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ABSTRACT

The α-universal triple I (α-UTI) method is a recognized scheme in the field of fuzzy reasoning, which was proposed
by our research group previously. The robustness of fuzzy reasoning determines the quality of reasoning algorithms
to a large extent, which is quantified by calculating the disparity between the output of fuzzy reasoning with
interference and the output without interference. Therefore, in this study, the interval robustness (embodied as
the interval stability) of the α-UTI method is explored in the interval-valued fuzzy environment. To begin with,
the stability of the α-UTI method is explored for the case of an individual rule, and the upper and lower bounds
of its results are estimated, using four kinds of unified interval implications (including the R-interval implication,
the S-interval implication, the QL-interval implication and the interval t-norm implication). Through analysis, it
is found that the α-UTI method exhibits good interval stability for an individual rule. Moreover, the stability of
the α-UTI method is revealed in the case of multiple rules, and the upper and lower bounds of its outcomes are
estimated. The results show that the α-UTI method is stable for multiple rules when four kinds of unified interval
implications are used, respectively. Lastly, the α-UTI reasoning chain method is presented, which contains a chain
structure with multiple layers. The corresponding solutions and their interval perturbations are investigated. It is
found that the α-UTI reasoning chain method is stable in the case of chain reasoning. Two application examples in
affective computing are given to verify the stability of the α-UTI method. In summary, through theoretical proof
and example verification, it is found that the α-UTI method has good interval robustness with four kinds of unified
interval implications aiming at the situations of an individual rule, multi-rule and reasoning chain.
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1 Introduction

As the core of fuzzy logic [1–3], fuzzy reasoning plays an important role in intelligent control,
affective computing, machine vision, large models and other fields [4–7]. Fuzzy reasoning itself has
two key problems. The first problem is fuzzy modus ponens (FMP):

FMP: FocusingonQ �→ P and Q′, calculate P′ (1)
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The other one is fuzzy modus tollens (FMT):

FMT: Focusing on Q �→ P and P′, calculate Q′ (2)

Since Zadeh came up with the compositional rule of inference (CRI) [8,9] method in 1973, it has
been widely adopted in various fields such as industrial control and artificial intelligence. So far, many
scholars have presented various fuzzy reasoning methods. Among them, Wang’s triple I (TI) method
[10] is one of the most influential methods.

Due to the strong logical completeness of the TI method, many scholars have carried out more
in-depth research in this direction. Many methods are proposed to enhance the TI method, such as
the α-triple I constraint degree method [11], the α-universal triple I (α-UTI) method (proposed by
us in [12]), the quintuple implicational method [13,14], symmetric implicational methods [15] and
similarity-base inference methods [16]. These methods all enhance the performance of the TI method
to a certain extent. It is necessary to test the different properties of these methods in order to analyze
their performance.

Among them, robustness is a crucial property, which refers to the resistance of the method to
perturbations. It can be quantified by calculating the gap between the output of the fuzzy reasoning
method with interference and the output without interference. The smaller the gap, the smaller the
impact of interference. Distance [17–19] (or dissimilarity) is a common tool, including the Chebyshev
distance [20], the Minkowski distance [21] and the Hamming distance [22]. The concepts of maximum
ε-disturbance, α-similarity, fuzzy set approximate equality derived from Chebyshev distance are
explored in detail in [23–26]. Therefore, the Chebyshev distance is also used in this study to measure
the gap between the original output and the disturbed output to evaluate the robustness.

Fuzzy implication plays a key role in fuzzy reasoning strategy. Different implications will also
have different effects on the robustness of the method. Reference [26] studied the robustness of the
CRI method when adopting R-implications, S-implications and QL-implications, and demonstrates
that CRI had strong stability. In [17], the robustness of the BKS (Bandler-Kohout subproduct)
method with S-implications and QL-implications was discussed in the context of interval perturbation.
Wang et al. [27] discovered the robustness of the TI method.

The main formula of the α-UTI method for FMP is as below [12] (α ∈ [0, 1]):

(Q �→ P) �→ (Q′ �→ P′) ≥ α. (3)

The α-UTI method has been widely recognized in the field of fuzzy reasoning as a generalization
of the CRI method and the TI method. The α-UTI method is also a generalization of the universal
triple I (UTI) method proposed in [12]. In detail, when α = 1, the α-UTI method degenerates into the
UTI method.

The current research gaps in this field include the following two aspects:

• On the one hand, how to give the solution of chain reasoning, a special form of reasoning, is
a tough problem in fuzzy reasoning. In this regard, we can consider starting from the α-UTI
method to construct a scheme oriented towards chain reasoning.

• On the other hand, it is not clear how the interval stability of the α-UTI method is. In particular,
can the upper and lower bounds of its reasoning be estimated? This aspect has not yet been
discussed. This has aroused our great interest, and also constitutes the research goal of this
paper.



CMC, 2024, vol.79, no.1 1065

In this study, we explore the interval robustness of the α-UTI method, which is embodied by
interval stability.

Fig. 1 shows the detailed schematic diagram of the proposed study.

Figure 1: The detailed schematic diagram of the proposed study

The proposed study includes the following aspects:

• To begin with, we discuss the robustness of the α-UTI method in the case of an individual rule,
and give an estimate of the upper and lower bounds. Therein, four kinds of unified interval
implications mentioned above are employed in turn. It is important to note that each kind of
implication actually contains a lot of specific implications, so this study can incorporate many
implications into its framework. The process and flow chart of the corresponding algorithm are
given. The results show that the α-UTI method is stable in the individual rule case under the
interval perturbation.

• Moreover, we provide the estimation for upper and lower bounds for the multiple rules case of
the α-UTI method. Here, four kinds of unified interval implications are respectively examined
in the α-UTI method. The results show that, in the context of the interval perturbation, the
α-UTI method is stable for the situation of multiple rules.

• In addition, for the problem of chain reasoning, we put forward a strategy based upon the
α-UTI method, which is called the α-UTI reasoning chain method. We provide an intelligent
algorithm to estimate its upper and lower bounds, and draw the corresponding flow chart. In
this case, the four types of interval implications are adopted in turn. It is found the α-UTI
reasoning chain method is stable for the problem of chain reasoning.

• Lastly, the α-UTI method is analyzed through two application examples in affective computing.
Here we propose the scheme of emotional deduction based on the α-UTI method. These
examples verify the stability of the α-UTI method.

To sum up, the results show that in three cases of individual rule, multiple rules and reasoning
chain, the α-UTI method has good interval stability when it respectively adopts four kinds of unified
interval implications mentioned above.
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The structure of this paper is as follows. Section 2 gives the fundamental knowledge and related
work. Sections 3 and 4 prove the robustness of the α-UTI method from the perspectives of individual
rule and multiple rules, respectively. Section 5 probes into the robustness of the α-UTI reasoning
chain method and its robustness. Section 6 gives two examples. Section 7 summarizes all the work
and provides the prospect.

2 Preliminaries

This section mainly introduces the basic knowledge of fuzzy reasoning, and provides some interval
implications and interval connectives.

Definition 2.1 [26–28]. Let Q denote the set of intervals in the range [0, 1], that is, Q =
{[p, q] |0 ≤ p ≤ q ≤ 1}.

There are two functions L: Q → R and U : Q → R that extract the lower and upper endpoints
of an interval, respectively.

L ([m, n]) = m, U ([m, n]) = n. (4)

For any Q ∈ Q, using interval notation, the lower and upper endpoints can also be expressed as
Q and Q. The following definition gives some basic operations of intervals.

Definition 2.2 [28–30]. For any Q1, Q2 ∈ Q, one has

a) Q1 ≥ Q2 if and only if Q1 ≥ Q2, Q1 ≥ Q2;

b) Q1 ⊆ Q2 if and only if Q1 ≥ Q2, Q1 ≤ Q2;

c) Q1 + Q2 =
[
Q1 + Q2, Q1 + Q2

]
;

d) Q1 − Q2 = max
(∣∣∣Q1 − Q2

∣∣∣ , ∣∣∣Q1 − Q2

∣∣∣).

