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ABSTRACT

Augmentation of abnormal cells in the brain causes brain tumor (BT), and early screening and treatment will reduce
its harshness in patients. BT’s clinical level screening is usually performed with Magnetic Resonance Imaging (MRI)
due to its multi-modality nature. The overall aims of the study is to introduce, test and verify an advanced image
processing technique with algorithms to automatically extract tumour sections from brain MRI scans, facilitating
improved accuracy. The research intends to devise a reliable framework for detecting the BT region in the two-
dimensional (2D) MRI slice, and identifying its class with improved accuracy. The methodology for the devised
framework comprises the phases of: (i) Collection and resizing of images, (ii) Implementation and Segmentation
of Convolutional Neural Network (CNN), (iii) Deep feature extraction, (iv) Handcrafted feature extraction, (v)
Moth-Flame-Algorithm (MFA) supported feature reduction, and (vi) Performance evaluation. This study utilized
clinical-grade brain MRI of BRATS and TCIA datasets for the investigation. This framework segments detected the
glioma (low/high grade) and glioblastoma class BT. This work helped to get a segmentation accuracy of over 98%
with VGG-UNet and a classification accuracy of over 98% with the VGG16 scheme. This study has confirmed that
the implemented framework is very efficient in detecting the BT in MRI slices with/without the skull section.
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1 Introduction

The Central Nervous System (CNS) is a principal part of human physiology and infection/disease
in the CNS is a medical emergency. The growth of atypical cells in the brain section is the prime cause
of the brain tumor (BT). In 2021, the World Health Organisation (WHO) put forth a report in which
guidelines were provided to categorize BT based on its cell origin and harshness [1]. As per this report,
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the BT is grouped into four grades, Grades I to IV, in which the severity of Grade IV class BT is the
highest compared to the lowest grades [2].

The report of the Global Cancer Observatory (GCO) in the year 2020 confirmed that CNS-
associated cancer infected 308,102 individuals globally and was the reason for 251,329 reported deaths
[3]. Furthermore, a recent report confirms that BT/ CNS cancer holds the 10th rank in causes of death
in the United States [4]. Additionally, this report also verified that in the year 2021, there was a reported
death of 18,600 adults (10,500 men and 8,100 women) due to BT/CNS cancer.

Due to its significance, several screening protocols were developed and implemented in medical
clinics to detect BT, and a medical imaging-supported imaging scheme was one of the commonly
recommended procedures. The earlier works confirmed that BT can be efficiently diagnosed using
magnetic resonance imaging (MRI). MRI is a radiological imaging procedure that helps to provide
complete information about the brain using a reconstructed three-dimensional (3D) image, which
permits examination in 2D form. Further, the MRI supports multiple radiological techniques, such
as Flair, T1, T1C, and T2, and based on the recommendations by a doctor, the BT in a patient can be
screened with chosen MRI modalities. After recording the brain section, the clinical-level examination
uses the digital MRI images with a desired plane, namely axial, coronal, and sagittal.

Prior studies in the literature confirm that a 2D MRI slice of the axial plane is widely considered
during a BT detection task. Several computerized algorithms are developed and implemented to
support the segmentation and grading of BT [5–7]. The Prior studies confirm that integrating seg-
mentation and classification enables superior screening than alternative methods [8,9]. Furthermore,
the automatic examination of BT with Convolutional Neural Network (CNN) facilitates a superior
result over machine-learning methods (MLM). Hence, the researchers have developed many CNN-
supported BT detection procedures [10–15].

This objective of this work is to implement a CNN-supported segmentation and classification
framework for detecting the BT in the Flair/T2 modality MRI slice. The multiple stages of this
implementation include (i) Image collection, (ii) 3D to 2D conversion and resizing, (iii) CNN
segmentation, (iv) Deep-feature mining, (v) Handcrafted Feature (HF) mining, (vi) Feature reduction
using Moth-Flame-Algorithm and (vii) Assessment of performance and validation. In this work, the
HF, such as Gray-Level Co-Occurrence Matrix (GLCM) and Discrete Wavelet Transform (DWT) were
considered to improve the BT detection accuracy.

