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ABSTRACT

Bottleneck stage and reentrance often exist in real-life manufacturing processes; however, the previous research
rarely addresses these two processing conditions in a scheduling problem. In this study, a reentrant hybrid flow
shop scheduling problem (RHFSP) with a bottleneck stage is considered, and an elite-class teaching-learning-based
optimization (ETLBO) algorithm is proposed to minimize maximum completion time. To produce high-quality
solutions, teachers are divided into formal ones and substitute ones, and multiple classes are formed. The teacher
phase is composed of teacher competition and teacher teaching. The learner phase is replaced with a reinforcement
search of the elite class. Adaptive adjustment on teachers and classes is established based on class quality, which is
determined by the number of elite solutions in class. Numerous experimental results demonstrate the effectiveness
of new strategies, and ETLBO has a significant advantage in solving the considered RHFSP.
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1 Introduction

A hybrid flow shop scheduling problem (HFSP) is a typical scheduling problem that exists widely
in many industries such as petrochemicals, chemical engineering, and semiconductor manufacturing
[1,2]. The term ‘reentrant’ means a job may be processed multiple times on the same machine or
stage [3]. A typical reentrant is a cyclic reentrant [4,5], which means that each job is cycled through
the manufacturing process. As an extension of HFSP, RHFSP is extensively used in electronic
manufacturing industries, including printed circuit board production [6] and semiconductor wafer
manufacturing [7], etc.

RHFSP has been fully investigated and many results have been obtained in the past decade.
Xu et al. [8] applied an improved moth-flame optimization algorithm to minimize maximum comple-
tion time and reduce the comprehensive impact of resources and environment. Zhou et al. [9] proposed
a hybrid differential evolution algorithm with an estimation of distribution algorithm to minimize total
weighted completion time. Cho et al. [10] employed a Pareto genetic algorithm with a local search
strategy and Minkowski distance-based crossover operator to minimize maximum completion time
and total tardiness. Shen et al. [11] designed a modified teaching-learning-based optimization (TLBO)
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algorithm to minimize maximum completion time and total tardiness, where Pareto-based ranking
method and training phase are adopted.

In recent years, RHFSP with real-life constraints has attracted much attention. Lin et al. [12]
proposed a hybrid harmony search and genetic algorithm (HHSGA) for RHFSP with limited buffer
to minimize weighted values of maximum completion time and mean flowtime. For RHFSP with
missing operations, Tang et al. [13] designed an improved dual-population genetic algorithm (IDPGA)
to minimize maximum completion time and energy consumption. Zhang et al. [14] considered machine
eligibility constraints and applied a discrete differential evolution algorithm (DDE) with a modified
crossover operator to minimize total tardiness. Chamnanlor et al. [15] adopted a genetic algorithm
hybridized ant colony optimization for the problem with time window constraints. Wu et al. [16]
applied an improved multi-objective evolutionary algorithm based on decomposition to solve the
problem with bottleneck stage and batch processing machines.

In HFSP with H stages, each job is processed in the following sequence: Stage 1, stage 2, · · · , stage
H. If processing time of each job at a stage is significantly longer than its processing time at other stages,
then that stage is the bottleneck stage. The bottleneck stages often occur in real-life manufacturing
processes when certain stages of the process are slower than others, limiting the overall efficiency of
the process [16–21]. These stages may arise due to resource constraints, process complexity or other
factors. Bottleneck stage is a common occurrence in real-life manufacturing processes, such as seamless
steel tube cold drawing production [16], engine hot-test production [20] and casting process [21]. More
processing resources or times are needed at the bottleneck stage, and the production capacity of the
whole shop will be limited because of bottleneck stage. There are some works about HFSP with the
bottleneck stage. Costa et al. [17] considered HFSP with bottleneck stage and limited human resource
constraint and applied a novel discrete backtracking search algorithm. Shao et al. [18] designed an
iterated local search algorithm for HFSP with the bottleneck stage and lot-streaming. Liao et al. [19]
developed a new approach hybridizing particle swarm optimization with bottleneck heuristic to fully
exploit the bottleneck stage in HFSP. Zhang et al. [20] studied a HFSP with limited buffers and
a bottleneck stage on the second process routes and proposed a discrete whale swarm algorithm
to minimize maximum completion time. Wang et al. [21] adopted an adaptive artificial bee colony
algorithm for HFSP with batch processing machines and bottleneck stage.

As stated above, RHFSP with real-life constraints such as machine eligibility and limited buffer
has been investigated; however, RHFSP with bottleneck stage is seldom considered, which exists
in real-life manufacturing processes such as seamless steel tube cold drawing production [16]. The
modelling and optimization on reentrance and bottleneck stage can lead to optimization results with
high application value, so it is necessary to deal with RHFSP with the bottleneck stage.

TLBO [22–26] is a population-based algorithm inspired by passing on knowledge within a
classroom environment and consists of the teacher phase and learner phase. TLBO [27–31] has become
a main approach to production scheduling [32–35] due to its simple structure and fewer parameters.
TLBO has been successfully applied to solve RHFSP [11] and its searchability and advantages on
RHFSP are tested; however, it is rarely used to solve RHFSP with the bottleneck stage, which is an
extension of RHFSP. The successful applications of TLBO to RHFSP show that TLBO has potential
advantages to address RHFSP with bottleneck stage, so TLBO is chosen.

In this study, the reentrance and bottleneck stages are simultaneously investigated in a hybrid
flow shop, and an elite-class teaching-learning-based optimization (ETLBO) is developed. The main
contributions can be summarized as follows: (1) RHFSP with bottleneck stage is solved and a new
algorithm called ETLBO is proposed to minimize maximum completion time. (2) In ETLBO, teachers
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are divided into formal ones and substitute ones. The teacher phase consists of teacher competition
and teacher teaching, the learner phase is replaced by reinforcement research of elite class; adaptive
adjustment on teachers and classes is applied based on class quality, and class quality is determined by
the number of elite solutions in class. (3) Extensive experiments are conducted to test the performances
of ETLBO by comparing it with other existing algorithms from the literature. The computational
results demonstrate that new strategies are effective and ETLBO has promising advantages in solving
RHFSP with bottleneck stage.