In order to facilitate the subsequent operation, we give two tokens, namely 0̂ = [0, 0] and 1̂ = [1, 1].
The definition of interval fuzzy implication is given below.

Definition 2.3 [30,31]. The operation �→ : Q2 → Q is an interval fuzzy implication if it satisfies the
underlying (5) and (6) :

0̂ �→ 1̂ = 1̂ �→ 1̂ = 0̂ �→ 0̂ = 1̂, (5)

1̂ �→ 0̂ = 0̂. (6)

For the definition of interval fuzzy implication, there are other definitions, such as the need
for incrementality with regard to the second variable. But here conditions (5) and (6) are often
basic conditions, and generally need to be met. In summary, Definition 2.3 here is a classical and
fundamental definition of interval fuzzy implication.

Two important operations are further defined here, in which these two concepts are mutually
symmetric.

Definition 2.4 [32,33]. An operation ⊗ : Q2 → Q is referred to as an interval t-norm, when the
operation is commutative, associative, monotonically increasing and satisfies 1̂ ⊗ Q = Q (Q ∈ Q).

Definition 2.5 [28,34]. An operation ⊕ : Q2 → Q is referred to as an interval t-conorm, when the
operation is commutative, associative, monotonically increasing and satisfies 0̂ ⊕ Q = Q (Q ∈ Q).
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The interval t-norm and the interval t-conorm are symmetric concepts. As the opposite structure
of conventional operations, interval fuzzy negation is defined as below.

Definition 2.6 [28,30,34,35]. An operation N: Q → Q is under the title of an interval fuzzy
negation, if it satisfies the subsequent conditions (where Q1, Q2 ∈ Q):

a) (N1) : N
(

0̂
)

= 1̂ when N
(

1̂
)

= 0̂;

b) (N2) : IfQ1 ≥ Q2 then N (Q1) ≤ N (Q2);
c) (N3) : IfQ1 ⊆ Q2 then N (Q1) ⊇ N (Q2).

On the basis of interval fuzzy negation, if it still has:

d) (N4) : N (N (Q)) = Q, ∀Q ∈ Q

then this is a strong interval fuzzy negation.

Subsequently, three important classes of interval fuzzy implication are defined as below.

Definition 2.7 [30]. An interval fuzzy implication is called an R-interval implication denoted by
�→⊗ whenever there exists an interval t-norm ⊗ and �→⊗ is designed by

Q1 �→⊗ Q2 = sup {Q3 ∈ Q : Q1 ⊗ Q3 ≤ Q2} (7)

Definition 2.8 [30]. An interval fuzzy implication is under the title of an S-interval implication
denoted by �→⊕,N whenever there exist an interval t-conorm and an interval fuzzy negation such that
�→⊕,N is given by

Q1 �→⊕,N Q2 = N (Q1) ⊕ Q2 (8)

Definition 2.9 [30]. An interval fuzzy implication is called a QL-interval implication represented
by �→⊗,⊕,N whenever there exist an interval t-norm, an interval t-conorm and an interval fuzzy negation
letting �→⊗,⊕,N be provided by

Q1 �→⊗,⊕,N Q2 = N (Q1) ⊕ (Q1 ⊗ Q2) (9)

The interval t-norm can also be regarded as an interval fuzzy implication, called the interval t-
norm implication.

Definition 2.10 [26]. Suppose μl, μu ∈ F (Θ) and μl ≤ μr (θ ∈ Θ), namely

μl (θ) ≤ μu (θ) , μl (θ) ≤ μu (θ) (10)

then [μl, μu] is called the fuzzy interval on Θ.

In what follows, the idea of interval disturbance is provided.

Definition 2.11 [26]. Suppose S ∈ F (Θ) and [μl, μu] is the fuzzy interval on Θ. If μl ≤ S ≤
μu (θ ∈ Θ), that means

μl (θ) ≤ S (θ) ≤ μu (θ) , μl (θ) ≤ S (θ) ≤ μu (θ) (11)

holds, then [μl, μu] is called the interval disturbance of S and we denote S ∈ [μl, μu].

Definition 2.12 [26]. Suppose X , Y ∈ F (Θ), Z ∈ F (Ω) and X ∈ [xl, xu], Y ∈ [yl, yu], Z ∈ [zl, zu].
A fuzzy reasoning strategy f is robust, if for any ε > 0, a fuzzy interval [λl, λu] on Ω and δ > 0 such
that λu − λl < ε (ω ∈ Ω) (namely λu (ω) − λl (ω) < ε and λu (ω) − λl (ω) < ε are established) and
f (X , Y , Z) ∈ [λl, λu] whenever xu −xl < δ (θ ∈ Θ), yu −yl < δ (θ ∈ Θ) and zu −zl < δ (ω ∈ Ω) (namely
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xu (θ) − xl (θ) < δ, xu (θ) − xl (θ) < δ, yu (θ) − yl (θ) < δ, yu (θ) − yl (θ) < δ, zu (ω) − zl (ω) < δ and
zu (ω) − zl (ω) < δ are established).

In this work, ∨ and ∧ stand for supremum and infimum, respectively.

Lemma 2.1 [26]. Let σ1 and σ2 be real-valued, bounded maps on Θ, and S, R ∈ F (Θ). The following
a)∼j) can be obtained:

a) σ1 ∨ σ2 = max {σ1, σ2} = (σ1 + σ2) /2 + |σ1 − σ2| /2;
b) σ1 ∧ σ2 = min {σ1, σ2} = (σ1 + σ2) /2 − |σ1 − σ2| /2;
c) − |σ1 − σ2| ≤ |σ1| − |σ2| ≤ |σ1 − σ2|;
d) ∧θ∈ΘS (θ) + ∧θ∈ΘR (θ) ≤ ∧θ∈Θ (S (θ) + R (θ));
e) ∨θ∈Θ (S (θ) + R (θ)) ≤ ∨θ∈ΘS (θ) + ∨θ∈ΘR (θ);
f) ∨θ∈ΘS (θ) = − ∧θ∈Θ (−S (θ));
g) ∧θ∈Θ (S (θ) ∧ R (θ)) = (∧θ∈ΘS (θ)) ∧ (∧θ∈ΘR (θ));
h) ∧θ∈Θ (S (θ) ∨ R (θ)) ≥ (∧θ∈ΘS (θ)) ∨ (∧θ∈ΘR (θ));
i) ∨θ∈Θ (S (θ) ∧ R (θ)) ≤ (∨θ∈ΘS (θ)) ∧ (∨θ∈ΘR (θ));
j) ∨θ∈Θ (S (θ) ∨ R (θ)) = (∨θ∈ΘS (θ)) ∨ (∨θ∈ΘR (θ)).

Lemma 2.2 [17] Let σ1 and σ2 be real-valued, bounded maps on Θ, then it can also be obtained:

a) ∨θ∈Θσ1 (θ) − ∨θ∈Θσ2 (θ) ≤ ∨θ∈Θ (σ1 (θ) − σ2 (θ));
b) ∧θ∈Θσ1 (θ) − ∧θ∈Θσ2 (θ) ≤ ∨θ∈Θ (σ1 (θ) − σ2 (θ));
c) ∧θ∈Θσ1 (θ) − ∧θ∈Θσ2 (θ) ≥ ∧θ∈Θ (σ1 (θ) − σ2 (θ));
d) ∨θ∈Θσ1 (θ) − ∨θ∈Θσ2 (θ) ≥ ∨θ∈Θ (σ1 (θ) − σ2 (θ)).

Example 2.1 Let [i, j] , [h, k] ∈ Q. Here are some common interval fuzzy implications:

a) [i, j] �→RL [h, k] = [(1 − i + j) ∧ (1 − j + k) ∧ 1, (1 − j + k) ∧ 1](Lukasiewicz (R-) interval
implication);

b) [i, j] �→SL [h, k] = [(1 − j + h) ∧ 1, (1 − i + k) ∧ 1] (Lukasiewicz (S-) interval implication);
c) [i, j] �→G [h, k] = [((1 − i) ∨ h) ∧ ((1 − j) ∨ k) , (1 − j) ∨ k] (G interval implication);
d) [i, j] �→L [h, k] = [((1 − i) ∨ h) ∧ ((1 − j) ∨ k) , (1 − i) ∨ k] (L interval implication);
e) [i, j] �→KD [h, k] = [(1 − j) ∨ h, (1 − i) ∨ k] (Kleene-Dienes interval implication);
f) [i, j] �→R [h, k] = [1 − j + jh, 1 − i + ik] (Reichenbach interval implication);
g) [i, j] �→M [h, k] = [[(1 − j) ∧ (1 − k)] ∨ h, [(1 − i) ∧ (1 − h)] ∨ k] (M interval implication).

