
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.046807

ARTICLE

Research on Performance Optimization of Spark Distributed Computing
Platform

Qinlu He1,*, Fan Zhang1, Genqing Bian1, Weiqi Zhang1 and Zhen Li2

1School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an, 710054, China
2Shaanxi Institute of Metrology Science, Xi’an, 710043, China

*Corresponding Author: Qinlu He. Email: luluhe8848@hotmail.com

Received: 15 October 2023 Accepted: 07 April 2024 Published: 15 May 2024

ABSTRACT

Spark, a distributed computing platform, has rapidly developed in the field of big data. Its in-memory computing
feature reduces disk read overhead and shortens data processing time, making it have broad application prospects
in large-scale computing applications such as machine learning and image processing. However, the performance of
the Spark platform still needs to be improved. When a large number of tasks are processed simultaneously, Spark’s
cache replacement mechanism cannot identify high-value data partitions, resulting in memory resources not being
fully utilized and affecting the performance of the Spark platform. To address the problem that Spark’s default cache
replacement algorithm cannot accurately evaluate high-value data partitions, firstly the weight influence factors of
data partitions are modeled and evaluated. Then, based on this weighted model, a cache replacement algorithm
based on dynamic weighted data value is proposed, which takes into account hit rate and data difference. Better
integration and usage strategies are implemented based on LRU (Least Recently Used). The weight update algorithm
updates the weight value when the data partition information changes, accurately measuring the importance of
the partition in the current job; the cache removal algorithm clears partitions without useful values in the cache to
release memory resources; the weight replacement algorithm combines partition weights and partition information
to replace RDD partitions when memory remaining space is insufficient. Finally, by setting up a Spark cluster
environment, the algorithm proposed in this paper is experimentally verified. Experiments have shown that this
algorithm can effectively improve cache hit rate, enhance the performance of the platform, and reduce job execution
time by 7.61% compared to existing improved algorithms.

KEYWORDS
Spark; memory optimization; memory replacement strategy

1 Introduction

With the trend of digital transformation in various industries, the global data volume is exploding,
expected to reach 175 ZB by 2025 [1]. In recent years, the availability of data has continued to improve
in terms of quantity, speed, variety, and accuracy, ushering in a new era of big data analysis. Big data
is widely used in various industries. It is expected that the market size of big data and business analysis
will reach $298.3 billion by 2024 [2].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046807
https://www.techscience.com/doi/10.32604/cmc.2024.046807
mailto:luluhe8848@hotmail.com

2834 CMC, 2024, vol.79, no.2

Big data analysis requires timely processing of data, and its processing methods differ greatly
from traditional models. The processing method has changed from computational processing to
data processing, which makes traditional processing models adapt to the requirements of big data
environments. The scale of big data has long exceeded the ability of a single machine. Therefore,
Google proposed the idea of distributed storage and parallel computing [3], aiming to break down
big data into manageable sizes, process data on distributed clusters, and then make the data available
for users to use. On this concept, the distributed computing platform Hadoop [4] was born, with its
core being the MapReduce [5] parallel computing framework. Its principle is “task division and result
aggregation”. When calculating jobs, MapReduce continuously reads and writes intermediate data
to the distributed storage system, but this generates a large amount of I/O overhead and affects the
job execution time. Spark proposes an elastic distributed dataset [6] based on Hadoop, which stores
intermediate results in memory and achieves in-memory computing, avoiding a large amount of disk
I/O overhead and reducing data processing time. For iterative jobs, the Spark platform is more than
ten times faster than the Hadoop platform due to its in-memory computing feature [7]. Because in-
memory computing has enormous advantages in processing massive data, Spark has broad application
prospects in large-scale computing applications such as machine learning, image processing, etc.