The remainder of the paper is organized as follows. The problem description is described in
Section 2. Section 3 shows the proposed ETLBO for RHFSP with the bottleneck stage. Numerical
test experiments on ETLBO are reported in Section 4. Conclusions and some topics of future research
are given in the final section.

2 Problem Description

RHFSP with bottleneck stage is described as follows. There are n jobs J1, J2, · · · , Jn and a hybrid
flow shop with H stages. Stage k has Sk ≥ 1 machines Mk1, Mk2, · · · , MkSk

, and at least one stage
exists two or more identical parallel machines. Each job is processed L (L > 1) times in the following
sequence: Stage 1, stage 2, · · · , stage H, which means each job is reentered L − 1 times. Each job must
be processed in the last H stages before next processing can begin until its L processings are finished.
pik represents the processing time of job Ji at stage k.There is a bottleneck stage b, b ∈ (1, H). pib is
often more than about 10 × pik such as casting process [21], k �= b.

There are the following constraints on jobs and machines:

All jobs and machines are available at time 0.

Each machine can process at most one operation at a time.

No jobs may be processed on more than one machine at a time.

Operations cannot be interrupted.

The problem can be divided into two sub-problems: scheduling and machine assignment. Schedul-
ing is applied to determine processing sequence for all jobs on each machine. Machine assignment
is used for selecting appropriate machine at each stage for each job. There are strong coupled
relationships between these two sub-problems. The optimization contents of scheduling are directly
determined by the machine assignment. To obtain an optimal solution, it is necessary to efficiently
combine the two sub-problems.

The goal of the problem is to minimize maximum completion time when all constraints are met.

Cmax = max
i=1,2,··· ,n

{Ci} (1)

where Ci is the completion time of job Ji, and Cmax denotes maximum completion time.

An example is shown in Table 1, where n = 5, H = 3, L = 2, b = 2, S1 = 2, S2 = 4, S3 = 3. A
schedule of the example with Cmax = 749 is displayed in Fig. 1. Ol

ik denotes the operation in which job
Ji is processed for the l-th time at stage k.
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Table 1: An example of RHFSP

Job (i) pi1 pi2 pi3

1 12 237 18
2 19 290 11
3 16 278 12
4 12 221 12
5 16 261 13
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Figure 1: A schedule of the example

3 ETLBO for RHFSP with Bottleneck Stage

Some works are obtained on TLBO with multiple classes; however, in the existing TLBO [36–39],
competition among teachers is not used, reinforcement search of some elite solutions and adaptive
adjustment on classes and teachers are rarely considered. To effectively solve RHFSP with bottleneck
stage, ETLBO is constructed based on reinforcement search of elite class and adaptive adjustment.

3.1 Initialization and Formation of Multiple Classes

To solve the considered RHFSP with reentrant feature, a two-string representation is used
[12]. For RHFSP with n jobs, H stages and L processing, its solution is represented by a machine
assignment string [q11, q12, · · · , q1H×L|q21, q22, · · · , q2H×L| · · · |qn1, qn2, · · · , qnH×L] and a scheduling string
[π1, π2, · · · , πn×H×L], where πi ∈ [1, 2, · · · , n], qi((l−1)×H+k) is the machine for the l-th processing at stage k
for job Ji.
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In scheduling string, the frequency of occurrence is H × L for each job Ji. Take job J1 as an
example, when g < H, the g-th 1 corresponds to O1

1g; when H < g ≤ 2H, the g-th 1 denotes O2
1g, and

so on. The whole machine assignment string is divided into n segments, each segment corresponds to
the assigned machines at all stages in the l-th processing for a job.

The decoding procedure to deal with reentrant feature is shown below. Start with job π1, for each
job πi, decide its corresponding operation Ol

πig
, which is processed on a assigned machine for Ol

πig
by

machine assignment string.

For the example in Section 2, the solution is shown in Fig. 2. For job J4, a segment of [1, 3, 2, 1, 2,
2] is obtained from machine assignment string, in the segment, 1, 3, 2 means that operation O1

41, O1
42, O1

43

are processed on machines M11, M23, M32 respectively in the first processing, completion times of three
operations are 28, 470, 482; 1, 2, 2 indicates that O2

41, O2
42, O2

43 are processed on machines M11, M22, M32

in the second processing, their corresponding completion times are 494, 737, 749, respectively. A
schedule of the decoding as shown in Fig. 1.

Figure 2: A coding of the example

Initial population P with N solutions are randomly produced.

The formation of multiple classes is described as follows:

1. Sort all solutions of P in ascending order of Cmax, suppose that Cmax (x1) ≤ Cmax (x2) ≤ · · · ≤
Cmax (xN), first (α + β) solutions are chosen as teachers and formed as a set Ω, and remaining
solutions are learners.

2. Divide all learners into α classes by assigning each learner xi to class Cls(i−1)(mod α)+1.
3. Each class Clsr is assigned a formal teacher in the following way, r = 1, repeat the following

steps until r > α: Randomly select a teacher from Ω as the formal teacher xr
teacher of Clsr, Ω =

Ω\xr
teacher, r = r + 1.

where Cmax (x) denotes the maximum completion time of solution x.

The remaining β solutions in Ω are regarded as substitute teachers, Ω = {
xα+1

teacher, · · · , xα+β

teacher

}
.

Teachers are not assigned to classes, and each class consists only of learners.

3.2 Search Operators

Global search GS (x, y) is described as follows. If rand ≤ 0.5, then order-based crossover [12]
is done on scheduling string of x and y; otherwise, two-point crossover [40] is executed on machine
assignment string of x and y, a new solution z is obtained, if Cmax (z) < Cmax (x), then replace x with z,
where random number rand follows uniform distribution on [0, 1].
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Ten neighborhood structures N1 − N10 are designed, N1 − N5 are about scheduling string and
N6 − N10 are related to machine assignment string. N7, N9 are the strategies for the bottleneck stage.
N1 is the swapping of two randomly chosen πi and πj. N2 is used to generate solutions by inserting
πi into the position of πj. N3 is shown below. Stochastically choose Ji, Jj, a, b ∈ [1, L], c, d ∈ [1, H],
determine Oa

ic, Ob
id, Oa

jc, Ob
jd and their corresponding genes πe, πf , πg, πh, respectively, then swap πe, πf

and exchange πg, πh on scheduling string. Taking Fig. 2 as an example, randomly select J1, J5, a = 1,
b = 2, c = 2, d = 3, determine O1

12, O2
13, O1

52, O2
53 and their corresponding genes π2 = 1, π27 = 1, π7 = 5,

π30 = 5, then swap π2 = 1 and π7 = 5, and exchange π27 = 1 and π30 = 5.