Example 2.2 Here are three representative interval t-norms, which are the Gödel norm ⊗G, the
Goguen norm ⊗Go and the Lukasiewicz norm ⊗L. The residual interval fuzzy implications are �→G,
�→Go and �→L.

a) �→G and ⊗G are characterized as follows:

[i, j] �→G [h, k] =

⎧⎪⎪⎨
⎪⎪⎩

[h, k] , i > h, j > k
[h, 1] , i > h, j ≤ k
[1, 1] , i ≤ h, j ≤ k
[k, k] , i ≤ h, j > k

[i, j] ⊗G [h, k] = [i ∧ h, j ∧ k]

(12)

b) �→Go and ⊗Go are given as below:
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[i, j] �→Go [h, k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
h
i

∧ k
j

,
k
j

]
, i > h, j > k

[
h
i

, 1
]

, i > h, j ≤ k

[1, 1] , i ≤ h, j ≤ k
[

k
j

,
k
j

]
, i ≤ h, j > k

[i, j] ⊗Go [h, k] = [ih, jk]

(13)

c) �→L and ⊗L are expressed as follows:

[i, j] �→L [h, k] =

⎧⎪⎪⎨
⎪⎪⎩

[(1 − i + h) ∧ (1 − j + k) , 1 − j + k] , i > h, j > k
[1 − i + h, 1] , i > h, j ≤ k
[1, 1] , i ≤ h, j ≤ k
[1 − j + n, 1 − j + n] , i ≤ h, j > k

[i, j] ⊗L [h, k] = [0 ∨ (i + h − 1) , 0 ∨ (j + k − 1)]

(14)

3 Interval Perturbation of the α-UTI Method for an Individual Rule

For an individual rule, assume that [ξl, ξu] and [ϕl, ϕu] are fuzzy intervals on Θ and [ψl, ψu] is a fuzzy
interval on Ω. Denote UTI1 (ω) = UTI1 (Ξ, Φ, Ψ) (ω) (ω ∈ Ω). For simplicity of calculation, we give
the following notations:

∧θ (f ) = inf
θ∈Θ

{f (θ)} , ∨θ (f ) = sup
θ∈Θ

{f (θ)} (15)

Theorem 3.1 Let Ξ, Φ ∈ F (Θ), Ψ ∈ F (Ω) and Ξ ∈ [ξl, ξu], Φ ∈ [ϕl, ϕu], Ψ ∈ [ψl, ψu]. If �→ is an
R-interval implication, then the result of the α-UTI method is as follows:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]}

≤ UTI1 (ω) ≤ ∨θ

{[
∨θ

(
ϕu

)
, ∨u (ϕu)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]} (16)

Proof: The R-interval implication is decreasing with respect to the first parameter and increasing
with respect to the second parameter. From Lemma 2.1 and Lemma 2.2, it can be obtained as follows:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]}

= ∨
θ∈Θ

{
∧

θ∈Θ

[
ϕl (θ) , ϕl (θ)

]
⊗
[(

∨
θ∈Θ

[
ξu (θ) , ξu (θ)

]
�→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]}

≤ UTI1 (ω) .

(17)
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Moreover, one has

UTI1 (ω) = ∨
θ∈Θ

{[
Φ (θ) , Φ (θ)

]⊗ [([
Ξ (θ) , Ξ (θ)

] �→ [
Ψ (ω) , Ψ (ω)

])⊗ [α, α]
]}

≤ ∨
θ∈Θ

{
∨

θ∈Θ

[
ϕu (θ) , ϕu (θ)

]
⊗
[(

∧
θ∈Θ

[
ξl (θ) , ξl (θ)

]
�→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]}

= ∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]}
.

(18)

In summary, we have proved that (16) holds.

Theorem 3.1 gives a estimation of the corresponding α-UTI solutions for the case of the interval
perturbation with an individual rule. In other words, it respectively provides an upper bound and a
lower bound of the α-UTI solutions for R-interval implications.

Theorem 3.2, Theorem 3.3 and Theorem 3.4 can be achieved in a similar mode, in which the
interval t-norm implication, the S-interval implication, the QL-interval implication are employed,
respectively.

Theorem 3.2 Let Ξ, Φ ∈ F (Θ), Ψ ∈ F (Ω) and Ξ ∈ [ξl, ξu], Φ ∈ [ϕl, ϕu], Ψ ∈ [ψl, ψu]. If �→ is an
interval t-norm implication, then the conclusion of the upper and lower bounds of the α-UTI method
can be given as below:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]}

≤ UTI1 (ω) ≤ ∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]}
.

(19)

Theorem 3.3 Let Ξ, Φ ∈ F (Θ), Ψ ∈ F (Ω) and Ξ ∈ [ξl, ξu], Φ ∈ [ϕl, ϕu], Ψ ∈ [ψl, ψu]. If �→ is an
S-interval implication, then the conclusion of the upper and lower bounds of the α-UTI method can
be given as below:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[(

N
[
∨θ

(
ξu

)
, ∨θ

(
ξu

)]⊕1

[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]}

≤ UTI1 (ω) ≤ ∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[(

N
[
∧θ

(
ξl

)
, ∧θ

(
ξl

)]⊕1

[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]} (20)

Theorem 3.4 Let Ξ, Φ ∈ F (Θ), Ψ ∈ F (Ω) and Ξ ∈ [ξl, ξu], Φ ∈ [ϕl, ϕu], Ψ ∈ [ψl, ψu]. If �→ is a
QL-interval implication, then the conclusion of the upper and lower bounds of the α-UTI method can
be found as below:

∨θ

⎧⎨
⎩
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
⎡
⎣
⎛
⎝N

([
∨θ

(
ξu

)
, ∨θ

(
ξu

)])⊕1([
∧θ

(
ξl

)
, ∧θ

(
ξl

)]⊗1

[
ψl (ω) , ψl (ω)

])
⎞
⎠⊗ [α, α]

⎤
⎦
⎫⎬
⎭

≤ UTI1 (ω) ≤ ∨θ

⎧⎨
⎩
[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
⎡
⎣
⎛
⎝N

([
∧θ

(
ξl

)
, ∧θ

(
ξl

)])⊕1([
∨θ

(
ξu

)
, ∨θ

(
ξu

)]⊗1

[
ψu (ω) , ψu (ω)

])
⎞
⎠⊗ [α, α]

⎤
⎦
⎫⎬
⎭

(21)

In light of Theorem 3.1 to Theorem 3.4, in the case of an individual rule, if related operators
including the interval t-norm, the interval t-conorm and so on, then the α-UTI method is stable with
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regard to S-, QL- and interval t-norm implication. The α-UTI method is stable with respect to R-
interval implication if the R-interval implication and the interval t-norm are continuous. All in all, the
α-UTI method is robust for the individual rule.

Suppose that for the α-UTI method, there exists a perturbation array of input (Ξ, Ψ, Φ) as follows:

([ξlm, ξum] , [ψlm, ψum] , [ϕlm, ϕum]) (m = 1, 2, . . .) . (22)

Besides, the consequent properties are satisfied:

lim
m→∞

∨θ∈Θ (ξum − ξlm) = lim
m→∞

∨ω∈Ω (ψum − ψlm) = lim
m→∞

∨θ∈Θ (ϕum − ϕlm) = 0. (23)

In detail, we have from (23) that

limm→∞ ∨θ∈Θ (ξum − ξlm) = limm→∞ ∨θ∈Θ

([
ξum, ξum

]
−
[
ξlm, ξlm

])

= limm→∞ ∨θ∈Θ

{
max

(∣∣∣ξum − ξlm

∣∣∣ , ∣∣ξum − ξum

∣∣)} = 0.
(24)

Others can be analogously expanded.