Many domestic and foreign enterprises have applied the Spark platform in real production
environments, and some enterprises have Spark clusters with a scale of thousands of nodes and
data processing scales reaching hundreds of millions. Such large-scale clusters can generate expensive
operational expenses, and efficient utilization of computing clusters is important for enterprises. Even
a small improvement in utilization rate can save a lot of costs [8]. How to improve the performance
of Spark has become a hot research direction. The core of Spark is parallel computing and in-
memory computing. In the Spark platform, the module closely related to parallel computing is the
task scheduling module, which is responsible for assigning tasks to nodes in the cluster to achieve
parallel computing on the cluster. In-memory computing intermediate results are stored in memory,
reducing disk read overhead or re-calculation overhead. The memory resources of nodes are limited.
When the memory space is full, it is necessary to store higher-value data partitions according to the
cache mechanism to improve the cache hit rate. Therefore, task scheduling and cache replacement are
particularly important for Spark performance optimization. In practical application scenarios, due to
reasons such as cluster upgrading and expansion, the node configuration changes, and the cluster is
prone to heterogeneity. However, the current Spark platform has not made targeted adjustments for
heterogeneous clusters and still assigns tasks based on ideal conditions for homogeneous clusters [9].
The Least Recently Used (LRU) algorithm only considers the time of the most recent access when
selecting the RDD to be replaced, and if RDDs with high reuse frequency and high re-computation
cost are evicted from the memory cache area, subsequent reuse will bring significant re-computation
overhead and slow down the overall task execution progress [10,11]. Therefore, further research is
needed to improve the cache replacement algorithm in Spark to achieve better performance and
efficiency.

This paper mainly analyzes and studies the overall architecture and workflow of Spark, analyzes
the workflow and memory management of Spark, proposes optimizations for Spark’s cache replace-
ment strategy, and optimizes other parts of its memory according to Spark’s workflow.

(1) The architecture, workflow, memory management, and caching strategy of the Spark system
are analyzed, and this paper is used as the theoretical basis for the optimization of the cache
replacement strategy.

(2) A cache replacement strategy based on data value is proposed, and a better combination and
use strategy is carried out based on LRU considering the hit rate and the difference of data.

CMC, 2024, vol.79, no.2 2835

(3) The storage location and read recovery of RDD caches have been optimized accordingly, a
new persistence level has been proposed, and Spark security and fault tolerance have been optimized.

(4) The results of experiments under different strategies are given. The results are compared and
analyzed to draw corresponding conclusions.

2 Related Work

The Adaptive Weight Ranking Strategy (AWRP) algorithm proposed by Swain et al. [12] designs a
weight model according to the frequency and access time of cached objects, and sorts them according
to the weight values, giving priority to replacing the objects that are less frequently used and have not
been visited for the longest time, but when the cache space is small, the algorithm works similarly
to the LRU algorithm. Xuan et al. [13] proposed the Tachyon distributed file system, which is a
component of the Spark ecosystem. It decouples the memory storage functionality from Spark and
strives to achieve higher operational efficiency through a more granular division of labor. However, in
its implementation, the LRU algorithm is still employed as the replacement algorithm. Chen et al. [14]
proposed an elastic data persistence strategy to speed up data access by compressing data and reducing
disk throughput, but data compression consumes CPU resources and affects the task execution rate.
Xu et al. [15] proposed a dynamic memory manager, MEMTUNE, which dynamically adjusts the
size of the cache space according to the workload and data caching requirements, but MEMTUNE
uses Stage as the smallest unit in the replacement, and this coarse-grained mechanism is not suitable
for nodes with small memory space. Zhang et al. [16] proposed a disk-based caching method that
improves the way the disk handles data partitions and avoids excessive caching, but it does not
fundamentally improve the efficiency of in-memory caching. Yu et al. [17] proposed an LRC algorithm
to represent the importance of each data partition based on the number of times it is used, as a
measure of the value of data partitions, but the number of citations alone cannot accurately measure
the value of RDD. Khan et al. [18] designed a hierarchical hybrid memory system that utilizes Non-
Volatile Memory (NVM) to cache RDD partitions, which requires modification at the hardware level
and is not universal. References [19,20] proposed a weight model, which took the computational
cost, number of uses, partition size, and life cycle of RDD as the influencing factors to measure
RDD weight, and used the weight value for cache replacement, but did not propose a reasonable
calculation method for the computational cost, and the weight model still needs to be improved.
Drawing inspiration from [21,22], the WCSRP algorithm was developed by incorporating a weight
factor for localization level during task execution. Nevertheless, the method used to calculate the cost
of partitions lacks precision and is unable to accurately capture the weight of individual partitions.
He et al. [23] proposed a WR algorithm to calculate the weight of RDD partitions by using the
number of times and the size of partitions, considering the computational overhead of RDD partitions,
but the considerations were not comprehensive. Sandholm et al. [24] proposed an Adaptive Cache
Management (SACM) mechanism to identify and cache high-value RDDs by using frequency, RDD
computational complexity, and capacity size to calculate weights, but it has limitations in using RDDs
as the minimum granularity when buffer replacement [25].