To establish the clinical significance of the proposed scheme, a clinical-grade brain MRI was
collected from (i) the Multimodal Brain Tumour Image Segmentation (BRATS2015) database
(Low/High-grade Glioma) and (ii) The Cancer Imaging Archive (TCIA) database (Glioma/Glioblas-
toma). In BRATS, the 2D MRI slices are accessible with the exclusion of the skull section, and in
TCIA, the MRI slices are associated with the skull. Consequently, the experimental analysis was
carried out separately for the BRATS and TCIA datasets, and the results are presented.

This work used the VGG-UNet scheme to segment and classify the BT from the dataset. During
the segmentation task, the pre-trained VGG-UNet scheme was trained using the test images from
the BRATS database and the corresponding ground-truth (GT) images. Later, the segmentation
performance of pre-trained VGG-UNet was validated using the TCIA database. Finally, the clas-
sification performance of the VGG16 scheme was verified on the BRATS/TCIA dataset using a
binary classification scheme with a 5-fold cross-validation. In this work, the performance of the
classifiers, such as SoftMax, Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), K-Nearest
Neighbours (KNN), and Support-Vector-Machine (SVM) are presented. The experimental findings
of this study confirm that VGG-UNet led to a segmentation accuracy of >98% on both datasets. For
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BRATS, the VGG16 and the KNN aided to achieving a classification accuracy of over 98%, and for
TCIA, the VGG16 with DT classifier provided >98% accuracy. These results confirmed the clinical
significance of the proposed scheme.

The major outcomes of the proposed work are:

i) Implementation of VGG-UNet supported simultaneous joint segmentation and classification
of BT.

ii) Moth-Flame-Algorithm based feature selection to optimise result.
iii) Testing and validation of the brain MRI of with/without a skull section to substantiate clinical

significance.

Another section of this research is structured as: Sections 2 and 3 which present the literature
review and methodology. Sections 4 and 5 demonstrate the investigational outcomes and conclusion,
respectively.

2 Literature Review

The incidence rate of BT is gradually rising in all countries; therefore, efficient screening and
treatment procedures are necessary to reduce death rates. Due to its importance, a multitude of
computerised BT detection techniques are proposed and implemented to support (i) Segmentation
and (ii) Classification of the BT in 2D MRI slices of chosen modality [16]. The implementation of
MLM and CNN procedures are widely found in literatures to efficiently detect the group of BT
for appropriate decision making and treatment [17–19]. The CNN-supported schemes confirmed
its superiority over other existing conventional and MLM techniques for the segmentation and
classification of the BT in brain MRI.

Table 1 summarises the chosen CNN scheme supported segmentation and classifications found
in earlier works along with the obtained performance metrics.

Table 1: Summary of CNN based segmentation and evaluation of BT in brain MRI

Reference Procedure employed
for BT detection

Performance metric
(Accuracy %)

Dataset Total images

Amin et al. [20] Machine-learning
supported detection
of BT with fused
image features.

98.00 BRATS 2012–2015
and ISLES
2015–20147

1033

Rajinikanth
et al. [21]

VGG19 based BT
detection from
BRATS and TCIA is
discussed.

98.90 BRATS and TCIA 9500

Mallick
et al. [22]

CNN supported
detection of BT is
presented.

89.00 DICOM –

(Continued)
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Table 1 (continued)

Reference Procedure employed
for BT detection

Performance metric
(Accuracy %)

Dataset Total images

Sharif et al. [23] Deep-learning with
fused features based
classification is
implemented to
detect the BT.

97.80 BRATS 2013,
2014, 2017, 2018

1211

Gudigar
et al. [24]

Implementation of
Shearlet transform,
texture feature along
with SVM classifier is
considered to detect
BT.

97.38 HMS 1093

Khawaldeh
et al. [25]

CNN supported
detection of BT is
presented using 2D
MRI slices.

91.16 TCIA 4069

Sharif et al. [26] This work
implements Particle-
Swarm-Optimization
based thresholding
and CNN
segmentation to
detect the BT.

99.00 RIDER and
BRATS 2018

392

Khan et al. [27] Implementation of
CNN supported BT
classification is
presented with
various classifiers.