Considering that λlm, λum are given as upper and lower bounds on the output of the α-UTI method,
it means that for ([ξlm, ξum] , [ψlm, ψum] , [ϕlm, ϕum]) (m = 1, 2, . . .), one has

UTI1 (ω) ∈ [λlm, λum] (25)

When the continuity condition is satisfied, then

lim
m→∞

∨θ∈Θ (λrm − λum) = 0 (26)

holds. In other words, if the above-mentioned continuity condition is effective, the outcome of the α-
UTI method stably converges to a value. As a consequence, in light of the stable definition given in
Definition 2.12, the α-UTI method is stable in the individual rule case.

For Theorem 3.1, we give an intelligent algorithm (see the following Algorithm 1) to deal with
such operations. For the other theorems, we can get corresponding algorithms.

Algorithm 1: The upper and lower bounds of the α-UTI method for an individual rule with an R-
interval implication.
Input: [ξl, ξu], [ϕl, ϕu], [ψl, ψu], Θ, [α, α], R-interval implication �→.
Output: The upper bound UP, the lower bound LO.
procedure
1. Set iterMax as the number of elements of Θ;
2. Let iter = 0;
3. repeat
4. Set iter = iter + 1;
5. Let θ be the current element of �;
6. Set LO = 0̂;
7. Compute

[
∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

]
;

8. Calculate
([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α];

(Continued)
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Algorithm 1 (continued)

9. Figure up
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]
;

10. if LO ≤
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]
,

11. then LO =
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[([

∨θ

(
ξu

)
, ∨θ

(
ξu

)] �→
[
ψl (ω) , ψl (ω)

])
⊗ [α, α]

]
;

12. Set UP = 0̂;
13. Compute

[
∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

]
;

14. Calculate
([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α];

15. Figure up
[
∨θ

(
ϕu

)
, ∨u (ϕu)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]
;

16. if UP ≤
[
∨θ

(
ϕu

)
, ∨u (ϕu)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]
,

17. then UP =
[
∨θ

(
ϕu

)
, ∨u (ϕu)

]
⊗
[([

∧θ

(
ξl

)
, ∧θ

(
ξl

)] �→
[
ψu (ω) , ψu (ω)

])
⊗ [α, α]

]
;

18. until iter ≥ iterMax;
19. return UP, LO;
end procedure

Fig. 2 shows the flow chart of Algorithm 1.

4 Interval Perturbation of the α-UTI Method for Multiple Rules

For multiple rules, the notation for representing fuzzy intervals is similar for the individual rule.
It is denoted that (ω ∈ Ω)

UTIn (ω) = UTI (Ξ1, ...., Ξn, Ψ1, ...., Ψn, Φ) (ω) (27)

Theorem 4.1 Assume that Ξi, Φ ∈ F (Θ), Ψi ∈ F (Ω) where Ξi ∈ [ξli, ξui], Φ ∈ [ϕl, ϕu], Ψi ∈ [ψli, ψui]
(i = 1, · · · , n). When �→ is an S-interval implication, the result of the α-UTI method is as follows:

∨θ

{[
∧θ

(
ϕl

)
, ∧u (ϕl)

]
⊗
[
∧n

i=1

(
N
[
∨θ

(
ξui

)
, ∨θ

(
ξui

)]⊕1

[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]}

≤ UTIn (ω) ≤
∨θ

{[
∨θ

(
ϕu

)
, ∨u (ϕu)

]
⊗
[
∧n

i=1

(
N
[
∧θ

(
ξli

)
, ∧θ

(
ξli

)]⊕1

[
ψui (ω) , ωui (ω)

])
⊗ [α, α]

]}
.

(28)

Proof: When �→ is an S-interval implication, there are an interval t-conorm ⊕1 and an interval
fuzzy negation N letting

Q1 �→⊕1,N Q2 = N (Q1) ⊕1 Q2 (29)

hold for two fuzzy sets Q1, Q2.
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Figure 2: The flow chart of Algorithm 1

It follows from Lemma 2.1 and Lemma 2.2 that one has

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[
∧n

i=1

(
N
[
∨θ

(
ξui

)
, ∨θ

(
ξui

)]⊕1

[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]}

= ∨
θ∈Θ

{
∧

θ∈Θ

[
ϕl (θ) , ϕl (θ)

]
⊗
[
∧n

i=1

(
N
(

∨
θ∈Θ

[
ξui (θ) , ξui (θ)

])
⊕1

[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]}

≤ UTIn (ω) .

(30)

In a similar structure, we can also find

UTIn (ω) = ∨
θ∈Θ

{[
Φ (θ) , Φ (θ)

]⊗ [∧n
i=1

(
N
[
Ξi (θ) , Ξi (θ)

]⊕1

[
Ψi (ω) , Ψi (ω)

])⊗ [α, α]
]}

≤ ∨
θ∈Θ

{
∨

θ∈Θ

[
ϕu (θ) , ϕu (θ)

]
⊗
[
∧n

i=1

(
N
(

∧
θ∈Θ

[
ξli (θ) , ξli (θ)

])
⊕1

[
ψui (ω) , ψui (ω)

])
⊗ [α, α]

]}

= ∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[
∧n

i=1

(
N
[
ĩθ
(
ξli

)
, ĩθ

(
ξli

)]⊕1

[
ψui (ω) , ψui (ω)

])
⊗ [α, α]

]}
.

(31)
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To sum up, we can find that (28) is valid. The proof is accomplished.

Theorem 4.2, Theorem 4.3 and Theorem 4.4 can be proved in an analogous mode, in which four
kinds of unified interval implications are employed in turn.

Theorem 4.2 Assume that Ξi, Φ ∈ F (Θ), Ψi ∈ F (Ω) where Ξi ∈ [ξli, ξui], Φ ∈ [ϕl, ϕu], Ψi ∈
[ψli, ψui](i = 1, · · · , n). When �→ is an R-interval implication, the conclusion of the upper and lower
bounds of the α-UTI method can be given as below:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[
∧n

i=1

([
∨θ

(
ξui

)
, ∨θ

(
ξui

)] �→
[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]}

≤ UTIn (ω) ≤
∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[
∧n

i=1

([
∧θ

(
ξli

)
, ∧θ

(
ξli

)] �→
[
ψui (ω) , ψui (ω)

])
⊗ [α, α]

]}
.

(32)

Theorem 4.3 Assume that Ξi, Φ ∈ F (Θ), Ψi ∈ F (Ω) where Ξi ∈ [ξli, ξui], Φ ∈ [ϕl, ϕu], Ψi ∈
[ψli, ψui](i = 1, · · · , n). When �→ is an interval t-norm implication, the result of the α-UTI method is
as follows:

∨θ

{[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[
∧n

i=1

([
∧θ

(
ξli

)
, ∧θ

(
ξli

)] �→
[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]}

≤ UTIn (ω) ≤
∨θ

{[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗
[
∧n

i=1

([
∨θ

(
ξui

)
, ∨θ

(
ξui

)] �→
[
ψui (ω) , ψui (ω)

])
⊗ [α, α]

]}
.

