815 0.875 0.653 59.88 0.853
6 √ √ √ 0.915 0.816 0.882 0.653 59.17 0.863
7 √ √ √ 0.917 0.817 0.888 0.651 59.17 0.864

4.5 Algorithm Verification

A comparative analysis of the detection performance between the traditional YOLOv8n model
and its enhanced counterpart is presented in Fig. 9. The left column shows the traditional model, and
the right column shows the improved model. This figure illustrates the detection capabilities of the
YOLOv8n model, particularly highlighting the challenges posed by targets with diminutive scales and
low contrast against the background. The traditional YOLOv8n model demonstrates variable degrees
of detection failures, particularly noted in the imagery of groups a, b, and d, encompassing instances
of both leakage and misdetection, especially evident in the images from groups b and c. Conversely,
the augmented YOLOv8n model exhibited a consistent ability to accurately detect all targets, even in
conditions of low clarity or small target size. The enhancement in detection efficacy is particularly
noticeable in scenarios involving targets with ambiguous outlines or reduced scales. This comparative
evaluation solidly establishes the superior performance of the enhanced YOLOv8n model, affirming
its efficacy in complex detection environments where precision is critical.
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(a) detection failures of tower crane 

  
(b) detection failures of truck and misdetection of excavator 

  

(c) misdetection of truck 

  

(d) detection failures of truck and bulldozer 

Figure 9: Comparison of YOLOv8n model detection results

5 Conclusion

This study presents an improved version of the YOLOv8n algorithm that is specifically designed
to detect foreign objects on transmission lines. The iterative version of the algorithm employs the
SPD-Conv module, which replaces the stepping and pooling operations with a space-to-depth convo-
lution followed by a non-stepping convolution. This eliminates the stepping and pooling operations
altogether. The model’s ability to handle objects with low image resolution or size is enhanced by
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downsampling the feature map while preserving distinguishing feature information. Additionally,
the selective attention LSK module is included to dynamically adjust its large spatial receptive field
to better simulate the ranging context of various objects in the scene and improve the accuracy
of detecting small targets. Additionally, substituting the CIoU Loss function with the SIoU Loss
function aids in quicker model convergence. The experimental results demonstrate that the SIoU
Loss function produces superior detection outcomes when there is significant overlap between target
frames. These experimental results confirm the effectiveness of the improved model in object detection
and significantly enhance detection accuracy. The data indicate that the enhanced algorithm attains
an average detection accuracy of 88.8% and a detection speed of 59.17 frames per second (FPS),
demonstrating its potential applicability in identifying foreign objects on transmission lines.

This paper reports progress in recognizing cranes at lower image resolutions or with smaller
objects, particularly in the field of leakage detection misdetection. However, the algorithm still
has limitations, and tower crane identification accuracy, a significant threat to transmission lines,
needs improvement. Tower cranes typically present multiple intersecting lines and angles in their
images, increasing the difficulty of accurate bounding box localization. Additionally, tower crane
environments are often cluttered with complex scenes, such as construction sites, which can be easily
mistaken for surrounding objects. This makes it challenging for algorithms to accurately extract
tower crane features from the background. Future research will concentrate on methodological
enhancements to improve network performance. To address the identified shortcomings and enable
practical applications of the algorithms in complex real-world environments, we will explore the use
of larger datasets, increased sensitivity to boundary information, and expanding the sensory field of
the model.
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