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ABSTRACT

Advances in machine vision systems have revolutionized applications such as autonomous driving, robotic nav-
igation, and augmented reality. Despite substantial progress, challenges persist, including dynamic backgrounds,
occlusion, and limited labeled data. To address these challenges, we introduce a comprehensive methodology to
enhance image classification and object detection accuracy. The proposed approach involves the integration of
multiple methods in a complementary way. The process commences with the application of Gaussian filters to
mitigate the impact of noise interference. These images are then processed for segmentation using Fuzzy C-Means
segmentation in parallel with saliency mapping techniques to find the most prominent regions. The Binary Robust
Independent Elementary Features (BRIEF) characteristics are then extracted from data derived from saliency maps
and segmented images. For precise object separation, Oriented FAST and Rotated BRIEF (ORB) algorithms are
employed. Genetic Algorithms (GAs) are used to optimize Random Forest classifier parameters which lead to
improved performance. Our method stands out due to its comprehensive approach, adeptly addressing challenges
such as changing backdrops, occlusion, and limited labeled data concurrently. A significant enhancement has
been achieved by integrating Genetic Algorithms (GAs) to precisely optimize parameters. This minor adjustment
not only boosts the uniqueness of our system but also amplifies its overall efficacy. The proposed methodology
has demonstrated notable classification accuracies of 90.9% and 89.0% on the challenging Corel-1k and MSRC
datasets, respectively. Furthermore, detection accuracies of 87.2% and 86.6% have been attained. Although our
method performed well in both datasets it may face difficulties in real-world data especially where datasets have
highly complex backgrounds. Despite these limitations, GA integration for parameter optimization shows a notable
strength in enhancing the overall adaptability and performance of our system.
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1 Introduction

Object detection and classification are important tasks in computer vision with applications
spanning human detection [1], image retrieval [2], video analysis [3], and autonomous driving [4]
Traditional machine learning methods face challenges with complex data scenarios, leading to a
shift with the introduction of Convolutional Neural Networks (CNNs). CNNs excel in automatically
extracting hierarchical features, particularly in detecting subtle changes in images, contributing to
significant advancements in deep learning-based object recognition and classification. The use of
object proposals, generated through methods like region proposal networks and sliding windows,
further refines the search space in the identification process [5]. Features are extracted using CNN
from these regions which allows to capture of the diverse representations from data at different
scales and levels of abstraction. The features extracted from the data are inputted into a classification
model, which improves the ability to categorize objects and determine their spatial location. Notable
architectures like region-based convolutional neural networks (R-CNN) and You Only Look Once
(YOLO) [6] have demonstrated exceptional performance on benchmark datasets such as PASCAL
VOC and MS COCO.

Existing models for object detection and classification although have achieved remarkable success
still have certain limitations. Detecting small objects and accommodating varying sizes remain crucial.
Techniques like multi-scale feature extraction, anchor-based, and anchor-free methods improve precise
localization and recognition of objects of different sizes [7]. A key obstacle is the need for extensive
annotated datasets of significant size to train these models with optimal effectiveness. Although
transfer learning has made significant progress by fine-tuning pre-trained models on extensive datasets
for specific tasks, the need to have diverse and thorough training data remains essential. These models
frequently encounter difficulties when faced with scenarios that are not adequately represented in the
training data, resulting in problems such as biased and erroneous classifications in unfamiliar contexts.
Moreover, these models face problems while detecting small objects and in real-world scenarios [8].

As the field progresses there are many notable methods and techniques are produced to overcome
these challenges. The situations where data is limited Generative models play a very critical role in
assisting object recognition by producing the data for training the models. An important concern is the
vulnerability to adversarial attacks, in which even little, undetectable changes to input images might
result in incorrect classifications [8]. One significant drawback arises from the high computational
requirements of advanced models, which impede their use on devices with limited capabilities or in
real-time scenarios. It is important to note that current models may face difficulties when dealing with
differences in size, geographical position, and lighting circumstances [9,10]. To address these limita-
tions, we must focus on efforts in developing robust architectures improving model interpretability, and
enhancing computing performance. In this study, an innovative approach to object recognition and
categorization is introduced with a combination of image processing and machine learning techniques.
The key features of this study are:

• To enhance the quality of the input image for subsequent analysis Gaussian filter has been used
which effectively removes noise during the initial preprocessing step.