(33)

Theorem 4.4 Assume that Ξi, Φ ∈ F (Θ), Ψi ∈ F (Ω) where Ξi ∈ [ξli, ξui], Φ ∈ [ϕl, ϕu], Ψi ∈
[ψli, ψui](i = 1, · · · , n). When �→ is a QL-interval implication, the conclusion of the upper and lower
bounds of the α-UTI method can be given as below:

∨θ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

∧n
i=1

⎛
⎜⎜⎜⎜⎜⎝

N
([

∨θ

(
ξui

)
, ∨θ

(
ξui

)])⊕1⎛
⎜⎝
[
∧θ

(
ξli

)
, ∧θ

(
ξli

)]

⊗1

[
ψli (ω) , ψli (ω)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ UTIn (ω) ≤

∨θ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∨θ

(
ϕu

)
, ∨θ (ϕu)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

∧n
i=1

⎛
⎜⎜⎜⎜⎜⎝

N
([

∧θ

(
ξli

)
, ∧θ

(
ξli

)])⊕1⎛
⎜⎝
[
∨θ

(
ξui

)
, ∨θ

(
ξui

)]

⊗1

[
ψui (ω) , ψui (ω)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(34)

By virtue of Theorem 4.1 to Theorem 4.4, in the case of multiple rules, if operations in Definitions
2.4–2.6 are continuous, the α-UTI method is stable for multiple rules with respect to S-interval
implication, QL-interval implication and interval t-norm implication. In addition, the α-UTI method
is stable with respect to R-interval implication if the interval t-norm and the R-interval implication
are continuous. All in all, the α-UTI fuzzy reasoning method is stable for multiple rules. In short, the
α-UTI method is robust aiming at the multiple rules.
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Suppose that for the α-UTI method, there exists a perturbation array of input (Ξ1, . . . , Ξn, Ψ1, . . . ,
Ψn, Φ) as follows:

([ξlim, ξuim] , [ψlim, ψuim] , [ϕlm, ϕum]) (i = 1, 2, . . . , n; m = 1, 2, . . .) . (35)

Besides, the consequent properties are satisfied

lim
m→∞

∨θ∈Θ (ξuim − ξlim) = lim
m→∞

∨ω∈Ω (ψuim − ψlim) = lim
m→∞

∨θ∈Θ (ϕum − ϕlm) = 0 (36)

In detail, we have from (36) that

lim
m→∞

∨θ∈Θ (ξuim − ξlim) = lim
m→∞

∨θ∈Θ

([
ξuim, ξuim

]
−
[
ξlim, ξlim

])

= lim
m→∞

∨θ∈Θ

{
max

(∣∣∣ξuim − ξlim

∣∣∣ , ∣∣ξuim − ξlim

∣∣)} = 0.
(37)

Others can be analogously analyzed.

Noting that λlm, λum are provided as upper and lower bounds on the outcome of the α-UTI method,
it implies that for ([ξlim, ξuim] , [ψlim, ψuim] , [ϕlm, ϕum]) (i = 1, 2, . . . , n; m = 1, 2, . . .), one has

UTIn (ω) ∈ [λlm, λum] . (38)

When the continuity condition is satisfied, then

lim
m→∞

∨θ∈Θ (λum − λlm) = 0 (39)

is effective. That is, if the above-mentioned continuity condition is effective, the outcome of the α-UTI
method stably converges to a value. Thereout, in light of the stable definition, the α-UTI method is
stable for the situation of the multiple rules.

Similar to Theorem 3.1 and Algorithm 1, we can obtain corresponding algorithms for Theorems
4.1, 4.2, 4.3 and 4.4.

5 The α-UTI Reasoning Chain Method and Its Interval Perturbation

Here we propose the α-UTI reasoning chain method. Let Θ1, Θ2, . . . , Θn+1 be n + 1 universes,
and Φ, Ξ1 ∈ F (Θ1), Ψ1, Π1, Ξ2 ∈ F (Θ2), ..., Ψn, Πn ∈ F (Θn+1). The chain reasoning looks like this
consequent structure:

Input: Φ

Rule 1: Ξ1 �→ Ψ1

Output 1: Π1

Rule 2: Ξ2 �→ Ψ2

Output 2: Π2

· · · · · · · · · · · ·
Outputn − 1: Πn−1

Rulen : Ξn �→ Ψn

Final result: Πn

(40)
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To begin with, we employ the α-UTI method to get Π1 from input Φ and rule 1 (Ξ1 �→ Ψ1) . Then,
we use the α-UTI method to find Π2 from input Π1 and rule 2 (Ξ2 �→ Ψ2) . The rest can be done in the
same manner. Lastly, we make use of the α-UTI method to obtain the final result Πn from input Πn−1

and rule n (Ξn �→ Ψn) . At this point, the α-UTI reasoning chain method is constructed.

Because of multiple reasoning, chain reasoning may lead to errors that may expand, so it is
naturally more difficult to maintain stability. So the stability study of the α-UTI reasoning chain
method is more important.

Now we discuss the problem of upper and lower bounds of inference results of the α-UTI
reasoning chain method. First of all, we analyze the case of the S-interval implication.

Theorem 5.1 Let Ξi ∈ [ξli, ξui], Ψi ∈ [ψli, ψui], Φ ∈ [ϕl1, ϕu1] (i = 1, 2, . . . , n), and ⊗ be an interval
t-norm. When �→ is an S-interval implication, the result of the α-UTI reasoning chain method is as
below:

∨θn

⎧⎪⎨
⎪⎩
[
∧θn

(
ϕln

)
, ∧θn (ϕln)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θn

(
ξun

)
, ∨θn

(
ξun

)]⊕1[
ψln (θn+1) , ψln (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Πn (θn+1) ≤

∨θn

⎧⎪⎨
⎪⎩
[
∨θn

(
ϕun

)
, ∨θn (ϕun)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θn

(
ξln

)
, ∧θn

(
ξln

)]⊕1[
ψun (θn+1) , ψun (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(41)

Therein two notions are as follows (i = 1, 2, . . . , n − 1):[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∨θi

(
ϕui

)
, ∨θi (ϕui)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θi

(
ξli

)
, ∧θi

(
ξli

)]⊕1[
ψui (θi+1) , ψui (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(42)

[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∧θi

(
ϕli

)
, ∧θi (ϕli)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θi

(
ξui

)
, ∨θi

(
ξui

)]⊕1[
ψli (θi+1) , ψli (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(43)
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Proof: It follows from the conclusion of Theorem 3.3 that one has

∨θ1

⎧⎪⎨
⎪⎩
[
∧θ1

(
ϕl1

)
, ∧θ1

(ϕl1)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θ1

(
ξu1

)
, ∨θ1

(
ξu1

)]⊕1[
ψl1 (θ2) , ψl1 (θ2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Π1 (θ2) = BKS (Ξ1, Ψ1, Φ) ≤

∨θ1

⎧⎪⎨
⎪⎩
[
∨θ1

(
ϕu1

)
, ∨θ1

(ϕu1)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θ1

(
ξl1

)
, ∧θ1

(
ξl1

)]⊕1[
ψu1 (θ2) , ψu1 (θ2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(44)

Let us denote[
ϕu2 (θ2) , ϕu2 (θ2)

]

� ∨θ1

⎧⎪⎨
⎪⎩
[
∨θ1

(
ϕu1

)
, ∨θ1

(ϕu1)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θ1

(
ξl1

)
, ∧θ1

(
ξl1

)]⊕1[
ψu1 (θ2) , ψu1 (θ2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= ∨
θ1∈Θ1

⎧⎪⎨
⎪⎩ ∨

θ1∈Θ1

[
ϕu1 (θ1) , ϕu1 (θ1)

]
⊗
⎡
⎢⎣
⎛
⎜⎝N

(
∧

θ1∈Θ1

[
ξl1 (θ1) , ξl1 (θ1)

])
⊕1[

ψu1 (θ2) , ψu1 (θ2)
]

⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(45)

[
ϕl2 (θ2) , ϕl2 (θ2)

]

� ∨θ1

⎧⎪⎨
⎪⎩
[
∧θ1

(
ϕl1

)
, ∧θ1

(ϕl1)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θ1

(
ξu1

)
, ∨θ1

(
ξu1

)]⊕1[
ψl1 (θ2) , ψl1 (θ2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= ∨
θ1∈Θ1

⎧⎪⎨
⎪⎩ ∧

θ1∈Θ1

[
ϕl1 (θ1) , ϕl1 (θ1)

]
⊗
⎡
⎢⎣
⎛
⎜⎝N

(
∨

θ1∈Θ1

[
ξu1 (θ1) , ξu1 (θ1)

])
⊕1[

ψl1 (θ2) , ψl1 (θ2)
]

⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(46)

Thus, it can be obtained

∨θ2

⎧⎪⎨
⎪⎩
[
∧θ2

(
ϕl2

)
, ∧θ2

(ϕl2)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θ2

(
ξu2

)
, ∨θ2

(
ξu2

)]⊕1[
ψl2 (θ3) , ψl2 (θ3)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Π2 (θ3) = UTI (Ξ2, Ψ2, Π1) ≤