Accuracy for
different classifiers:
NB = 94.19

BRATS 2015, 2017
and 2018

–

SVM −94.66
SoftMax = 93.98
Ensemble tree =
95.67
Extreme Learning
Machine = 98.16

Naser et al. [28] Deep-learning based
segmentation and
grading of BT is
presented.

89.00 TCIA 3929

Pei et al. [29] Detectection of BT
with customized
CNN is presented.

98.14 BRATS 2019, 2020
and TCIA

766

(Continued)
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Table 1 (continued)

Reference Procedure employed
for BT detection

Performance metric
(Accuracy %)

Dataset Total images

Rajinikanth
et al. [30]

Implementation of
VGG-UNet and
classification of BT is
discussed and
deep+HF based
binary classification
is presented using
Matlab software.

98.89 TCIA 2200

Biratu et al. [31] This work executed
an integrated
segmentation and
classification task
using UNet and
YOLO2.

99.60 – –

Sahoo et al. [32] This work
implements a deep
neural-network
combined with the
fast fuzzy c-means to
achieve better
detection of BT class.

99.36 The Fig.share
brain tumor
dataset (Nanfang
Hospital in
Guangzhou, and
General Hospital
at Tianjing
Medical
University)

3064

Sahoo et al. [33] Execution of hybrid
CNN + clustering
approach is presented
to detect the BT.

99.50 BRATS 2020 and
BRATS 2017

1119

Along with the above discussed methods, a number of review works also exist in the literature to
examine the BT in BRATS, TCIA and clinical datasets [34–39]. A recent survey by Biratu et al. [40]
demonstrated the review on BT detection methods [41–44]. Moreover, a number of recent BT segmen-
tation confirmed the need for the CNN-segmentation schemes to achieve better results [45,46]. The
experimental outcome of these works confirms that the CNN-supported scheme provides improved
BT detection compared to the machine-learning procedures.

Table 1 results confirm that the recent works of [33] provided a better result compared to other
works in the literature. This work implemented a joint segmentation and classification, and based on
this motivation, this research also implemented a segmentation + classification task. To achieve a
better result during the BT segmentation and classification, a VGG-UNet supported procedure was
executed. To verify the clinical significance of the proposed technique, the datasets, such as BRATS
and TCIA were considered.
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3 Methodology

The performance and reliability of an automatic disease screening system depends mainly on the
methodology which is employed to examine the medical images. In this work, the VGG-UNet scheme
was used to segment and classify the BT from the Flair (BRATS) and T2 (TCIA) images. The merit of
the proposed scheme was separately evaluated for segmentation and classification tasks, and obtained
results are presented.

3.1 Framework

The developed BT screening framework is depicted in Fig. 1.

Figure 1: CNN framework for segmentation and evaluation of BT from 2D MRI slices

3.2 Brain MRI Database

This research considered the MRI images of the BRATS2015 [47,48] and TCIA [49–51].
BRATS2015 database consists of 274 patient’s 3D images in which 220 images belong to High-Grade-
Glioma (HGG) and 54 images belong to Low-Grade-Glioma (LGG), and 80 other patients’ (40 HGG
and 40 LGG) images were also used for the investigation. Furthermore, from the TCIA dataset, 35
LGG [50] and 35 Glioblastoma (GBM) [51] images were also considered for the examination. The
initial pixel dimension of the BRATS database is around 216 × 160 × 3 pixels and for the TCIA, the
extracted image resolution is 300 × 300 × 3 pixels. These images are then resized to 512 × 512 × 3
pixels for the segmentation and 224 × 224 × 3 for the classification task. In the BRATS2016 database,
Flair modality images along with the Ground-Truth (GT) were extracted and considered. Both these
images are benchmark images widely adopted in the literature to evaluate the performance of the
disease screening systems [52,53]. These datasets consist of 3D images which are converted into 2D
slices using ITK-Snap [54,55] as depicted in Fig. 2.
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Figure 2: Extraction of 2D slices from 3D MRI with ITK-Snap

For the experimental evaluation, 4000 numbers of 2D slices (2000 LGG and 2000 HGG images)
were considered for the BRATS2015 and 4000 numbers of 2D slices (2000 LGG and 2000 GBM
images) were considered from TCIA. Among these images, 70% were considered to train the classifier,
20% to test the classifier and 10% to validate the classifier performance using a 5-fold cross validation.
The sample test images of both these databases are depicted in Fig. 3 and Fig. S1 shows sample test
images of various MRI modalities collected from BRATS2015.