• To divide an image into distinct sections based on intensity gradients, the Fuzzy C-Mean
Clustering technique has been employed successfully.

• To identify the most important and distinctive regions of the image, a saliency map is created
using composite features.
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• To carry out feature detection and description tasks, the oriented fast and rotated brief (ORB)
method has been utilized, demonstrating its adeptness in identifying and describing significant
components within images.

• To enhance the performance of the random forest classifier, a genetic algorithm has been
employed which finely adjusts classifier parameters and thereby enhances its accuracy.

The subsequent divisions of the article are structured as follows: Section 2 provides a compre-
hensive literature review. Section 3 outlines the methodology of our proposed system, including a
detailed exposition of the model’s architecture. Section 4 presents the experimental outcomes, and
employed datasets, and includes a comparison to existing methodologies. Section 5 concludes by
drawing conclusions from the study and exploring opportunities for future study.

2 Literature Review
2.1 Machine Learning Approach

The detection and classification of natural objects in computer vision have numerous applications.
A novel method combines region-based segmentation and decision tree classification for efficient
object detection and classification in outdoor scenes. To identify potential object regions in the images
region-based segmentation is employed which is based on factors such as color, texture, and location.
The refinement procedure involves consolidating and differentiating these areas and then using a
classification algorithm based on decision trees using a diverse dataset [11].

Geometric moment invariants in combination with Support Vector Machines (SVM) and K-
Nearest Neighbor (KNN) have been used for object recognition tasks. To determine the K nearest
neighbors it first extracts image features and then computes the Euclidean Distance. If K neighbor
labels are identical then the query is labeled and terminates. It also calculates pairwise distances and
applies SVM to the kernel matrix. This innovative approach merges SVM and KNN strengths for
better object recognition [12].

The technique of salient segmentation entails identifying visually prominent portions of an image
that are deemed significant. Subsequently, a hybrid genetic transformation is employed to achieve the
dual objectives of object localization and object identification. Through comparative analysis between
the proposed algorithms and their existing counterparts, it is evident that the former exhibits superior
performance. This provides a dependable solution for the evaluation of intricate environments [13].

2.2 Object Segmentation and Deep Learning Advancements

Object segmentation, which involves dividing an image into pixels using masks or identifiers, has
been studied extensively. However, to effectively segment things in complex contexts, we must bridge
knowledge gaps. A novel framework for salient object recognition that makes use of multiscale con-
trast, a histogram that extends from the center to the periphery, and color-based spatial distribution.
The addition of a Random Geometric Prior Forest improved subsequent image segmentation This
method estimates the saliency map, locates the salient object’s boundary, and then labels and conceals
salient object instances [14]. Fuzzy C-Means (FCM) and Graph Cut algorithms were used to solve
image segmentation and color separation issues. It used Turbopixel to divide colors into super-pixels
before retrieving histogram data to form clusters. Clusters and graph-cut objects are extracted [15].
A novel distance-based model that combines relative spatial information with visual distance and
angles. The strategies and characteristics of these approaches facilitate object segmentation. They aid
in identifying objects quickly and separating them from complex environments [11].
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Due to the development of Deep Neural Networks (DNNs) and, more specifically, Convolutional
Neural Networks (CNNs), the discipline of object detection has made significant progress. R-CNN
has served as the foundation for many proposed enhanced models, such as Fast R-CNN, which
simultaneously optimizes classification and bounding box regression. In contrast to YOLO’s [6]
implementation of fixed-grid regression for object recognition, the Faster R-CNN [16] model includes
a distinct subnetwork for generating region recommendations. The above models have shown different
levels of improvement over the basic R-CNN [17], which makes it more likely that real-time and
accurate object identification will be possible.