N4 is show below. Stochastically select two genes πj and πk of Ji, and invert genes between them.
N5 is described below. Randomly choose a job Ji, determine its corresponding H × L genes and delete
them from scheduling string, then for each gene of Ji, insert the gene into a new randomly decided
position k in scheduling string. For the example in Fig. 2, randomly select job J3 and delete its all
genes π8, π11, π14, π20, π23, π26 from scheduling string, which becomes [1, 1, 1, 5, 2, 2, 5, 5, 4, 2, 2, 4, 2,
4, 1, 1, 2, 4, 4, 4, 1, 5, 5, 5], start with π8, for each gene, insert it into a randomly chosen position on
scheduling string, scheduling string finally becomes [3, 1, 3, 1, 1, 5, 3, 2, 2, 5, 5, 4, 2, 2, 3, 4, 3, 2, 4, 1,
1, 2, 3, 4, 4, 4, 1, 5, 5, 5].

N6 is shown as follows. Randomly select a machine qig, determine the processing stage k for this
machine, qig = h, where h is stochastically chosen from {1, 2, · · · , Sk} \ {

qig

}
. N7 is similar to N6 expect

that qig is the machine at bottleneck stage b. When N8 is executed, Ji and Jj are randomly selected, then
qi1, qi2, · · · , qiH×L of Ji and qj1, qj2, · · · , qjH×L of Jj are swapped, respectively. N9 has the same steps as N8

expect that only swap machines at bottleneck stage b of Ji and Jj. N10 is shown as follows. Stochastically
decided a job Ji, w = 1, repeat the following steps until w > H × L: Perform N6 for qiw, w = w + 1.

N7, N9 are proposed for the bottleneck stage due to the following feature of the problem: The new
machine of a job Ji at the bottleneck stage b or the swap between machines at bottleneck stage b of Ji

and Jj can significantly optimize the corresponding objective values with a high probability.

Multiple neighborhood search is executed in the following way. Let t = 1, repeat the following
steps until t > 10: For solution x, produce a new solution z ∈ Nt (x), if Cmax (z) < Cmax (x), replace x
with z, t = 11; otherwise t = t + 1, where Nt (x) denotes the set of neighborhood solutions generated
by Nt on x.

3.3 Class Evolution

Class evolution is composed of teacher competition, teacher’s teaching and reinforcement search
of elite class. Let Λ = {

x1
teacher, · · · , xα+β

teacher

}
.

Teacher competition is described as follows:

1. For each teacher xi
teacher ∈ Λ, stochastically select teacher xj

teacher ∈ Λ, i �= j, perform GS(xi
teacher,

xj
teacher), and execute multiple neighborhood search on xi

teacherw times.
2. For each formal teacher xr

teacher, r = 1, 2, · · · , α, let t = α + 1, repeat the following steps until
t > α + β: IfCmax

(
xt

teacher

)
< Cmax

(
xr

teacher

)
, then swap xr

teacher and xt
teacher ∈ Ω, t = t + 1.

When xr
teacher and xt

teacher ∈ Ω are swapped, let xtmp = xr
teacher, Ω = Ω\ {

xt
teacher

}
, xr

teacher is replaced with
xt

teacher, then xtmp is added into Ωand xtmp becomes new xt
teacher.

Teacher teaching is shown below. For each learner xi ∈ Clsr, perform GS
(
xi, xr

teacher

)
and execute

multiple neighborhood search on xi, determine a learner xworst ∈ Clsr with the biggest maximum
completion time, randomly choose a substitute teacher xt

teacher ∈ Ω, and perform GS(xworst, xt
teacher).



CMC, 2024, vol.79, no.1 53

Reinforcement search of elite class is performed in the following way. Sort all solutions in
population P in ascending order of Cx

max, and construct an elite class Cls∗ with the best γ ×N solutions;
for each elite solution x∗

i ∈ Cls∗, randomly select another elite solution x∗
j ∈ Cls∗, perform GS

(
x∗

i , x∗
j

)

and execute multiple neighborhood search w times on x∗
i , where γ × N > (α + β).

Unlike the previous TLBO [40–43], ETLBO has reinforcement search of elite class used to
substitute for learner phase. Since elite solutions are mostly composed of teachers and good learners,
better solutions are more likely generated by global search and multiple neighborhood search on
these elite solutions, and the waste of computational resources can be avoided on interactive learning
between those worse learners with bigger Cx

max.

3.4 Adaptive Adjustment on Teachers and Classes

Class quality is determined by the number of elite solutions in class. The quality Cqur of class Clsr

is defined as follows:

Cqur = | {xi ∈ Clsr|xi ∈ Cls∗} | (2)

Adaptive adjustment on teachers and classes is shown below:

(1) Sort all classes in descending order of Cqur, suppose that Cqu1 ≥ Cqu2 ≥ · · · ≥ Cquα, r = 1,
repeat the following steps until r > (α − 1), swap the best learner in Clsr and the worst learner
in Clsr+1.

(2) For each solution xi ∈ P, let j = 1, repeating the following steps until j > (α + β): If Cmax (xi) <

Cmax

(
xj

teacher

)
and xi ∈ Clsr, then swap xj

teacher and xi ∈ Clsr; if Cmax (xi) < Cmax

(
xj

teacher

)
and xi ∈ Λ,

then swap xj
teacher and xi ∈ Λ.

(3) Let r = 1 and Θ be empty, repeat the following steps until r > α: for class Clsr, select a teacher
xi

teacher ∈ Λ by roulette selection [13], and swap xr
teacher and xi

teacher ∈ Λ, then Λ = Λ\ {
xr

teacher

}
,

Θ = Θ ∪ {
xr

teacher

}
, r = r + 1.

(4) Ω = Λ, Λ = Λ ∪ Θ.

When roulette selection is done, selection probability probi = 1/C
xi

teacher
max /

∑
x

j
teacher∈Λ

1/C
x

j
teacher

max is used.