Figure 3: Sample test images considered in this research
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3.3 VGG-UNet Segmentation

The scheme of VGG-UNet is depicted in Fig. 1, in which the traditional VGG16 will act as the
encoder unit and the modifier VGG16, which works like a UNet, will be the decoder. To support
the essential feature extraction and segmentation process, every picture was resized to 512 × 512 × 3.
The considered scheme was trained using the BRATS images (test picture and GT) and this training
and validation was continued till the segmentation accuracy of >98% was achieved. After training
and validating the performance of the VGG-UNet on the selected images of BRATS, its segmentation
performance was then directly validated on the LGG/GBM images of TCIA and the segmented binary
images were collected. These images were then used to extort GLCM and DWT features and were
combined with deep features to improve the classification performance of the VGG16 approach.

In this work, pre-trained VGG-UNet was considered initially to segment the BT region from the
test image. Then the deep-features obtained from the encoder unit (VGG16) were used to classify the
images using the chosen binary classifiers. In this work, the initial parameters for the VGG-UNet were
assigned as follows: Initial weights = ImageNet, epochs = 50 numbers, optimizer = Adam, pooling
= average, number of convolutional layers = five groups for down/up convolution, hidden-layer-
activation = Relu, classifier-activation = Sigmoid, evaluation metrics = dice and accuracy, training
images = 70%, testing images = 20%, initial validation = 10% and final validation = 100% (i.e., BT
in every image is extracted and stored for assessment).

During this implementation, the encoder unit (VGG16) helped to get the deep-feature and after
passing it through the three numbers of fully connected layer (with 50% drop-out rate) 1 × 1 × 1000
numbers of deep-feature was obtained. This feature was then considered to train and validate the
performance of the binary classifier using a 5-fold cross validation. During this process, necessary
performance metrics were calculated, and based on their value the merit of the developed framework
was confirmed.

3.4 Handcrafted Feature Extraction

Earlier works in the literature confirm that the integration of deep and Handcrafted-Features
(HF) helped to achieve improved results during the medical image examination. In this work, the
HF, such as GLCM and DWT were extracted from the segmented binary section of the BT. The
complete information about the GLCM [56–59] and DWT [60–62] can be found in the literatures.
The GLCM approach is a well-known procedure in medical image analysis and this feature helped to
get information about the area and texture of the BT. During the DWT feature evaluation, the test
pictures were divided into four sections, such as approximate-(LL), vertical-(LH), horizontal-(HL)
and diagonal-coefficients (HH) from every image, and essential features were mined as discussed in
Mirniaharikandehei et al. [63].

Fig. 4 presents the DWT features obtained for a chosen MRI slice, which has the BT section. The
essential information about the GLCM features (1 × 1 × 25) [64] and DWT features (1 × 1 × 13)
can be accessed from [65]. While Artificial Intelligence algorithms are renowned for their remarkable
predictive abilities, there is a common perception that they operate as “black boxes” due to their
inherent opacity. As a result, there is a growing demand for the development of fully Explainable
Artificial Intelligence (XAI), a need emphasized by the inclusion of the right to explanation in the
General Data Protection Regulation (GDPR). Extensive research efforts have been dedicated to
improving diagnosis, decision support, and interpretability, particularly within the realm of medicine.
In the medical field, interpretability goes beyond mere curiosity and becomes a critical factor in
decision-making, with far-reaching consequences [66].
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(a) (b)

Figure 4: Sample DWT images achieved using LGG/HGG images of BRATS

The deep and HF features considered is presented in Eqs. (1) to (7).