3 Materials and Methods

The section introduces a unique framework designed to improve the performance of object
detection and classification in complex and challenging environments. The general design of the
system includes preprocessing, segmentation, composite saliency map generation, feature extraction,
genetic algorithm optimization, and random forest for classification. The efficacy of the framework
in managing the intricacies of object detection and categorization is significantly augmented by the
division of these activities into distinct stages. Fig. 1 presents a schematic depiction of the overarching
architecture of the proposed paradigm.

Figure 1: Architectural framework of the proposed model for object classification
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3.1 Preprocessing

The approach presented in this study employs a Gaussian filter to preprocess the input images.
Gaussian filter helps in smoothing the image and reducing noise which enhances its suitability for
subsequent processing. The Gaussian filter applies a convolution operation between the input image
and the Gaussian kernel to achieve the desired effect [18]. The kernel assigns a weight to each adjoining
pixel based on its distance from the center pixel. The significance of a pixel inside the filtering process
increases as its proximity to the center of the image grows. An expression for the Gaussian filter is as
follows:

G (x, y) =
(

1
(2πσ2)

e− x2 + y2

2σ2

)
(1)

where G (x, y) represents the value of the Gaussian kernel at coordinates (x, y), σ (sigma) denotes the
standard deviation of the Gaussian distribution. The term σ 2 in the equation represents the variance
that controls the amount of smoothing applied to the image. The higher σ value results in more
pronounced smoothing and indicates a broader spread of the Gaussian distribution which leads to
a more extensive convolution effect and, consequently, stronger image smoothing. This relationship
between σ and image smoothing is a critical aspect of the Gaussian filter’s functionality.

3.2 Fuzzy C-Mean-Based Segmentation

Next, we have applied Fuzzy C-Mean (FCM) for the segmentation selected for its adaptability
in addressing challenges such as fuzziness and uncertainty in pixel memberships. FCM’s distinctive
feature, allowing partial pixel memberships to multiple clusters, is well-suited for scenarios with
indistinct boundaries. Its robustness in handling variations in image intensity and noise, combined
with the incorporation of spatial information, enhances performance particularly in scenarios where
boundaries between image regions are not sharply defined, dealing with variations in image intensity
and noise levels, handling complex image structures, sparse or incomplete data, and accommodating
non-uniform illumination [19,20]. This review emphasizes the effectiveness of FCM in different image
segmentation tasks, such as medical imaging [21] and remote sensing [22]. The preprocessed image is
first converted into a vector of color values which is then used as input to the FCM algorithm [23].
The FCM algorithm assigns a membership value to each pixel in the image based on its color value.
The clustering process continues until convergence, which is reached when the membership values
for all pixels reach a state of stability and no longer exhibit significant changes. The segmentation
process produces a collection of clusters that have corresponding membership values. Each cluster
represents a unique area within the image which is determined by its color [15]. Eqs. (2) and (3) show
the mathematical representation of FCM image segmentation using color features and the centroid
calculation procedure of clusters.

Jvw = 1[∑l

p=1

(
D (v, w)

D (v, p)

) 2
n−1

] (2)

Cw =
∑M

v−1 j (v, w)
n .Xi∑M

v=1 j (v, w)
n

(3)

where D(v, w) is the distance between the color value of pixel v and the center of cluster w, n is the
fuzziness coefficient, l is the number of clusters, and D(v, p) is the distance between the color value
of pixel p and the center of cluster w. Cw represents the center of cluster w. The membership degree
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and cluster centroids are updated by using these equations iteratively until convergence. The algorithm
aims to minimize the objective function that represents the “fuzziness” of the memberships and the
closeness of data points to their respective cluster centroids. The resulted segmented images are shown
in Fig. 2. The objective function is represented by Eq. (4) where J is the membership matrix, C is the
center matrix, n represents the number of pixels, and l represents the number of clusters.