In step (1), communication between classes Clsr and Clsr+1 is done to avoid excessive differences
among classes in solution quality. In step (2), the best learner can become teacher. In step (3), the
formal teacher of each class is adjusted adaptively. Substitute teachers are updated in step (4). The
above adaptive adjustment on learners and teachers can maintain high population diversity and make
global search ability be effectively enhanced.

3.5 Algorithm Description

The search procedure of ETLBO is shown below:

1. Randomly produce an initial population P with N solutions and divide population into α

classes.
2. Execute teacher competition.
3. Perform teacher’s teaching.
4. Implement reinforcement search of elite class.
5. Apply adaptive adjustment on teachers and classes.
6. If the termination condition is not met, go to step (2); otherwise, stop search and output the

optimum solution.
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Fig. 3 describes flow chart of ETLBO.

Figure 3: Flow chart of ETLBO

ETLBO has the following new features. Teachers are divided into formal ones and substitute
ones. Teacher competition is applied between formal and substitute teachers. Teacher’s teaching is
performed and reinforcement search of elite class is used to replace learner phase. Adaptive adjustment
on teachers and classes is conducted based on class quality assessment. These features promote a
balance between exploration and exploitation, then good results can finally be obtained.

4 Computational Experiments

Extensive experiments are conducted to test the performance of ETLBO for RHFSP with
bottleneck stage. All experiments are implemented by using Microsoft Visual C++ 2022 and run on
i7-8750H CPU (2.20 GHz) and 24 GB RAM.

4.1 Test Instance and Comparative Algorithms

60 instances are randomly produced. For each instance depicted by n × H × L, where L ∈ {2, 3},
n ∈ [10,100], H ∈ {3, 4, 5}. If H = 3, then b = 2, Sb = 4; if H = 4, then b = 3, Sb = 5; if H = 5, then
b = 4, Sb = 6; if k �= b, Sk ∈ [2, 4], pik ∈ [10, 20]; otherwise, pik ∈ [200, 300]. Sk and pik are integer and
follow uniform distribution within their intervals.

For the considered RHFSP with maximum completion time minimization, there are no existing
methods. To demonstrate the advantages of ETLBO for the RHFSP with bottleneck stage, hybrid
harmony search and genetic algorithm (HHSGA, [12]), improved dual-population genetic algorithm
(IDPGA, [13]) and discrete differential evolution algorithm (DDE, [14]) are selected as comparative
algorithms.
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Lin et al. [12] proposed an algorithm named HHSGA for RHFSP with limited buffer to
minimize weighted values of maximum completion time and mean flowtime. Tang et al. [13] designed
IDPGA to solve RHFSP with missing operations to minimize maximum completion time and energy
consumption. Zhang et al. [14] applied DDE to address RHFSP with machine eligibility to minimize
total tardiness. These algorithms have been successfully applied to deal with RHFSP, so they can
be directly used to handle the considered RHFSP by incorporating bottleneck formation into the
decoding process; moreover, missing judgment vector and related operators of IDPGA are removed.

A TLBO is constructed, it consists of a class in which the best solution be seen as a teacher and
remaining solutions are students, and it includes a teacher phase and a learner phase. Teacher phase
is implemented by each learner learning from the teacher and learner phase is done by interactive
learning between a learner and another randomly selected learner. These activities are the same as
global search in ETLBO. The comparisons between ETLBO and TLBO are applied to show the effect
of new strategies of ETLBO.

4.2 Parameter Settings

It can be found that ETLBO can converge well when 0.5 × n × H × L seconds CPU time reaches;
moreover, when 0.5 × n × H × L seconds CPU time is applied, HHSGA, IDPGA, DDE, and TLBO
also converge fully within this CPU time, so this time is chosen as stopping condition.

Other parameters of ETLBO, namely N, α, β, γ , and w, are tested by using Taguchi method [44]
on instance 50 × 4 × 2. Table 2 shows the levels of each parameter. ETLBO with each combination
runs 10 times independently for the chosen instance.

Table 2: Level of the parameters

Parameter Factor level

1 2 3 4

N 30 40 50 60
α 2 3 4 5
β 1 2 3 4
γ 0.1 0.2 0.3 0.4
w 1 2 3 4

Fig. 4 shows the results of MIN and S/N ratio, which is defined as −10× log10

(
MIN2

)
and MIN is

the best solution in 10 runs. It can be found in Fig. 4 that ETLBO with following combination N = 50,
α = 3, β = 2, γ = 0.2, w = 2 can obtain better results than ETLBO with other combinations, so
above combination is adopted.

TLBO have N and stopping condition are given with the same settings as ETLBO. All parameters
of HHSGA, IDPGA and DDE except stopping condition are obtained directly from [12–14]. The
experimental results show that those settings of each comparative algorithm are still effective and
comparative algorithms with those settings can produce better results than HHSGA, IDPGA and
DDE with other settings.
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Figure 4: Main effect plot for mean MIN and S/N ratio

4.3 Result and Discussions

ETLBO is compared with HHSGA, IDPGA, DDE and TLBO. Each algorithm randomly runs
10 times for each instance. AVG, STD denotes the average and standard deviation of solutions in 10
run times. Tables 3–5 describe the corresponding results of five algorithms. Figs. 5 and 6 show box
plots of all algorithms and convergence curves of instance 50 × 3 × 3 and 70 × 5 × 2. The relative
percentage deviation (RPD) between the best performs algorithm and other four algorithms is used
in Fig. 5. RPDMIN, RPDAVG, RPDSTD are defined:

RPDMIN = MIN − MIN∗

MIN∗ × 100% (3)

where MIN∗ (MAX∗, STD∗) is the smallest MIN (MAX, STD) obtained by all algorithms, when MIN
and MIN∗ are replaced with STD(AVG) and STD∗(AVG∗), respectively, RPDSTD (RPDAVG) is obtained
in the same way.