Deep(1×1×1000) = VGG16(1,1), VGG16(1,2), . . . , VGG16(1,1000) (1)

GLCM(1×1×25) = GLCM(1,1), GLCM(1,2), . . . , GLCM(1,25) (2)

DWTLL(1×1×13) = LL(1,1), LL(1,2), . . . , LL(1,13) (3)

DWTLH(1×1×13) = LH(1,1), LH(1,2), . . . , LH(1,13) (4)

DWTHL(1×1×13) = HL(1,1), HL(1,2), . . . , HL(1,13) (5)

DWTHH(1×1×13) = HH(1,1), HH(1,2), . . . , HH(1,13) (6)

HF(1×1×77) = GLCM(1×1×25) + DWTLL(1×1×13) + DWTLH(1×1×13) + DWTHL(1×1×13) + DWTHH(1×1×13) (7)

These features were then optimized with the Moth-Flame-Algorithm (MFA) and selected features
were then combined to verify the BT detection performance of the classifiers.

3.5 Feature Selection and Serial Concatenation

Feature reduction is an adequate practice in a class of machine learning [67,68] and deep learning
[69,70] tasks. In this research the reduction of deep and HF were executed with MFA. The MFA
is a nature inspired technique invented by Mirjalili in 2015 to find optimal solutions for a range of
constrained/unconstrained problems [71,72]. The idea of MFA is related to the association of a Moth
towards a Flame based on a pre-defined outline (spiral). In MFA, the moths are the investigating
agents and the flame is the resolution for the task. If the search begins with assigned agents (moths),
then each agent is permitted to achieve their associated flame (solution) by spiral search as depicted
in Fig. 5. The essential information about the MFA can be found in [72–75].
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Figure 5: Search pattern of a moth towards a flame

To define MFA mathematically, a search space with a-number of moths (M) and b-number of
flames (F) were chosen. The preliminary space between M and F are to be minimized; as Da =
|Fb − Ma|.

The expression for M which progress towards F can be defined as in Eq. (8):

Ma = Da ∗ eκ� ∗ cos (2π�) + Fb (8)

where Ma = ath moth, Fb = bth flame, κ= constant to identify spiral pattern, and � = random number
of range [−1,1].

Fig. 6 depicts the procedure followed in MFA feature selection. Fig. 7 depicts a sample feature
reduction process for LGG/HGG features. Considering the fact that there exists F1, F2, . . . , Fn
features as mentioned above in both the cases of LGG/HGG and the MFA. Both were assigned to
select the possible features, which minimizes Da = |Fb − Ma|. The selected feature by the MFA is
depicted as Fs1, Fs2, . . . , Fsn. During this process, the 1D feature vector of LGG/HGG was compared
to the feature, which provided the minimal value of the metric which was discarded and the feature
which did not satisfy the metric was selected. This procedure was separately implemented for deep and
HF of LGG/HGG and LGG/GBM class images.

For the LGG/HGG images of BRATS, the selected features are depicted in Eqs. (9) and (10) and
the serially integrated feature is shown in Eq. (11).

Deep(1×1×638) = VGG16(1,1), VGG16(1,2), . . . , VGG16(1,638) (9)

HF(1×1×43) = HF(1,1), HF(1,2), . . . , HF(1,43) (10)

(Deep + HF)(1×1×681) = Deep(1×1×638) + HF(1×1×43) (11)

For the LGG/GBM of TCIA, Eqs. (12) to (14) present the attained results.

Deep(1×1×557) = VGG16(1,1), VGG16(1,2), . . . , VGG16(1,557) (12)

HF(1×1×52) = HF(1,1), HF(1,2), . . . , HF(1,52) (13)

(Deep + HF)(1×1×609) = Deep(1×1×557) + HF(1×1×52) (14)
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Figure 6: Flow chart of MFA based feature selection

Figure 7: Feature selection with MFA

The features presented in Eqs. (11) and (14) are then considered to verify the performance of
chosen binary classifiers.

3.6 Performance Evaluation and Validation

The merit of the proposed BT detection system relies on the classifiers employed to classify the
MRI slices based on MFA optimized features. In this research, the well-known classifiers, such as
SoftMax, DT, RF, NB, KNN and SVM with the linear kernel were considered [76,77] and the obtained
results were compared to recognize the best classifier for the chosen task.
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The commonly considered segmentation/classification metrics to appraise the performance are
presented in Eqs. (15) to (21) [78,79].