Ox (J, C) =
∑n

i=1

∑l

i=1
Jvwx.Dvw2 (4)

Figure 2: Fuzzy C-Mean segmented images

3.3 Saliency Map

In this section, we conducted a parallel application of the composite saliency map on the
preprocessed images after applying the Gaussian filter. The concept of visual saliency detection models
involves emulating the human visual system to interpret scenes and has found widespread applications
in various visual tasks. In the domain of RGB image saliency detection, the emphasis is on identifying
significant regions within RGB images. This involves capturing visual cues from colors and patterns
to enhance the accuracy of saliency detection. The composite saliency model introduces inter-image
correspondence as a constraint. This helps identify objects that hold saliency across a group of images.
It consists of three main feature maps: Color, intensity, and orientation [24]. Each feature map focuses
on different aspects of the image and is calculated as follows and is depicted in Fig. 3.

3.3.1 Preprocessing and Color Space Conversion

The color feature map C (x, y) captures image color variations. It computes the Euclidean distance
between each pixel’s color values (R (x, y), G (x, y), B (x, y)) and the image’s average color (MR,
MG, MB). This contrast measurement effectively identifies areas with noticeable color differences
shown in Eq. (5).

C (x, y) = √
((R(x, y) − R) ∧ 2 + G(x, y) − G) ∧ 2 + B(x, y) − B) ∧ 2) (5)

3.3.2 Intensity Feature Map (I)

The intensity feature map quantifies grayscale intensity variations across the image. It measures
the extent of intensity change for each pixel relative to the average intensity. This aids in detecting
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edges and boundaries associated with intensity changes. The Eq. (6) calculates the intensity feature
map (I) at each pixel (x, y) as follows:

I (x, y) = |I (x, y) − MI| (6)

Let I (x, y) represent the intensity value of the pixel located at (x, y) within the image. The symbol
MI symbolizes the average intensity value of all pixels in the image.

Figure 3: Saliency map applied on corel dataset

3.3.3 Orientation Feature Map (O)

The orientation feature map evaluates pixel alignment with predetermined orientations (hori-
zontal, vertical, diagonal). Gradients along horizontal and vertical axes measure edge strength. The
orientation feature map highlights strong edges aligned in specific directions [25]. The Eq. (7) for
computing the orientation feature map (O) at each pixel (x, y) is as follows:

O (x, y) =
√

Gx (x, y)
2 + Gy (x, y)

2 (7)

Let Gx (x, y) denote the horizontal gradient value at the pixel location (x, y), and Gy (x, y)
represent the vertical gradient value at the pixel location (x, y).

3.3.4 Combining Feature Maps into Saliency Map (S)

The saliency map (S) is the final output that represents the combined information from the color
feature map (C), intensity feature map (I), and orientation feature map (O) and is displayed in Fig. 3.
The saliency map highlights regions in the image that are considered more visually salient based on
their color contrasts, intensity variations, and edge orientations [26]. The Eq. (8) computes the saliency
map (S) using the feature maps (C, I, O) and their respective weights:

(x, y) = Wc ∗ C (x, y) + Wi ∗ I (x, y) + Wo ∗ O (x, y) (8)

where S (x, y) is the saliency map value at pixel location (x, y), C (x, y) is the color feature map value
at pixel location (x, y), I (x, y) is the intensity feature map value at pixel location (x, y), O (x, y) is
the orientation feature map value at pixel location (x, y) and Wc, Wi and Wo are the weights assigned
to the color, intensity, and orientation feature maps, respectively.



3322 CMC, 2024, vol.79, no.2

3.4 ORB For Feature Detection

The process of feature detection is accomplished by using the ORB (Oriented Fast and Rotated
BRIEF) algorithm which is a very effective method for feature detection. The combination makes ORB
particularly suitable for real-time applications and scenarios with limited computational resources [27].