Table 3: Computational results of five algorithms on MIN

n × H × L ETLBO HHSGA IDPGA DDE TLBO n × H × L ETLBO HHSGA IDPGA DDE TLBO

10 × 3 × 2 1221 1221 1221 1221 1221 60 × 3 × 2 7426 7444 7453 7563 7498
10 × 3 × 3 1903 1903 1905 1909 1905 60 × 3 × 3 11346 11404 11413 11472 11435
10 × 4 × 2 1069 1069 1069 1069 1069 60 × 4 × 2 6019 6047 6055 6101 6088
10 × 4 × 3 1549 1558 1556 1558 1553 60 × 4 × 3 9207 9251 9267 9298 9301
10 × 5 × 2 955 955 955 955 955 60 × 5 × 2 5141 5172 5168 5212 5171
10 × 5 × 3 1497 1499 1499 1511 1499 60 × 5 × 3 7824 7866 7854 7998 7933
20 × 3 × 2 2571 2577 2583 2597 2587 70 × 3 × 2 8694 8733 8744 8816 8787
20 × 3 × 3 3993 4001 4010 4022 4015 70 × 3 × 3 13386 13469 13483 13559 13505
20 × 4 × 2 2053 2062 2068 2079 2073 70 × 4 × 2 7079 7099 7122 7175 7144
20 × 4 × 3 3169 3188 3176 3202 3182 70 × 4 × 3 10306 10349 10362 10444 10395
20 × 5 × 2 1737 1743 1752 1767 1762 70 × 5 × 2 6054 6073 6077 6118 6083
20 × 5 × 3 2648 2671 2669 2685 2677 70 × 5 × 3 9388 9441 9464 9598 9500
30 × 3 × 2 3963 3999 4003 4054 4049 80 × 3 × 2 9961 9994 10009 10132 10052
30 × 3 × 3 5642 5690 5713 5812 5764 80 × 3 × 3 15393 15434 15489 15673 15583
30 × 4 × 2 3057 3088 3073 3123 3094 80 × 4 × 2 7912 7961 7998 8127 8024
30 × 4 × 3 4771 4798 4801 4879 4833 80 × 4 × 3 12097 12134 12186 12363 12240
30 × 5 × 2 2678 2689 2701 2746 2735 80 × 5 × 2 7088 7097 7122 7287 7207

(Continued)
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Table 3 (continued)
n × H × L ETLBO HHSGA IDPGA DDE TLBO n × H × L ETLBO HHSGA IDPGA DDE TLBO

30 × 5 × 3 4037 4058 4069 4132 4101 80 × 5 × 3 10114 10137 10166 10345 10231
40 × 3 × 2 5152 5198 5213 5348 5259 90 × 3 × 2 11659 11693 11719 11926 11832
40 × 3 × 3 7493 7533 7523 7623 7577 90 × 3 × 3 16951 16992 17041 17221 17148
40 × 4 × 2 4127 4136 4147 4200 4188 90 × 4 × 2 9083 9120 9138 9292 9237
40 × 4 × 3 6125 6140 6153 6278 6196 90 × 4 × 3 13714 13772 13789 13990 13881
40 × 5 × 2 3453 3477 3482 3591 3514 90 × 5 × 2 7774 7801 7811 7976 7893
40 × 5 × 3 5235 5246 5258 5345 5306 90 × 5 × 3 11900 11947 11998 12203 12121
50 × 3 × 2 6244 6277 6268 6351 6293 100 × 3 × 2 12373 12408 12443 12765 12555
50 × 3 × 3 9237 9277 9255 9303 9279 100 × 3 × 3 18570 18611 18687 18934 18776
50 × 4 × 2 5054 5099 5086 5127 5111 100 × 4 × 2 10162 10207 10242 10439 10365
50 × 4 × 3 7581 7601 7613 7662 7654 100 × 4 × 3 14992 15038 15080 15298 15142
50 × 5 × 2 4331 4370 4384 4438 4424 100 × 5 × 2 8698 8742 8763 8878 8844
50 × 5 × 3 6773 6788 6815 6907 6872 100 × 5 × 3 13066 13133 13176 13364 13223

Table 4: Computational results of five algorithms on AVG

n × H × L ETLBO HHSGA IDPGA DDE TLBO n × H × L ETLBO HHSGA IDPGA DDE TLBO

10 × 3 × 2 1225 1229 1227 1231 1231 60 × 3 × 2 7430 7471 7488 7627 7553
10 × 3 × 3 1913 1922 1922 1926 1916 60 × 3 × 3 11355 11483 11446 11574 11523
10 × 4 × 2 1073 1078 1085 1089 1076 60 × 4 × 2 6034 6098 6101 6153 6129
10 × 4 × 3 1576 1578 1585 1590 1580 60 × 4 × 3 9235 9303 9326 9389 9374
10 × 5 × 2 966 968 964 977 968 60 × 5 × 2 5200 5225 5219 5292 5214
10 × 5 × 3 1543 1545 1535 1554 1537 60 × 5 × 3 7919 7940 7958 8098 8009
20 × 3 × 2 2573 2598 2610 2622 2612 70 × 3 × 2 8698 8757 8759 8902 8846
20 × 3 × 3 3999 4040 4059 4048 4054 70 × 3 × 3 13395 13505 13511 13668 13589
20 × 4 × 2 2064 2088 2091 2101 2096 70 × 4 × 2 7090 7147 7160 7305 7222
20 × 4 × 3 3180 3215 3211 3291 3216 70 × 4 × 3 10318 10388 10407 10562 10496
20 × 5 × 2 1758 1763 1779 1794 1786 70 × 5 × 2 6083 6104 6111 6198 6116
20 × 5 × 3 2715 2728 2716 2732 2735 70 × 5 × 3 9448 9518 9545 9704 9613
30 × 3 × 2 3966 4053 4032 4085 4095 80 × 3 × 2 9964 10039 10074 10241 10128
30 × 3 × 3 5647 5729 5754 5886 5813 80 × 3 × 3 15400 15523 15572 15803 15680
30 × 4 × 2 3062 3123 3112 3191 3136 80 × 4 × 2 7926 7998 8045 8219 8078
30 × 4 × 3 4779 4850 4838 4951 4871 80 × 4 × 3 12119 12220 12258 12555 12366
30 × 5 × 2 2717 2729 2755 2797 2787 80 × 5 × 2 7119 7148 7160 7376 7306
30 × 5 × 3 4096 4133 4117 4200 4179 80 × 5 × 3 10179 10206 10231 10439 10316
40 × 3 × 2 5155 5234 5275 5424 5305 90 × 3 × 2 11667 11744 11779 12099 12013
40 × 3 × 3 7499 7577 7557 7664 7640 90 × 3 × 3 16963 17088 17129 17400 17246
40 × 4 × 2 4135 4174 4187 4271 4218 90 × 4 × 2 9101 9172 9183 9385 9332
40 × 4 × 3 6132 6186 6184 6354 6284 90 × 4 × 3 13738 13852 13927 14100 13983
40 × 5 × 2 3475 3530 3507 3653 3565 90 × 5 × 2 7838 7886 7891 8074 7933
40 × 5 × 3 5272 5314 5301 5407 5378 90 × 5 × 3 11973 12069 12116 12375 12286
50 × 3 × 2 6249 6310 6329 6430 6340 100 × 3 × 2 12382 12448 12504 12864 12720
50 × 3 × 3 9242 9316 9319 9413 9351 100 × 3 × 3 18586 18705 18797 19194 18939
50 × 4 × 2 5067 5139 5136 5209 5214 100 × 4 × 2 10193 10275 10357 10546 10481
50 × 4 × 3 7588 7651 7641 7727 7740 100 × 4 × 3 15016 15106 15186 15387 15333
50 × 5 × 2 4350 4404 4410 4501 4469 100 × 5 × 2 8791 8818 8859 8974 8892
50 × 5 × 3 6839 6832 6868 6976 6949 100 × 5 × 3 13130 13220 13239 13492 13308
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Table 5: Computational results of five algorithms on STD