Jaccard = TP
TP + FP + FN

(15)

Dice = 2TP
2TP + FP + FN

(16)

Accuracy = ACC = TP + TN
TP + TN + FP + FN

(17)

Precision = PRE = TP
TP + FP

(18)

Sensitivity = SEN = TP
TP + FN

(19)

Specificity = SPE = TN
TN + FP

(20)

F1 − Score = F1S = 2TP
2TP + FN + FP

(21)

where FP, FN, TP, and TN signify false-positive, false-negative, true-positive, and true-negative,
correspondingly.

4 Results and Discussion

The proposed scheme was executed using Python® software with a workstation of Inteli5 processor
with 20 GB RAM and 2 GB VRAM. The developed CNN framework individually implements the
VGG-UNet segmentation and classification to identify the BT with enhanced accuracy.

Initially, the BT region extraction from the chosen MRI slices was performed with the pre-trained
VGG-UNet and the extracted BT region was then considered to extract the HF, such as GLCM and
DWT. The ultimate aim of the work was to implement both the segmentation and classification task
on the BRATS2015 and TCIA datasets.

Fig. 8 presents the results obtained with VGG-UNet for BRATS2015. Fig. 8a shows the training
results, and Fig. 8b presents the convergence of accuracy and loss function during the training and
validation process. Fig. 8c depicts the test image; GT and the extracted BT by the VGG-UNet and this
outcome confirms that the VGG-UNet helped to get a better outcome on the chosen brain MRI slices.
Fig. 9 presents sample results obtained for BRATS2015 and later comparison between the GT and
segmented BT was performed and the necessary performance measure was computed. The sample and
average performance metric are presented in Table 2, which confirmed that the VGG-UNet helped to
get a better value of Jaccard, Dice and segmentation accuracy (>98%) on the BRATS2015 database. A
similar procedure was implemented on the TCIA database and the extracted BT section was considered
to mine the HF, like GLCM and DWT.
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Figure 8: Results obtained with VGG-UNet

Figure 9: Sample segmentation results achieved with VGG-UNet
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Table 2: Performance metric of VGG-UNet segmentation on BRATS2015

Image Jaccard Dice ACC PRE SEN SPE F1S

S1 60.1369 75.1069 97.6885 60.6197 98.6929 97.6518 75.1069
S2 69.7149 82.1553 99.1004 70.9635 97.5382 99.1342 82.1553
S3 75.9685 86.3433 98.4018 76.1477 99.6912 98.3329 86.3433
S4 66.4829 79.8675 98.0747 66.5625 99.8205 98.0052 79.8675
Average 83.52 ±

2.14
89.14 ±
1.33

98.06 ±
0.18

84.16 ±
1.08

98.31 ±
0.15

97.18 ±
1.51

89.14 ±
1.33

After validating the segmentation of VGG-UNet, its classification merit was then confirmed with
deep-feature and deep + HF for the images of BRATS and TCIA. Initially, the BRATS database
was considered and the performance of VGG16 was verified for LGG/HGG detection with different
classifiers. A similar procedure was repeated with TCIA images and the results for LGG/GBM
detection were then recorded. The different convolutional-layer (CL) outcomes (Conv1 to Conv5)
attained for a sample GBM class picture with the VGG16 scheme is depicted in Fig. 10. In this task,
the CL helped to extract the necessary information from the test picture and later, the result of one CL
was passed to the successive section using average-pooling. This process continued until the outcome
was reached in the form of features. The necessary features were extracted with a fully-connected-layer
(FCL), a final section in the VGG16 unit. Fig. 9 presents the outcome of this experiment depicted as
a Viridis-colour-map. Fig. 10a shows the sample test image of TCIA and Figs. 10b to 10f depict the
outcome of the various CV of the VGG16. These results confirm that the VGG16 was efficient in
learning and extracting the necessary features with better efficiency.