∨θ2

⎧⎪⎨
⎪⎩
[
∨θ2

(
ϕu2

)
, ∨θ2

(ϕu2)
]

⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θ2

(
ξl2

)
, ∧θ2

(
ξl2

)]⊕1[
ψu2 (θ3) , ψu2 (θ3)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(47)
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Furthermore, it can be derived(i = 1, 2, . . . , n − 1):

∨θi+1

⎧⎪⎨
⎪⎩
[
∧θi+1

(
ϕl(i+1)

)
, ∧θi+1

(
ϕl(i+1)

)]⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θi+1

(
ξu(i+1)

)
, ∨θi+1

(
ξu(i+1)

)]⊕1[
ψl(i+1) (θi+2) , ψl(i+1) (θi+2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Πi+1 (θi+2) = UTI (Ξi+1, Ψi+1, Πi) ≤

∨θi+1

⎧⎪⎨
⎪⎩
[
∨θi+1

(
ϕu(i+1)

)
, ∨ui+1

(
ϕu(i+1)

)]⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θi+1

(
ξl(i+1)

)
, ∧θi+1

(
ξl(i+1)

)]⊕1[
ψu(i+1) (θi+2) , ψu(i+1) (θi+2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(48)

in which,[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∨θi

(
ϕui

)
, ∨θi (ϕui)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θi

(
ξli

)
, ∧θi

(
ξli

)]⊕1[
ψui (θi+1) , ψui (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= ∨
θi∈Θi

⎧⎪⎨
⎪⎩ ∨

θi∈Θi

[
ϕui (θi) , ϕui (θi)

]
⊗
⎡
⎢⎣
⎛
⎜⎝N

(
∧

θi∈Θi

[
ξli (θi) , ξli (θi)

])
⊕1[

ψui (θi+1) , ψui (θi+1)
]

⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(49)

[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∧θi

(
ϕli

)
, ∧θi (ϕli)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θi

(
ξui

)
, ∨θi

(
ξui

)]⊕1[
ψli (θi+1) , ψli (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= ∨
θi∈Θi

⎧⎪⎨
⎪⎩ ∧

θi∈Θi

[
ϕli (θi) , ϕli (θi)

]
⊗
⎡
⎢⎣
⎛
⎜⎝N

(
∨

θi∈Θi

[
ξui (θi) , ξui (θi)

])
⊕1[

ψli (θi+1) , ψli (θi+1)
]

⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(50)

With similar treatment, we can end up with the following formula:

∨θn

⎧⎪⎨
⎪⎩
[
∧θn

(
ϕln

)
, ∧θn (ϕln)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θn

(
ξun

)
, ∨θn

(
ξun

)]⊕1[
ψln (θn+1) , ψln (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Πn (θn+1) = UTI (Ξn, Ψn, Πn−1) ≤

∨θn

⎧⎪⎨
⎪⎩
[
∨θn

(
ϕun

)
, ∨θn (ϕun)

]
⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θn

(
ξln

)
, ∧θn

(
ξln

)]⊕1[
ψun (θn+1) , ψun (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(51)

To sum up, (41) holds. The proof is accomplished.
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Moreover, we further discover the case of the R-interval implication, where the proof process is
similar to that obtained.

Theorem 5.2 Let Ξi ∈ [ξli, ξui], Ψi ∈ [ψli, ψui], Φ ∈ [ϕl1, ϕu1](i = 1, 2, . . . , n), and ⊗ be an interval
t-norm. When �→ is an R-interval implication, the conclusion of the upper and lower bounds of the
α-UTI reasoning chain method can be given as below:

∨θn

⎧⎪⎨
⎪⎩
[
∧θn

(
ϕln

)
, ∧θn (ϕln)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∨θn

(
ξun

)
, ∨θn

(
ξun

)] �→
[
ψln (θn+1) , ψln (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Πn (θn+1) ≤

∨θn

⎧⎪⎨
⎪⎩
[
∨θn

(
ϕun

)
, ∨θn (ϕun)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∧θn

(
ξln

)
, ∧θn

(
ξln

)] �→
[
ψun (θn+1) , ψun (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(52)

Therein two notions are as follows (i = 1, 2, . . . , n − 1):[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∨θi

(
ϕui

)
, ∨θi (ϕui)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∧θi

(
ξli

)
, ∧θi

(
ξli

)] �→
[
ψui (θi+1) , ψui (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(53)

[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∧θi

(
ϕli

)
, ∧θi (ϕli)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∨θi

(
ξui

)
, ∨θi

(
ξui

)] �→
[
ψli (θi+1) , ψli (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(54)

Along similar lines, we can prove the following two theorems with regard to the interval t-norm
implication and the QL-interval implication.

Theorem 5.3 Let Ξi ∈ [ξli, ξui], Ψi ∈ [ψli, ψui], Φ ∈ [ϕl1, ϕu1](i = 1, 2, . . . , n), and ⊗ be an interval
t-norm. When �→ is an interval t-norm implication, the conclusion of the upper and lower bounds of
the α-UTI reasoning chain method can be given as below:

∨θn

⎧⎪⎨
⎪⎩
[
∧θn

(
ϕln

)
, ∧θn (ϕln)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∧θn

(
ξln

)
, ∧θn

(
ξln

)] �→
[
ψln (θn+1) , ψln (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

≤ Πn (θn+1) ≤

∨θn

⎧⎪⎨
⎪⎩
[
∨θn

(
ϕun

)
, ∨θn (ϕun)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∨θn

(
ξun

)
, ∨θn

(
ξun

)] �→
[
ψun (θn+1) , ψun (θn+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(55)
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Therein two notions are as follows (i = 1, 2, . . . , n − 1):[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∨θi

(
ϕui

)
, ∨θi (ϕui)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∨θi

(
ξui

)
, ∨θi

(
ξui

)] �→
[
ψui (θi+1) , ψui (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ;

(56)

[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]

� ∨θi

⎧⎪⎨
⎪⎩
[
∧θi

(
ϕli

)
, ∧θi (ϕli)

]
⊗
⎡
⎢⎣
⎛
⎜⎝
[
∧θi

(
ξli

)
, ∧θi

(
ξli

)] �→
[
ψli (θi+1) , ψli (θi+1)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

(57)

Theorem 5.4 Let Ξi ∈ [ξli, ξui], Ψi ∈ [ψli, ψui], Φ ∈ [ϕl1, ϕu1](i = 1, 2, . . . , n), and ⊗ be an interval
t-norm. When �→ is a QL-interval implication, the result of the α-UTI reasoning chain method is as
below:

∨θn

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∧θn

(
ϕln

)
, ∧θn (ϕln)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

N
([

∨θn

(
ξun

)
, ∨θn

(
ξun

)])⊕1⎛
⎜⎝
[
∧θn

(
ξln

)
, ∧θn

(
ξln

)]⊗1[
ψln (θn+1) , ψln (θn+1)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ Πn (θn+1) ≤

∨θn

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∨θn

(
ϕun

)
, ∨θn (ϕun)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

N
([

∧θn

(
ξln

)
, ∧θn

(
ξln

)])⊕1⎛
⎜⎝
[
∨θn

(
ξun

)
, ∨θn

(
ξun

)]⊗1[
ψun (θn+1) , ψun (θn+1)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(58)

Therein two notions are as follows (i = 1, 2, . . . , n − 1):[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]

� ∨θi

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∨θi

(
ϕui

)
, ∨θi (ϕui)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

N
([

∧θi

(
ξli

)
, ∧θi

(
ξli

)])⊕1⎛
⎜⎝
[
∨θi

(
ξui

)
, ∨θi

(
ξui

)]⊗1[
ψui (θi+1) , ψui (θi+1)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

;
(59)
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[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]

� ∨θi

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∧θi

(
ϕli

)
, ∧θi (ϕli)

]
⊗

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

N
([

∨θi

(
ξui

)
, ∨θi

(
ξui

)])⊕1⎛
⎜⎝
[
∧θi

(
ξli

)
, ∧θi

(
ξli

)]⊗1[
ψli (θi+1) , ψli (θi+1)

]
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗ [α, α]

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.
(60)

For Theorem 5.1, we provide an intelligent algorithm (see the following Algorithm 2). For the
other theorems, we can similarly obtain corresponding algorithms.