3.4.1 Feature Detection

The Features from Accelerated Segment Test (FAST) algorithm detects key points in the image.
It operates by analyzing the pixel intensities in a circular pattern around each pixel (x, y) and
determining if a sufficient number of contiguous pixels are brighter than the central pixel. A key point
is considered when at least 9 contiguous pixels are brighter than the central pixel [28]. The computation
of the FAST score is performed in the following equation:

FastScore = Σ [I (p) − I (x, y)] for p ε 9 (9)

where I (p) is the intensity value at pixel p located in a 9-pixel circular pattern around (x, y) and I (x,
y) is the intensity value at the central pixel (x, y).

3.4.2 Feature Description with BRIEF

Once the key points are detected, ORB computes a binary descriptor for each key point using the
BRIEF algorithm as depicted in Fig. 4. The BRIEF algorithm produces a binary code by evaluating
the pixel intensities at predetermined points surrounding the key point. The comparison results in a
binary pattern where the presence of a 1 indicates a higher intensity, while the presence of a 0 indicates
a lower intensity. The binary pattern is used as the descriptor for the key point in a subsequent step.
The BRIEF algorithm utilizes a predetermined collection of pixel coordinate pairs and evaluates the
corresponding pixel intensities to output binary codes [29]. It offers adjustable parameters that can be
used to control performance in tasks related to feature recognition and description. A 100-keypoint
limit is set for image identification to manage point concentration and algorithm computation.
Moreover, 8 pyramid layers are chosen for ORB, providing scale invariance for varied object sizes
and perspectives. Multiple pyramid levels efficiently detect diverse feature sizes.

Figure 4: BRIEF key point mapping on Fuzzy C-Mean (a) and saliency-mapped images (b)



CMC, 2024, vol.79, no.2 3323

3.4.3 Feature Matching with Brute-Force

The process of feature matching is essential to the extraction of objects, as it involves establishing
connections between key points in both the segmented image and the saliency map. Every feature in
one image is matched to every feature in the other image using the brute-force matcher, which is a
basic method for matching features. Hamming distance is used to calculate the distance between key
points in both images where shorter distance represents the stronger correspondence. Extracted key
points represent corresponding positions shared between the segmented image and the saliency map.
Fig. 5 depicts extracted objects using ORB.

Figure 5: Extracted objects using oriented fast and rotated BRIEF

3.5 Genetic Algorithm For Optimizing Random Forest Classifier

We utilized Genetic Algorithms (GAs) for optimizing Random Forest hyperparameters in image
classification. GAs excel in parallel searches, mitigating local optima and enhancing the chance of
finding near-optimal configurations. Their use of probabilistic selection helps to explore different
solutions effectively which makes it easy to find the best configuration for the model. After a careful
literature review, Genetic Algorithms have been selected for hyperparameter optimization, with a
particular emphasis on their efficacy in ensemble methods such as Random Forests. Moreover,
research findings, exemplified in related studies, underscore the efficacy of Genetic Algorithms
(GAs) in comparable contexts [30]. Our deliberate utilization of GAs is geared towards methodically
exploring and pinpointing optimal configurations, thereby boosting the performance of the Random
Forest classifier in image classification tasks.

We extracted the objects using BRIEF and brute force and combined the extracted features from
all the images into a single feature dataset. These features are converted into a numerical format
along with the corresponding labels for each image, which were used for training and evaluation
[31]. We initialized our population by randomly generating sets of parameter values for the Random
Forest classifier, including the number of trees in the forest, the maximum depth of each tree, and the
minimum number of samples required to split an internal node. We used accuracy as our fitness metric,
which was calculated by evaluating its performance on a validation set [32]. We used a cross-validation
approach to ensure that the accuracy score was robust and not overfitting to the training data. Eq. (10)
represents fitness function.