(a) Sample image (b) Conv1

(c) Conv2 (d) Conv3

Figure 10: (Continued)
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(e) Conv4 (f) Conv5

Figure 10: Different convolutional layer results by VGG16 obtained for a test image

After collecting the necessary results from the CL, the other essential metrics, such as Accuracy vs.
Epoch, Loss vs. Epoch, Confusion-Matrix (CM) and Receiver-Operating-Characteristic (RoC) curve
were recorded for further appraisal. Fig. 11 presents the results achieved for the BRATS database with
deep + HF and KNN classifier. Figs. 11a and 11b show the accuracy and loss function achieved with
this study. The accuracy confirmed that the proposed scheme helped to reach ≈99% accuracy when
the epochs reach towards 100. Fig. 11c presents the CM with TP = 198, TN = 198, FP = 2 and FN
= 2. The accuracy computed for these values was around 99%, which was the best result achieved in
the study. Fig. 11d depicts that the RoC achieved is 0.9804 with a p-value of <0.001, which confirmed
the merit of the study presented.

The quantitative results achieved in this study for various features are depicted in Table 3. In this
table, separate outcomes for BRATS and TCIA are presented with deep-features and deep + HF. The
binary classifiers, such as SoftMax, DT, RF, NB, KNN and SVM were considered and the outcome
achieved for a 5-fold cross validation was recorded for the discussion.

vs. vs.

Figure 11: (Continued)
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Figure 11: Results achieved from BRATS with MFA optimized deep + HF and KNN classifier

Table 3: Performance metrics achieved with BRATS and TCIA database with various classifiers

Database Features Classifier TP FN TN FP ACC PRE SEN SPE F1S

BRATS
2015

Deep-
features

SoftMax 189 13 188 10 0.9425 0.9497 0.9356 0.9495 0.9426
DT 190 12 189 9 0.9475 0.9548 0.9406 0.9545 0.9476
RF 192 10 190 8 0.9550 0.9600 0.9505 0.9596 0.9552
NB 191 9 191 9 0.9550 0.9550 0.9550 0.9550 0.9550
KNN 190 8 192 10 0.9550 0.9500 0.9596 0.9505 0.9548
SVM 193 9 190 8 0.9575 0.9602 0.9554 0.9596 0.9578

MFA
selected
Deep
+
HF

SoftMax 192 9 193 6 0.9625 0.9697 0.9552 0.9698 0.9624
DT 194 5 195 6 0.9725 0.9700 0.9749 0.9701 0.9724
RF 197 5 195 3 0.9800 0.9850 0.9752 0.9848 0.9801
NB 196 6 196 2 0.9800 0.9899 0.9703 0.9899 0.9800
KNN 198 2 198 2 0.9900 0.9900 0.9900 0.9900 0.9900
SVM 197 5 194 4 0.9775 0.9801 0.9752 0.9798 0.9777

TCIA

Deep-
features

SoftMax 191 10 189 10 0.9500 0.9502 0.9502 0.9497 0.9502
DT 188 12 190 10 0.9450 0.9495 0.9400 0.9500 0.9447
RF 191 10 191 8 0.9550 0.9598 0.9502 0.9598 0.9550
NB 187 13 189 11 0.9400 0.9444 0.9350 0.9450 0.9397
KNN 193 7 191 9 0.9600 0.9554 0.9650 0.9550 0.9602
SVM 191 9 188 12 0.9475 0.9409 0.9550 0.9400 0.9479

MFA
selected
Deep
+
HF

SoftMax 196 4 193 7 0.9725 0.9655 0.9800 0.9650 0.9727
DT 192 8 194 6 0.9650 0.9697 0.9600 0.9700 0.9648
RF 195 5 192 8 0.9675 0.9606 0.9750 0.9600 0.9677
NB 194 6 195 5 0.9725 0.9749 0.9700 0.9750 0.9724
KNN 196 4 195 5 0.9775 0.9751 0.9800 0.9750 0.9776
SVM 197 3 196 4 0.9825 0.9801 0.9850 0.9800 0.9825
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The initial section of this table demonstrates the metrics achieved for the BRATS database in
which the SVM classifier helped to achieve an accuracy of 95.75% for the deep-features, and the
KNN classifier helped to provide an accuracy of 99% for deep + HF. Similarly, the TCIA database
assessment helped to get a 96% accuracy with deep-features and KNN classifier, and 98.25% accuracy
with SVM when executed using deep + HF. To demonstrate the overall performance of the classifiers
with different features, a Glyph-plot was generated and the constructed images are shown in Fig. 12.