Fig. 3 shows the flow chart of Algorithm 2.

Figure 3: The flow chart of Algorithm 2

By virtue of Theorem 5.1 to Theorem 5.4, if the underlying operations in Definitions 2.4–2.6 are
continuous, then the α-UTI reasoning chain method about ⊗ and S-interval implication, QL-interval
implication or interval t-norm implication is stable. Moreover, if interval t-norm are continuous,
then this chain reasoning method for R-interval implication is stable. Summarizing above, the α-UTI
reasoning chain method is stable.
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Assume that for the α-UTI reasoning chain method, there is a perturbed queue with input
(Ξ1, . . . , Ξn, Ψ1, . . . , Ψn, Φ):

([ξlim, ξuim] , [ψlim, ψuim] , [ϕlm, ϕum]) (i = 1, 2, . . . , n; m = 1, 2, . . .) . (61)

Algorithm 2: The upper and lower bounds of the α-UTI reasoning chain method with an S-interval
implication.
Input: [ξli, ξui], [ψli, ψui], [ϕl1, ϕu1] (i = 1, . . . , n), Θi(i = 1, . . . , n + 1), [α, α], n, interval t-norm ⊗, S-
interval implication �→.
Output: The upper bound UPC, the lower bound LOC.
procedure
1. Let i = 0;
2. repeat
3. Let θi+1, θi+2 respectively be the current elements of �i+1, �i+2;

4. if i > 0, then compute
[
ϕu(i+1) (θi+1) , ϕu(i+1) (θi+1)

]
and

[
ϕl(i+1) (θi+1) , ϕl(i+1) (θi+1)

]
from (42) and (43)

in turn;
5. Compute LOC =

6. ∨θi+1

⎧⎪⎨
⎪⎩
[
∧θi+1

(
ϕl(i+1)

)
, ∧θi+1

(
ϕl(i+1)

)]⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∨θi+1

(
ξu(i+1)

)
, ∨θi+1

(
ξu(i+1)

)]⊕1[
ψl(i+1) (θi+2) , ψl(i+1) (θi+2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭;

7. Calculate UPC =

8. ∨θi+1

⎧⎪⎨
⎪⎩
[
∨θi+1

(
ϕu(i+1)

)
, ∨ui+1

(
ϕu(i+1)

)]⊗
⎡
⎢⎣
⎛
⎜⎝

N
[
∧θi+1

(
ξl(i+1)

)
, ∧θi+1

(
ξl(i+1)

)]⊕1[
ψu(i+1) (θi+2) , ψu(i+1) (θi+2)

]
⎞
⎟⎠⊗ [α, α]

⎤
⎥⎦
⎫⎪⎬
⎪⎭;

9. Let i = i + 1;
10. until i ≥ n;
11. return UPC, LOC;
end procedure

Besides, the consequent properties are satisfied:

lim
m→∞

∨θ∈Θ (ξuim − ξlim) = lim
m→∞

∨ω∈Ω (ψuim − ψlim) = lim
m→∞

∨θ∈Θ (ϕu1m − ϕl1m) = 0. (62)

In detail, we have from (62) that

limm→∞ ∨θ∈Θ (ξuim − ξlim) = limm→∞ ∨θ∈Θ

([
ξuim, ξuim

]
−
[
ξlim, ξlim

])

= limm→∞ ∨θ∈Θ

{
max

(∣∣∣ξuim − ξlim

∣∣∣ , ∣∣ξuim − ξuim

∣∣)} = 0.
(63)

Others can be similarly expanded.

From Theorem 5.1 to Theorem 5.4, λlm, λum are given as upper and lower bounds on the
output value of the α-UTI reasoning chain method, that is, for ([ξlim, ξuim] , [ψlim, ψuim] , [ϕl1m, ϕu1m])
(i = 1, 2, . . . , n; m = 1, 2, . . .), we have

UTIn (un+1) ∈ [λlm, λum] . (64)



CMC, 2024, vol.79, no.1 1083

When the continuity condition is satisfied, one has

lim
m→∞

∨θn+1∈Θn+1
(λum (θn+1) − λlm (θn+1)) = 0 (65)

is effective. In other words, the outcome of the α-UTI reasoning chain method gradually converges to a
value when the continuity condition holds. As a consequence, in light of the stable definition provided
in Definition 2.12, the α-UTI reasoning chain method is stable for the issue of chain reasoning.

6 Applications in Affective Computing

In summary, the α-UTI method is stable in the case of an individual rule, multiple rules and
reasoning chain under the interval perturbation. In this section, we employ two examples to verify
the interval stability of the α-UTI method.

Example 6.1. The first example is when the following rule is adopted:

Ξ = [0.62, 0.69]
u1

+ [0.61, 0.72]
u2

+ [0.64, 0.71]
u3

,  = [0.28, 0.40]
v1

The input is Φ =
[
ϕ1

li, ϕ
1
ui

]
u1

+
[
ϕ2

li, ϕ
2
ui

]
u2

+
[
ϕ3

li, ϕ
3
ui

]
u3

.

For testing, we use a structure with interval perturbation in the input. We use Theorem 3.1 with
the R-interval implication �→L (related to (16) and (14)) to calculate, and α = [0.85, 0.90].

For one situation, we take ϕ1
l1 = [0.32, 0.43] , ϕ1

u1 = [0.47, 0.69] , ϕ2
l1 = [0.65, 0.72] , ϕ2

u1 =
[0.68, 0.78] , ϕ3

l1 = [0.78, 0.87] , ϕ3
u1 = [0.86, 0.98] . We obtain that the lower bound is

[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗[[

∨θ

(
ξui

)
, ∨θ

(
ξui

)] �→
[
ψli (ω) , ψli (ω)

]
⊗ [α, α]] = [0.00, 0.01]. Analogously, the upper bound is

[0.57, 0.76]. Hence, we obtain [0.00, 0.01] ≤ UTI1 (ω) ≤ [0.57, 0.76].

For another situation, we let ϕ1
l1 = [0.68, 0.69] , ϕ1

u1 = [0.69, 0.70] , ϕ2
l1 = [0.69, 0.70] , ϕ2

u1 =
[0.70, 0.71] , ϕ3

l1 = [0.70, 0.71] , ϕ3
u1 = [0.71, 0.72] . One has that the lower bound is

[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗[[

∨θ

(
ξui

)
, ∨θ

(
ξui

)] �→
[
ψli (ω) , ψli (ω)

]
⊗ [α, α]] = [0.17, 0.27]. Similarly, the upper bound is

[0.23, 0.33]. Hence we obtain [0.17, 0.27] ≤ UTI1 (ω) ≤ [0.23, 0.33].

The interval of the second input is obviously smaller than that of the first input. It can be seen that
the α-UTI method will eventually converge under the interval disturbance as the interval disturbance
decreases under the reasonable input and rule.

For the background of Example 6.1, the input corresponds to the values of sorrow, anger, and
hate, and the output corresponds to the value of joy (noting that these four are all basic emotions in
affective computing). This reflects the relationship between several basic emotions. Comparing the two
situations in Example 6.1, it can be seen that when the three input emotions are subjected to smaller
interval perturbations, the change of output emotions tends to be stable.