n × H × L ETLBO HHSGA IDPGA DDE TLBO n × H × L ETLBO HHSGA IDPGA DDE TLBO
10 × 3 × 2 2.00 6.39 4.40 5.85 6.68 60 × 3 × 2 4.50 19.43 30.06 47.26 37.49
10 × 3 × 3 7.99 10.56 12.13 15.23 9.62 60 × 3 × 3 5.96 54.03 43.35 79.62 48.45
10 × 4 × 2 4.86 7.03 9.79 15.28 8.45 60 × 4 × 2 8.48 33.53 33.84 47.58 36.98
10 × 4 × 3 17.47 12.07 20.54 23.61 19.15 60 × 4 × 3 18.41 29.21 33.54 50.54 55.34
10 × 5 × 2 8.30 9.66 9.58 17.09 10.73 60 × 5 × 2 31.62 28.35 42.83 71.69 38.58
10 × 5 × 3 27.80 27.78 34.06 28.74 32.75 60 × 5 × 3 47.58 44.49 62.16 85.27 58.07
20 × 3 × 2 2.47 17.84 18.23 15.97 18.71 70 × 3 × 2 3.80 16.77 17.24 48.61 43.59
20 × 3 × 3 4.11 35.32 28.20 25.52 27.38 70 × 3 × 3 5.71 15.06 21.37 69.44 57.63
20 × 4 × 2 7.29 18.86 17.58 19.87 22.64 70 × 4 × 2 9.20 24.70 23.28 88.01 48.35
20 × 4 × 3 12.78 17.87 20.20 52.55 24.76 70 × 4 × 3 11.50 25.14 32.57 72.62 65.53
20 × 5 × 2 13.88 12.52 16.43 19.27 22.03 70 × 5 × 2 17.10 24.16 27.27 73.68 36.15
20 × 5 × 3 27.57 43.10 28.55 42.18 32.31 70 × 5 × 3 55.09 55.83 44.08 63.67 80.07
30 × 3 × 2 1.89 33.05 27.35 22.55 31.42 80 × 3 × 2 3.11 30.69 43.18 80.53 44.60
30 × 3 × 3 4.83 32.58 22.73 60.86 45.99 80 × 3 × 3 5.03 51.79 55.66 95.22 65.15
30 × 4 × 2 3.28 16.93 20.95 40.70 26.15 80 × 4 × 2 9.90 32.95 28.90 68.05 46.91
30 × 4 × 3 4.06 37.14 28.17 38.60 36.37 80 × 4 × 3 19.80 61.11 45.45 111.46 85.82
30 × 5 × 2 21.23 30.92 34.57 54.50 36.31 80 × 5 × 2 24.81 35.46 27.12 65.59 64.91
30 × 5 × 3 29.62 41.00 32.08 57.23 47.63 80 × 5 × 3 44.73 54.56 40.46 102.65 52.79
40 × 3 × 2 2.87 26.71 30.16 51.61 29.57 90 × 3 × 2 7.67 37.74 27.16 114.09 138.62
40 × 3 × 3 5.11 32.05 22.63 35.03 36.49 90 × 3 × 3 8.06 73.98 56.87 107.96 55.88
40 × 4 × 2 4.91 31.69 27.66 45.43 29.75 90 × 4 × 2 10.02 32.49 30.61 74.26 68.74
40 × 4 × 3 4.79 32.60 24.42 56.59 41.25 90 × 4 × 3 17.80 58.56 56.90 94.36 89.35
40 × 5 × 2 11.60 38.87 16.66 42.31 36.29 90 × 5 × 2 35.49 58.64 51.41 72.34 31.37
40 × 5 × 3 27.22 28.18 23.62 60.80 62.14 90 × 5 × 3 56.95 85.74 94.86 123.54 88.36
50 × 3 × 2 4.03 28.33 34.38 45.28 37.28 100 × 3 × 2 4.63 31.14 62.92 83.09 110.50
50 × 3 × 3 4.22 17.21 44.58 63.72 48.15 100 × 3 × 3 5.17 53.91 79.85 133.47 100.55
50 × 4 × 2 8.37 26.89 34.94 48.41 70.07 100 × 4 × 2 16.87 58.85 45.21 85.70 74.25
50 × 4 × 3 7.19 28.21 23.89 40.85 71.48 100 × 4 × 3 14.83 58.77 77.58 65.65 126.99
50 × 5 × 2 13.41 26.61 30.73 50.56 36.55 100 × 5 × 2 54.28 53.29 71.18 71.06 47.01
50 × 5 × 3 83.29 35.29 37.97 56.06 42.95 100 × 5 × 3 34.88 59.36 58.12 69.55 89.60

Table 6 describes the results of a pair-sample t-test, in which t-test (A1, A2) means that a paired t-
test is performed to judge whether algorithm A1 gives a better sample mean than A2. If the significance
level is set at 0.05, a statistically significant difference between A1 and A2 is indicated by a p-value less
than 0.05.