fitness = (1 – errorrate) ∗ (
1 – complexitypenalty

)
(10)
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where the error rate is the classification error rate and complexitypenalty is a penalty term that accounts
for the complexity of the model. We selected the fittest individuals in the population to undergo
crossover, where their parameter values were combined to create new offspring. We used the Recursive
Feature Elimination approach to select the most informative features for each parent and combine
them to create a new set of features for the offspring. Mutation was introduced to prevent premature
convergence and promote diversity in the population [33]. The model randomly selected a subset of
features to add or remove from the offspring. The termination criterion is set based on a target accuracy
score. The model is monitored for the convergence of the population and the algorithm early if it
appears to have reached a stable solution. The complexity can be claulated by using Eq. (11).

complexitypenalty = alpha ∗ (
numtrees + maxdepth

)
(11)

The hyperparameter alpha governs the magnitude of the penalty term, numtrees represents the
number of trees within the forest, and maxdepth denotes the upper limit on the depth of each tree. Fig. 6
depicts the optimization strategy of the Genetic algorithm for the classification of random forests.

Figure 6: Structural diagram genetic algorithm for optimizing random forest classifier

4 Experiments and Results

In this section, we present the experimental procedures conducted as part of this study and the
corresponding results obtained to showcase the effectiveness and importance of the proposed model.
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4.1 Datasets Description

To assess the performance of our system, we conducted evaluations on two of the most popular
datasets, the Corel dataset and the MSRC dataset. Below, we provide detailed information about these
datasets:

4.1.1 Corel-1k Dataset

The Corel-1k dataset [34] comprises 10 classes, each containing 100 images of 384 × 256
resolution. The dataset includes object classes such as buses, beaches, elephants, horses, people,
buildings, dishes, flowers, mountains, and dinosaurs. The dataset consists of a total of 1000 images,
which are divided into 70 images for training and 10 images for testing within each class group.

4.1.2 MSRC Dataset

The MSRC dataset [10] comprised an object of 591 various categories with dynamic environments
including street buildings, landscapes with hills, traffic signs, seaside, etc. The dataset is a collection
of 15 different classes from which we have selected 10 for our model including bench, cow, car, horse,
sheep, person, tree, grass, airplane, and building. The resolution of the images in the dataset is 213 ×
320 and images are a combination of single and multiple objects.

4.2 Performance Measurement and Result Analysis

In the following section, the recognition accuracies of our proposed model, based on a random
forest classifier are illustrated using two benchmark datasets: Corel-1k and MSRC. To evaluate
the model’s performance, we have computed the confusion matrices for object recognition on both
datasets, and the results are displayed in Table 1 for Corel-1k and Table 2 for MSRC. The results
from the two datasets, Corel-1k and MSRC, offer valuable insights into the performance of our image
classification model. On the Corel-1k dataset, our model demonstrates high accuracy in numerous
categories, with “AT,” “B,” “BD,” “BS,” and “EL” achieving impressive accuracy rates above 90%.
“HR” stands out with a remarkable accuracy of 96%, which highlights the effectiveness of our models’
performance. However, categories like “FL” and “MT” present challenges and produced slightly lower
accuracy scores which suggest room for improvement. The overall image classification accuracy on
Corel-1k is a meritorious 90.9%. On the MSRC dataset, our model also exhibits strong performance
in several categories which include “AP,” “BC,” “BD,” “CA,” and “HS.” While the majority of
classes performed well, “CW” and “PT” showed lower accuracy which indicates areas for potential
improvement. The overall image classification accuracy on MSRC is 89.2%, reflecting the model’s
overall effectiveness in classifying images across these categories.

Table 1: Confusion matrix: Corel-1k dataset classification accuracies

AT B BD BS DS EL FL HR MT FD

AT 0.93 0 0.033 0 0 0 0 0 0.033 0
B 0.10 0.866 0 0 0 0 0 0 0.033 0
BD 0 0 0.933 0.033 0 0 0 0 0.033 0
BS 0 0 0.066 0.866 0 0 0 0 0.066 0
DS 0 0 0 0 0.966 0.033 0 0 0 0
EL 0 0 0 0 0.033 0.933 0 0.033 0 0

(Continued)
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Table 1 (continued)

AT B BD BS DS EL FL HR MT FD

FL 0 0 0 0 0 0 0.83 0 0.066 0.1
HR 0 0 0 0 0.033 0 0 0.96 0 0
MT 0 0.066 0 0 0 0 0 0 0.93 0.07
FD 0 0 0 0 0 0 0.1 0 0 0.90

Overall image classification accuracy = 90.9%

Note: African Tribes = AT, Beaches = B, Buildings = BD, Buses = BS, Dinosaurs = DS, Elephant = EL, Flowers = FL, Horses = HR,
Mountains = MT and Foods = FD.