To sum up, the current cache replacement algorithm for Spark is not perfect enough, and the
mainstream Spark cache replacement algorithm evaluates the value of RDD partitions by establishing
a weight model, and the current weight replacement algorithm still needs to be improved, such as the
incomplete consideration of the influencing factors of RDD weight, and the unreasonable calculation
method of weight value.

2836 CMC, 2024, vol.79, no.2

3 Spark Memory Replacement Strategy Based on Data Value
3.1 Spark Memory Optimization Strategy

The default cache replacement algorithm used by Spark itself is LRU, which is the least recently
used algorithm. It comes from the traditional operating system environment and has good universality
and performance. The LRU algorithm may be good in terms of hit rate, but in Spark, it is not only the
hit rate. For example, as shown in Fig. 1 for a Spark data processing job, three intermediate result data
need to be cached in memory: RDD_1, RDD_2, and RDD_3. However, the memory size only supports
the caching of one of the data and the data storage difference of the data itself is not considered now.
Assuming that the dimensions are the same, the access sequence of the three data in the calculation is
RDD_1, RDD_2, RDD_2, RDD_2, RDD_1, RDD_3, and RDD_3. The calculation cost of RDD_1
is 10, the calculation cost of RDD_2 is 1, and the calculation cost of RDD_3 is 1. Now consider the hit
and recovery cost of the LRU strategy and the strategy that uses the computational cost as the cache
factor.

Enter data 1 Enter data 2

RDD_1: 10

RDD_2: 1 RDD_3: 1

R1 R2 R4 R5R3

Figure 1: Schematic diagram of Spark data

For Spark’s cache replacement strategy, we need to be more aware of the value of the data,
set better cache replacement factors, and formulate a more efficient caching strategy. In Spark,
considering the workflow of Spark and the characteristics of RDD caching, this paper puts forward
several reference factors as the value of data:

(1) Calculate the cost Cost_com. Different RDD blocks have other calculation costs. We use the
calculation generation time Tcost of the RDD block to represent the calculation cost.

(2) Recovery cost Cost_re. In Spark, if the RDD block is replaced from memory, there will be two
results: Save it to disk or delete it directly. If the required RDD block is missed in the memory, it will
search in the disk, and if it exists, the RDD will be restored to the memory, then the I/O time of disk
and memory is the cost of recovery. If it does not exist, it needs to be recalculated to generate the RDD
block, and the recovery cost is approximately equal to the calculation cost. Therefore, in general, the
cost of recovery can be expressed as Cost_re the cost Cost_com.

(3) Storage cost Cost_mem. The storage cost compares the impact of the data itself on memory
usage. The factors that affect the storage cost include the size of the RDD data Mem and the number
of times the data has been used F. In theory, the larger the memory of the data, the less suitable it is
to be replaced and the greater the storage value. So the storage value is proportional to the size of the
data. The more used times, the fewer remaining visits, and the smaller the storage value. So the storage
value is inversely proportional to the number of times the data is used. Therefore, the storage cost is
expressed by Mem/F .

CMC, 2024, vol.79, no.2 2837

Based on the analysis of the partitioning weight factors, we can determine their impact on the
RDD caching weight. The weight value of RDD can be calculated based on each weight factor. The
calculation formula is shown in Eq. (1).

Value
(
pij

) = ϕ × US
(
pij

) × GC
(
pij

)

PS
(
pij

) × LC
(
pij

) (1)

where ϕ is a calibration parameter, and US represents the usage frequency of RDD partitions.