As shown in Tables 3–5, ETLBO obtains smaller MIN than TLBO on all instances and MIN
of ETLBO is lower than that of TLBO by at least 50 on 46 instances. It can be found from Table 4
that AVG of ETLBO is better than that of TLBO on 59 of 60 instances and SFLA is worse AVG than
ETLBO by at least 50 on 45 instances. Table 5 shows that ETLBO obtains smaller STD than TLBO on
58 instances. Table 6 shows that there are notable performance differences between ETLBO and TLBO
in a statistical sense. Fig. 5 depicts the notable differences between STD of the two algorithms, and
Fig. 6 reveals that ETLBO significantly converges better than TLBO. It can be concluded that teacher
competition, reinforcement search of elite class and adaptive adjustment on teachers and classes have
a positive impact on the performance of ETLBO.
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Figure 5: Box plots for all algorithms

Figure 6: Convergence curves of instance 50 × 3 × 3 and 70 × 5 × 2
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Table 6 : t-test result of the algorithm

t-text p-MIN p-AVG p-STD

t-text (ETLBO, HHSGA) 0.000 0.000 0.000
t-text (ETLBO, IDPGA) 0.000 0.000 0.000
t-text (ETLBO, DDE) 0.000 0.000 0.000
t-text (ETLBO, TLBO) 0.000 0.000 0.000

Table 3 describes that ETLBO performs better than HHSGA and IDPGA on MIN for all
instances. As can be seen from Table 4, ETLBO produces smaller AVG than with the two comparative
algorithms on 57 of 60 instances; moreover, AVG of ETLBO is less than that of HHSGA by at
least 50 on 26 instances and IDPGA by at least 50 on 48 instances. Table 5 also shows that ETLBO
obtains smaller STD than the two comparative algorithms on 49 instances. ETLBO converges better
than HHSGA and IDPGA. The results in Table 6, Figs. 5 and 6 also demonstrate the convergence
advantage of ETLBO.

It can be concluded from Tables 3–5 that ETLBO performs significantly better than DDE.
ETLBO produces smaller MIN than DDE in all instances, also generates better AVG than DDE
by at least 50 on 45 instances and obtains better STD than or the same STD as DDE on nearly
all instances. ETLBO performs notably better than DDE, and the same conclusion can be found
in Table 6. Fig. 5 illustrates the significant difference in STD, and Fig. 6 demonstrates the notable
convergence advantage of ETLBO.

As analyzed above, ETLBO outperforms its comparative algorithms. The good performance of
ETLBO mainly results from its teacher competition, reinforcement search of elite class and adaptive
adjustment on teachers and classes. Teacher competition is proposed to make full use of teacher
solutions, reinforcement search of elite class performs more searches for better solutions to avoid
wasting computational resources, adaptive adjustment on teachers and classes dynamically adjusts
class composition according to class quality, as a result, which can effectively prevent the algorithm
from falling into local optima. Thus, it can be concluded that ETLBO is a promising method for
RHFSP with bottleneck stage.

5 Conclusion and Future Work

This study considers RHFSP with bottleneck stage, and a new algorithm named ETLBO is
presented to minimize maximum completion time. In ETLBO, teachers are divided into formal
teachers and substitute teachers. A new teacher phase is implemented, which includes two types of
teachers’ competition and teaching phases. Reinforcement search of the elite class is used to replace
the learner phase. Based on class quality, adaptive adjustment is made for classes and teachers to
change the composition of them. The experimental results show that ETLBO is a very competitive
algorithm for the considered RHFSP.

In the near future, we will continue to focus on RHFSP and use other meta-heuristics such
as artificial bee colony algorithm and imperialist competitive algorithm to solve it. Some new
optimization mechanisms, such as cooperation and reinforcement learning, are added into meta-
heuristics are our future research topics. Fuzzy RHFSP and distributed RHFSP are another of our
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directions. Furthermore, the application of ETLBO to deal with other scheduling problems is also
worthy of further investigation.
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[24] A. Baykasoğlu, A. Hamzadayi, and S. Y. Köse, “Testing the performance of teaching-learning based
optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases,”
Inf. Sci., vol. 276, pp. 204–218, Aug. 2014. doi: 10.1016/j.ins.2014.02.056.

[25] Z. Xie et al., “An effective hybrid teaching-learning-based optimization algorithm for permu-
tation flow shop scheduling problem,” Adv. Eng. Softw., vol. 77, pp. 35–47, Nov. 2014. doi:
10.1016/j.advengsoft.2014.07.006.

[26] W. Shao, D. Pi, and Z. Shao, “An extended teaching-learning based optimization algorithm for solving
no-wait flow shop scheduling problem,” Appl. Soft Comput., vol. 61, pp. 193–210, Dec. 2017. doi:
10.1016/j.asoc.2017.08.020.

[27] C. Song, “A hybrid multi-objective teaching-learning based optimization for scheduling problem of hybrid
flow shop with unrelated parallel machine,” IEEE Access, vol. 9, pp. 56822–56835, Apr. 2021. doi:
10.1109/ACCESS.2021.3071729.

[28] R. Buddala and S. S. Mahapatra, “Improved teaching-learning-based and JAYA optimization algorithms
for solving flexible flow shop scheduling problems,” J. Ind. Eng. Int., vol. 14, pp. 555–570, Sep. 2018. doi:
10.1007/s40092-017-0244-4.

https://doi.org/10.1016/j.cie.2019.106154
https://doi.org/10.3390/su15107982
https://doi.org/10.1080/00207543.2017.1408971
https://doi.org/10.1007/s10845-015-1078-9
https://doi.org/10.1016/j.cie.2022.108236
https://doi.org/10.1016/j.cie.2020.106545
https://doi.org/10.1016/j.eswa.2022.119151
https://doi.org/10.1016/j.asoc.2012.01.011
https://doi.org/10.1016/j.rcim.2020.102081
https://doi.org/10.1080/00207543.2023.2279145
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.eswa.2023.120043
https://doi.org/10.1016/j.ins.2014.02.056
https://doi.org/10.1016/j.advengsoft.2014.07.006
https://doi.org/10.1016/j.asoc.2017.08.020
https://doi.org/10.1109/ACCESS.2021.3071729
https://doi.org/10.1007/s40092-017-0244-4


CMC, 2024, vol.79, no.1 63

[29] B. J. Xi and D. M. Lei, “Q-learning-based teaching-learning optimization for distributed two-stage hybrid
flow shop scheduling with fuzzy processing time,” Complex Syst. Model. Simul., vol. 2, no. 2, pp. 113–129,
Jun. 2022. doi: 10.23919/CSMS.2022.0002.