(a) Deep-features (b) MFA selected Deep+HF

(c) Deep-features (d) MFA selected Deep+HF

Figure 12: Glyph-plot to compare the metrics presented in Table 3

Figs. 12a and 12b demonstrate the Glyph-Plot for the BRATS images in which the pattern which
covers more area is to be considered as superior. Fig. 11a confirms that the overall result by SVM is
better and Fig. 12b ensures that the KNN provides a better performance compared to other classifiers.
Similarly, other images demonstrate the outcome of TCIA, and this confirmed that in Fig. 12c, the
result of KNN is superior and in Fig. 12d, the outcome of SVM is superior. Fig. 13 demonstrates the
Spider-plot to further verify the merit of KNN and SVM on the chosen images. All these comparisons
confirm that the KNN helped to provide a better BT detection for BRATS2015 compared to other
methods considered in this study.
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Figure 13: Spider-plot for the best results achieved in Table 2

In order to verify the performance of the proposed framework, the final result was compared
against the existing results in the literature, and the presented analysis is depicted in Fig. 14. This image
was constructed using the accuracy demonstrated in Table 1, and in this image, it can be noted that the
maximum accuracy achieved during the BT classification is 99%. The earlier work of Sharif et al. [26]
presented a similar accuracy with PSO based thresholding and CNN classification. The work presents
a similar accuracy with VGG-UNet segmentation and classification. Compared to VGG-UNet of
Rajinikanth et al. [30], the techniques used in this study provided better accuracy. The recent research
works by Sahoo et al. [32–34] presented an improved detection result, which is superior compared
to other methods presented in Table 1, and the results by the proposed technique. When compared
to the works of Sahoo et al., the proposed scheme provided a closer accuracy on the BRATS image
dataset. This result confirmed that the proposed scheme can be considered to examine the brain MRI
slices with/without a skull section. In the future, this scheme can be considered to evaluate the BT in
clinically collected MRI images of varied modalities.

Figure 14: Comparison of classification accuracy in the proposed and other methods in the literature



CMC, 2024, vol.79, no.2 2603

The limitations in the proposed work are the integration of the segmentation and classification,
which is quite time consuming during the training and validation process. In the future, it can be
avoided by considering the pre-processed MRI slices in which the tumour section is more visible
compared to the raw image.

The future scope of the proposed scheme includes implementing the integrated BT examination
scheme to achieve classification accuracy towards 100%. Furthermore, it includes implementing the
proposed scheme to verify the performance on clinical data.

5 Conclusion

This research work proposes a BT examination technique using CNN segmentation and clas-
sification. This work considered the VGG-UNet scheme with VGG16 as the backbone for the
encoder-decoder system. The work separately implemented the segmentation and classification task.
The performance of the proposed system was verified on BRATS (Flair modality) and TCIA (T2
modality) datasets. The BRATS was considered for LGG/HGG detection and the TCIA was chosen
for LGG/GBM recognition. The results achieved in this study confirmed that the proposed VGG-
UNet helped to get a segmentation accuracy of >98% and a classification accuracy of ≈99% for the
BRATS database. These results are closer to the state of the art results found in the literature. Further,
this tool helped to achieve classification accuracy of 98.25% for TCIA with MFA selected deep + HF.
These results confirmed that the proposed CNN scheme was efficient in examining the BT in brain
MRI slices with/without the skull section. In the future, this scheme can be considered to examine the
BT from the actual clinical images collected from hospitals.
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Appendix

This section includes sample images of selected MRI modalities, including Flair, T1, T1C, and
T2, depicted in Figure a, sourced from the BRATS2015 dataset. These images affirm that the tumor
is more clearly visible in Flair and T2 modalities compared to the relatively satisfactory visibility in
T1C. The identification of the tumor region in T1 is not as easily discernible compared to the other
modalities.

(a) Flair (b) T1 (c) T1C (d) T2

Figure S1: Sample test images of various MRI modalities collected from BRATS2015
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