Affective computing is receiving extensive attention. Emotion deduction (exploring how to reason
about the membership of other emotions from some basic emotions) is significant in many ways (e.g.,
emotional state transitions when building a large emotional corpus, etc.) and is an essential task in
affective computing. Here we give an example of the application of the method in emotion deduction
to demonstrate the robustness of the α-UTI method.
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Example 6.2. We compute the emotion aspect by the α-UTI method, which �→ is implemented as
(14). For the eight basic emotions (including surprise, expectation, anxiety, sorrow, anger, hate, joy, and
love), we found a strong relationship between the first six emotions and fear (as a novel emotion). The
emotion deduction system from six basic emotions to fear is established. The format of the inference
rules is as follows:

Ξ1 = [0.38, 0.48]
u1

+ [0.61, 0.72]
u2

+ [0.36, 0.45]
u3

+ [0.46, 0.57]
u4

+ [0.44, 0.52]
u5

+ [0.37, 0.48]
u6

, Ψ1 = [0.28, 0.40]
v1

;

Ξ2 = [0.48, 0.59]
u1

+ [0.52, 0.68]
u2

+ [0.47, 0.56]
u3

+ [0.66, 0.78]
u4

+ [0.56, 0.63]
u5

+ [0.68, 0.74]
u6

, Ψ2 = [0.43, 0.55]
v1

;

Ξ3 = [0.85, 0.96]
u1

+ [0.36, 0.47]
u2

+ [0.66, 0.77]
u3

+ [0.86, 0.94]
u4

+ [0.46, 0.55]
u5

+ [0.74, 0.88]
u6

, Ψ3 = [0.54, 0.62]
v1

;

Ξ4 = [0.56, 0.67]
u1

+ [0.68, 0.75]
u2

+ [0.80, 0.93]
u3

+ [0.31, 0.43]
u4

+ [0.27, 0.39]
u5

+ [0.42, 0.55]
u6

, Ψ4 = [0.87, 0.96]
v1

.

The input is

Φi =
[
ϕ1

li, ϕ
1
ui

]
u1

+
[
ϕ2

li, ϕ
2
ui

]
u2

+
[
ϕ3

li, ϕ
3
ui

]
u3

+
[
ϕ4

li, ϕ
4
ui

]
u4

+
[
ϕ5

li, ϕ
5
ui

]
u5

+
[
ϕ6

li, ϕ
6
ui

]
u6

. (66)

Here, the input Ξi reflects the values for six basic emotions and the output Ψi stands for the value
for the emotion fear. Here we use Theorem 4.2 with the R-interval implication and (32) to calculate.
And we choose α = [0.85, 0.90] .

For one situation, we take ϕ1
l1 = [0.73, 0.85] , ϕ1

u1 = [0.80, 0.90] , ϕ2
l1 = [0.65, 0.72] , ϕ2

u1 =
[0.68, 0.79] , ϕ3

l1 = [0.54, 0.66] , ϕ3
u1 = [0.60, 0.70] , ϕ4

l1 = [0.75, 0.84] , ϕ4
u1 = [0.80, 0.88] , ϕ5

l1 =
[0.49, 0.63] , ϕ5

u1 = [0.52, 0.69] , ϕ6
l1 = [0.77, 0.87] , ϕ6

u1 = [0.81, 0.93] . We get that the lower bound

is
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[
∧n

i=1

([
∨θ

(
ξui

)
, ∨θ ‘

(
ξui

)] �→
[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]
= [0.49, 0.63] ⊗

[0.66, 0.66] ⊗ [0.85, 0.90] = [0.00, 0.19] . Analogously, the upper bound is [0.57, 0.76]. Hence, we
obtain [0.00, 0.19] ≤ UTIn (ω) ≤ [0.57, 0.76].

For another situation, we let ϕ1
l1 = [0.79, 0.80] , ϕ1

u1 = [0.80, 0.81] , ϕ2
l1 = [0.69, 0.70] , ϕ2

u1 =
[0.70, 0.71] , ϕ3

l1 = [0.59, 0.60] ,ϕ3
u1 = [0.60, 0.61] , ϕ4

l1 = [0.79, 0.80] , ϕ4
u1 = [0.80, 0.81] , ϕ5

l1 =
[0.59, 0.60] , ϕ5

u1 = [0.60, 0.61] , ϕ6
l1 = [0.79, 0.80] , ϕ6

u1 = [0.80, 0.81] .One has that the lower bound

is
[
∧θ

(
ϕl

)
, ∧θ (ϕl)

]
⊗
[
∧n

i=1

([
∨θ

(
ξui

)
, ∨θ

(
ξui

)] �→
[
ψli (ω) , ψli (ω)

])
⊗ [α, α]

]
= [0.59, 0.60] ⊗

[0.66, 0.66] ⊗ [0.85, 0.90] = [0.10, 0.16] . Similarly, the upper bound is [0.56, 0.64]. So we achieve
[0.10, 0.16] ≤ UTIn (ω) ≤ [0.56, 0.64].

Fig. 4 shows the emotion deduction process of Example 6.2.

The context of Example 6.2 is emotional deduction. Emotion corpus is one of the key issues in
affective computing. We have done a lot of work in constructing an emotion corpus, but the emotion
corpus is often based on basic emotions, such as the eight basic emotions mentioned above. However,
in the real world, there are many kinds of emotions, far more than these basic emotions. Obtaining
values for other emotions, then, has become a recognized puzzle in the field of affective computing.
That is why emotional deduction comes in.
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Figure 4: The emotion deduction process of Example 6.2

Here we put forward the scheme of emotional deduction based on the α-UTI method, and
naturally hope that such emotional deduction scheme is stable. Through the comparison of the two
situations in Example 6.2, we can see that when the input interval disturbance is smaller, the obtained
result also belongs to a smaller range, so the emotional deduction result is stable for multiple rules.
This validates that our proposed emotional deduction scheme based on the α-UTI method is effective
and practicable.

7 Summary and Prospect

In this study, we investigate the interval robustness (embodied by the interval stability) of the α-
UTI method of fuzzy reasoning. The main contributions of this paper are reflected in the following
aspects:

First of all, the stability of the α-UTI method is examined for an individual rule, and the upper
and lower bounds are estimated for the α-UTI solutions. Here the analysis is conducted on the basis of
four kinds of unified interval implications. The analysis shows that the α-UTI method exhibits good
interval stability for an individual rule.

In addition, the stability of the α-UTI method is found in the context of multi-rule conditions,
while the upper and lower bounds of its outcomes are estimated. Therein, four kinds of unified interval
implications are adopted. It is observed that the α-UTI method is stable in the case of multiple rules.

Furthermore, the α-UTI reasoning chain method is put forward, containing a chain structure with
multiple layers. The corresponding solutions are given and the interval perturbations are analyzed.
The upper and lower bounds of the outcomes are estimated, involving four kinds of unified interval
implications. The results show that the α-UTI reasoning chain method is stable from the viewpoint of
interval perturbation.
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Finally, the α-UTI method is studied through two application examples, incorporating an appli-
cation of the α-UTI method in emotion deduction of affective computing. These examples show that
the α-UTI solution converges stably to a value if the continuity condition is effective, which verifies
the stability of the α-UTI method.

The novelty of this paper is manifested in the following aspects. To begin with, the estimation
of the upper and lower bounds of interval perturbations is a novel problem to be explored for the α-
UTI method. Moreover, we propose the α-UTI reasoning chain method as a new multi-layer inference
mechanism. Lastly, we investigate the interval robustness of fuzzy reasoning under the interval-valued
fuzzy environment.

The merits of this study are as follows. Firstly, we propose the α-UTI reasoning chain method,
which consists of a chain structure with multiple layers. This method presents a new scheme to solve
the problem of chain reasoning. Secondly, four kinds of important unified interval implications are
considered in this work, which have certain universality. Finally, the upper and lower bounds are
estimated for the α-UTI method in the interval-valued fuzzy environment. The results indicate that
the α-UTI method has good interval robustness in situations involving an individual rule, multi-rule
and reasoning chain.

The demerits of this study are outlined as follows. On the one hand, we do not consider the use
of specific interval implications in the α-UTI method, especially those that do not belong to these
four kinds of interval implications. The interval robustness of this kind of the α-UTI method is not
considered. On the other hand, we have explored the interval robustness of the α-UTI method in
the interval-valued fuzzy environment. However, other environments, such as the intuitionistic fuzzy
environment, have not been discussed. These can be the guidelines for the upcoming work.

In future studies, we will consider incorporating the latest clustering algorithms [36,37] into the
α-UTI method to build cluster-driven algorithms and explore their interval robustness. In addition,
we will further explore other application areas of α-UTI fuzzy reasoning, such as inventory modeling
[38,39].
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