[30] U. Balande and D. Shrimankar, “A modified teaching learning metaheuristic algorithm with opposite-
based learning for permutation flow-shop scheduling problem,” Evol. Intell., vol. 15, no. 1, pp. 57–79, Mar.
2022. doi: 10.1007/s12065-020-00487-5.

[31] X. Ji et al., “An improved teaching-learning-based optimization algorithm and its application to a
combinatorial optimization problem in foundry industry,” Appl. Soft Comput., vol. 57, pp. 504–516, Aug.
2017. doi: 10.1016/j.asoc.2017.04.029.

[32] R. Buddala and S. S. Mahapatra, “An integrated approach for scheduling flexible job-shop using teaching-
learning-based optimization method,” J. Ind. Eng. Int., vol. 15, no. 1, pp. 181–192, Mar. 2019. doi:
10.1007/s40092-018-0280-8.

[33] M. Rostami and A. Yousefzadeh, “A gamified teaching-learning based optimization algorithm for a three-
echelon supply chain scheduling problem in a two-stage assembly flow shop environment,” Appl. Soft
Comput., vol. 146, pp. 110598, Oct. 2023. doi: 10.1016/j.asoc.2023.110598.

[34] R. Buddala and S. S. Mahapatra, “Two-stage teaching-learning-based optimization method for flexible
job-shop scheduling under machine breakdown,” Int. J. Adv. Manuf. Technol., vol. 100, pp. 1419–1432,
Feb. 2019. doi: 10.1007/s00170-018-2805-0.

[35] J. Jayanthi et al., “Segmentation of brain tumor magnetic resonance images using a teaching-learning
optimization algorithm,” Comput. Mater. Contin., vol. 68, no. 3, pp. 4191–4203, Mar. 2021. doi:
10.32604/cmc.2021.012252.

[36] D. M. Lei, B. Su, and M. Li, “Cooperated teaching-learning-based optimisation for distributed two-
stage assembly flow shop scheduling,” Int. J. Prod. Res., vol. 59, no. 23, pp. 7232–7245, Nov. 2020. doi:
10.1080/00207543.2020.1836422.

[37] D. M. Lei and B. Su, “A multi-class teaching-learning-based optimization for multi-objective dis-
tributed hybrid flow shop scheduling,” Knowl. Based. Syst., vol. 263, pp. 110252, Jan. 2023. doi:
10.1016/j.knosys.2023.110252.

[38] A. Dubey, U. Gupta, and S. Jain, “Medical data clustering and classification using TLBO and
machine learning algorithms,” Comput. Mater. Contin., vol. 70, no. 3, pp. 4523–4543, Oct. 2021. doi:
10.32604/cmc.2022.021148.

[39] D. M. Lei and B. J. Xi, “Diversified teaching-learning-based optimization for fuzzy two-stage hybrid flow
shop scheduling with setup time,” J. Intell. Fuzzy Syst., vol. 41, no. 2, pp. 4159–4173, Sep. 2021. doi:
10.3233/JIFS-210764.

[40] D. M. Lei, L. Gao, and Y. L. Zheng, “A novel teaching-learning-based optimization algorithm for energy-
efficient scheduling in hybrid flow shop,” IEEE Trans. Eng. Manage., vol. 65, no. 2, pp. 330–340, May. 2018.
doi: 10.1109/TEM.2017.2774281.

[41] A. Sharma et al., “Identification of photovoltaic module parameters by implementing a novel teaching
learning based optimization with unique exemplar generation scheme (TLBO-UEGS),” Energy Rep.,
vol. 10, pp. 1485–1506, Nov. 2023. doi: 10.1016/j.egyr.2023.08.019.

[42] M. Arashpour et al., “Predicting individual learning performance using machine-learning hybridized with
the teaching-learning-based optimization,” Comput. Appl. Eng. Educ., vol. 31, no. 1, pp. 83–99, Jan. 2023.
doi: 10.1002/cae.22572.

[43] A. K. Shukla, S. K. Pippal, and S. S. Chauhan, “An empirical evaluation of teaching-learning-based
optimization, genetic algorithm and particle swarm optimization,” Int. J. Comput. Appl., vol. 45, no. 1,
pp. 36–50, Jan. 2023. doi: 10.1080/1206212X.2019.1686562.

[44] J. Deng and L. Wang, “A competitive memetic algorithm for multi-objective distributed permuta-
tion flow shop scheduling problem,” Swarm Evol. Comput., vol. 32, pp. 121–131, Feb. 2017. doi:
10.1016/j.swevo.2016.06.002.

https://doi.org/10.23919/CSMS.2022.0002
https://doi.org/10.1007/s12065-020-00487-5
https://doi.org/10.1016/j.asoc.2017.04.029
https://doi.org/10.1007/s40092-018-0280-8
https://doi.org/10.1016/j.asoc.2023.110598
https://doi.org/10.1007/s00170-018-2805-0
https://doi.org/10.32604/cmc.2021.012252
https://doi.org/10.1080/00207543.2020.1836422
https://doi.org/10.1016/j.knosys.2023.110252
https://doi.org/10.32604/cmc.2022.021148
https://doi.org/10.3233/JIFS-210764
https://doi.org/10.1109/TEM.2017.2774281
https://doi.org/10.1016/j.egyr.2023.08.019
https://doi.org/10.1002/cae.22572
https://doi.org/10.1080/1206212X.2019.1686562
https://doi.org/10.1016/j.swevo.2016.06.002

	An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
	1 Introduction
	2 Problem Description
	3 ETLBO for RHFSP with Bottleneck Stage
	4 Computational Experiments
	5 Conclusion and Future Work
	References