In the actual use of Spark’s default caching replacement algorithm, there is a problem that it is easy
to replace high-value RDD partitions [26]. Based on the weight changes of RDD partitions during the
task execution process, this chapter proposes a replacement strategy based on data value. The cached
RDD partition information in memory is saved in a linked list, where the elements are the weight
values of RDD partitions, sorted in ascending order. The partition information and weight values of
all RDD partitions generated in this Spark job are stored in a hash table, including parameters such as
generation cost, usage count, partition size and survival cycle, and dependency relationships [27–33].

The pseudo-code for the weight update algorithm is as follows:

Algorithm 1
Input: p_wait: Partition to be cached;
Output: Blanklist: List of worthless partitions;
1: FatherSet=pMap[p_wait].FatherSet;
2: for i in FatherSet do
3: if p_wait.operator()=Action then
4: i.num-;
5: i.lc-;
6: else
7: i.num-;
8: if if(i.num!=0) then
9: updatelist.add(i);
10: else
11: BlankList.add(i);
12: for i in updateList do
13: i.update();
14: return BlankList;

From the analysis of the LRU replacement strategy in Fig. 2, it can be seen that when a partition is
used 0 times, it indicates that it is no longer in use, but may still occupy memory resources. Therefore, a
cache-cleaning algorithm is proposed to promptly evict useless RDD partitions from memory to avoid
wasting internal resources. The pseudo-code for the cache-cleaning algorithm is as follows:

Algorithm 2
Input: Blanklist: List of worthless partitions; Memlist: Memory queue;
1: if BlankList.length==0 then
2: return;

(Continued)

2838 CMC, 2024, vol.79, no.2

Algorithm 2 (continued)
3: new BlankList = new List;
4: for i in BlankList do
5: if i.us=0 then
6: Memlist.delete(i);
7: FatherSet=pMap[i].FatherSet;
8: for j in FathSet do
9: if j.us==0 then
10: newBlankList.add(j);
11: Recursively call the memory cleaning algorithm with newankst as input

The weight replacement algorithm is responsible for comparing the weight values of the existing
partitions in memory with the weight values of the target partition when memory is low, and
determining whether to replace the target partition [34–38]. The main purpose is to select partitions
with smaller weight values, that is, to evict partitions with lower job values, to avoid a large amount
of repeated calculation overhead caused by the eviction of partitions with high usage times or high
generation costs. The pseudo-code for the weight replacement algorithm is as follows:

Algorithm 3
Input: Memlist: Memory queue; p_wait: Partition to be cached; free: Remaining memory space;
Output: True/False
1: p_wait.update(); // Update weights based on Algorithm 1
2: if free>size(p_wait) then // Sufficient memory remaining space
3: free=free-size(p_wait);
4: Memlist.add(p_wait);
5: return true;
6: rpList=new List; //List to be replaced
7: rpListSize=0; //The total size of the list to be replaced
8: for i in Memlist do
9: if weight(i)< weight(p_wait) then
10: rpList.push(j);
11: rpListSize= rpListSize+size(i);
12: if rpListSize+free>=size(p_wait) then
13: break;
14: else
15: break;
16: if rpListSize+free<size(p_wait) then
17: return false;
18: else
19: for i in relist do
20: Memlist.delete(i);
21: Memlist.push(p_wait);
22: return true;

CMC, 2024, vol.79, no.2 2839

Start the update

Reads information about the
updated data block

Check the memory

Whether the
remaining memory

is sufficient

Find the cached data with the
highest priority from the

replacement list

Perform an update
insert

Replaces the selected
RDD block

Update the rest
and replace the list

Make a decision on
whether to drop a

order?

Perform a drop operation

The replaced RDD block
is removed directly from

memory

Update the remaining
memory and the
replacement list

End the update

Y

Y

N

N

Figure 2: Cache replacement flow chart

The cache replacement strategy based on the value of the data is represented by Value in this
article. The new cache replacement flowchart is shown in Fig. 2.