Table 2: MSRC dataset classification accuracies (confusion matrix)

AP BC BD CA CW HS PC SH PT GS

AP 0.92 0 0.02 0.06 0 0 0 0 0 0
BC 0.03 0.86 0 0.11 0 0 0 0 0 0
BD 0.03 0 0.89 0 0 0 0 0 0 0.03
CA 0.09 0 0 0.91 0 0 0 0 0 0
CW 0 0 0 0 0.88 0.07 0 0.05 0 0
HS 0 0 0 0 0.1 0.90 0 0 0 0
PC 0 0 0 0 0.06 0.03 0.88 0.03 0 0
SH 0 0 0. 0 0.06 0.04 0 0.9 0 0
PT 0 0 0 0 0 0 0 0 0.93 0.07
GS 0 0 0 0 0.03 0.03 0 0.03 0.06 0.85

Overall image classification accuracy = 89.2%
Note: Ap = Aeroplan, BC = Bicycle, BD = Building, CA = Car, CW = Cow, HS = Horse, PC = Person, SH = sheep, PT = Tree, GS =
Grass.

Table 3 compares the mean classification accuracy percentages of various state-of-the-art methods
on both the Corel-1k and MSRC datasets. This comparative analysis provides valuable insights into
the efficacy of our approach and its competitive edge over existing methods. On the Corel-1k dataset,
the proposed method achieves an impressive mean classification accuracy of 90.9%. This indicates
its substantial effectiveness in accurately categorizing objects within the images. The accuracy is
comparable to that of Bappy et al. [34], which is widely acknowledged as one of the highest-performing
methods, achieving an accuracy of 92.3%. Furthermore, it performs exceptionally well on the MSRC
dataset, achieving a mean classification accuracy of 89.2%. This highlights the strength and reliability
of our technique, since it consistently achieves good performance on both datasets.

Table 4 displays the accuracy of object detection for each category in the Corel-1k and MSRC
datasets. It obtains a mean detection accuracy of 87.2% on the Corel-1k dataset. Significantly, it
achieves a flawless accuracy rate of 100% in identifying the dinosaur class. When tested on the MSRC
dataset, the model consistently performs well, with a mean detection accuracy of 86.1%. The results
emphasize the model’s adaptability and efficiency in accurately identifying a diverse range of object
categories, rendering it a significant asset for practical use cases.
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Table 3: Comparison of object classification accuracies with other state-of-the-art methods

Author/Method Mean classification accuracy %

Corel-1k MSRC dataset

Kayhan et al. [2] 82.52 –
Desai et al. [9] 88.2 –
Shakarami et al. [35] 89.7 –
Wang et al. [36] 90.3 –
Khan et al. [37] 90.5 –
Ahmed et al. [38] 92.3 –
Gonfaus et al. [39] – 71.3
Bappy et al. [34] – 76.9
Ahmed et al. [40] 85.7 88.7
Jalal et al. [15] 90.07

Proposed 90.9 89.2

Table 4: Detection accuracy of the proposed approach over Corel-1k and MSRC dataset

Object class (Corel-1k) Detection accuracy Object class (MSRC) Detection accuracy

African tribes 78.3% Aeroplan 81.3%
Buses 83.8% Car 88.9%
Foods 87.9% Bicycle 87.5%
Buildings 88% Building 89.5%
Beaches 77% Person 83.3
Dinosaurs 100% sheep 90.3%
Elephant 93.5% Cow 93.7%
Flowers 97% Trees 83.2%
Horses 87.9% Horse 83.7%
Mountains 79.2% Grass 79.7%

Mean detection accuracy 87.2% Mean detection accuracy 86.1%

The segmentation results of Corel-1k and MSRC, are depicted in Table 5 which exhibits robust
performance across several object categories, achieving a high degree of accuracy at the pixel level. The
segmentation accuracy of Corel-1k, measured at a pixel-wise level, is exceptional, reaching 84.3%. The
model achieves accuracy in delineating object boundaries by accurately detecting affirmative cases at
the pixel level with a sensitivity of 83.2%. The model’s pixel prediction specificity, with a negative
value of 85.1%, displays its ability to accurately differentiate between pixels belonging to objects and
those belonging to the background. The method attains an accuracy of 83.9% in categorizing pixels
into object classes on the MSRC dataset. Although the sensitivity (80.8%) and specificity (84.6%) at
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the pixel level are slightly lower compared to Corel-1k, depicting exceptional capability for pixel-wise
segmentation.

Table 5: Segmentation results over Corel-1k and MSRC dataset

Object class
(Corel-1k)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Object class
(MSRC)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

African tribes 82.1 81.4 82.8 Aeroplan 79.5 76.3 79.9
Buses 85.7 86.1 86.5 Car 84.2 81.3 85.6
Foods 89.3 86.6 89.9 Bicycle 81.5 80.2 81.7
Buildings 81.7 80.4 83.1 Building 82.5 79.6 83.4
Beaches 77.3 75.5 77.8 Person 85.6 83.5 86.2
Dinosaurs 91.4 88.8 92.2 sheep 88.2 85.9 88.5
Elephant 83.2 80.5 83.9 Cow 87.3 87.1 88.6
Flowers 87.3 83.9 88.5 Trees 78.7 76.9 79.3
Horses 85.2 81.6 86.1 Horse 87.1 85.4 87.6
Mountains 79.9 78.2 80.5 Grass 84.4 82.8 84.9

Mean 84.3 83.2 85.1 Mean 83.9 80.8 84.6

4.3 Ablation Study

We have conducted a series of four ablation experiments to evaluate the significance of each
methodology in our research. Initially, we analyzed the consequences of omitting the saliency map
component within our methodology. The omission of the saliency map following Fuzzy C-Means
segmentation resulted in a notable decrease in object detection accuracy for Corel-1k (79.4%) and
MSRC (77.5%). This highlights the importance of the saliency map in improving the performance
of the methodology. The saliency map helps to prioritize relevant image regions which reduces the
impact of noise interference and facilitates effective feature extraction. Furthermore, we have also
conducted experiments to evaluate the impact of utilizing only the BRIEF or ORB feature extractor,
while maintaining consistency in other components. The exclusion of the BRIEF descriptor resulted in
a decrease in accuracy to 77.2% for Corel-1k and 79.7% for MSRC. We investigated the classification
stage, specifically utilizing Random Forest as the only method without any optimization from the
Genetic Algorithm. As a result of this modification, there was a decline in the average classification
accuracy for Corel-1k, which decreased to 84.4%, and for MSRC, which decreased to 82.7%.

5 Conclusion

This work demonstrates the efficacy of employing a comprehensive methodology to improve the
accuracy of image classification and object detection. The impressive results achieved on challenging
datasets can be attributed to the integration of various techniques such as Gaussian filters, parallel
segmentation, saliency mapping, BRIEF, ORB, and GA optimization. Future work should encompass
the extension of this approach to larger and more diverse datasets by facilitating a broader evaluation
of its performance and generalizability. Furthermore, considering the dynamic nature of videos
the approach can be adopted for video analysis in which object detection would be a valuable
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avenue for exploration. Moreover, real-time implementation of the methodology on videos could be
pursued, opening up opportunities for applications in surveillance, autonomous systems, and video
understanding. We are currently planning the implementation of our method for biomedical images
to advance medical imaging.
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