The rule of cache replacement is every time a new data block needs to be added to the memory,
first, check whether the remaining memory space is sufficient for storage. If it is satisfied, directly
add the memory to perform the update operation. At the same time, add the information of the
newly inserted data block to the replacement list, and update the replacement list. Otherwise, it is
necessary to replace the cache, find the data with the highest priority from the replacement list, obtain
the corresponding RDD block ID, and eliminate the RDD data block from memory. Afterward,
judge whether it needs to be placed on the disk according to the data value of the RDD block. If
necessary, save the RDD block to the disk. If not, delete the data from memory directly and update
the remaining memory. The value and replacement list are rechecked for memory until the update
insertion is complete.

2840 CMC, 2024, vol.79, no.2

4 Evaluation
4.1 Experimental Configurations

The experiment uses three servers to simulate a distributed environment, with one server as the
master node and the other two as the worker nodes. The configuration of each node is shown in Table 1.

Table 1: Hardware configuration

Server 1 2 3

Node Master Worker Worker
IP address 192.168.1.2 192.168.1.3 192.168.1.4
Operating system Centos 6.5 Centos 6.5 Centos 6.5
Memory 12 GB 12 GB 12 GB
Disk 600 GB 600 GB 600 GB
Central processing unit
(CPU)

Intel® Xeon® X5560
@2.8 GHz

Intel® Xeon® X5560
@2.8 GHz

Intel® Xeon® X5560
@2.8 GHz

CPU core 8 8 8

The experiment is built with Hadoop + Spark, the Hadoop version is 2.8.1, and the Spark version
is 2.1.1. The test software uses HiBench. HiBench, as a benchmark test framework for testing Hadoop
and Spark, provides Hive: (aggregation, scan, join), and sorting (sort, TeraSort) [39]. Basic big data
algorithms (WordCount, PageRank, nutchindex), Machine learning algorithms (K-Means, Bayes),
cluster scheduling (sleep), throughput (dfsio), and streaming (Streaming) have a total of 19 workloads
[40]. The application loads used in the experiments in this chapter are mainly the following three types:
WordCount, PageRank, and K-Means.

4.2 The Experiment with Cache Replacement Strategy

For the convenience of description, the cache strategy proposed in this article is represented by
VALUE, which is a cache replacement strategy based on the data value. To reflect the advantages of
VALUE, we compared first in first out policy (FIFO), LRU, VALUE (Data value cache replacement
policy), and VALUE+ (combined LRU and VALUE cache replacement policy) four cache replacement
policy.

(1) Experimental Content

The experiment performs three different applications to test the performance of the optimized
caching strategy. For each application, the input data size is used as the control variable, and the
specific indicators include the sample size, the size of the input file of each sample, the maximum
number of iterations, etc. Different applications involve different metrics. Compare the performance
of different cache replacement strategies under the same input data volume size baseline.

In each application, to enrich the test results, this paper selects eight sets of test data for
experimentation, experiments 5 times, and selects the most stable results as the performance results.
The size of the amount of data in WordCount is only related to the size of the data, and the ten sets
of data are shown in Table 2 below.

CMC, 2024, vol.79, no.2 2841

Table 2: Wordcount data scale variable table

The group number 1 2 3 4 5 6 7 8

Data size 32 K 320 M 1 G 3 G 4 G 5 G 6 G 8 G

The ten sets of data in PageRank are shown in Table 3.

Table 3: PageRank data size variable table

The group number 1 2 3 4 5 6 7 8

Number of pages 50 500 5000 50000 500000 500000 1000000 2000000
Number of iterations 1 2 3 3 3 10 10 10

K-Means is about the application of machine learning, which involves more data indicators. The
size of ten sets of data is shown in Table 4.

Table 4: K-Means data size variable table

The group number 1 2 3 4 5 6 7 8

Number of clusters 5 5 5 5 5 5 5 5
Dimensions 3 3 3 10 10 20 20 20
Sample size 3000 30000 300000 300000 3000000 3000000 10000000 20000000
Enter the file size for each sample 600 6000 60000 60000 600000 600000 2000000 4000000
The maximum number of iterations 5 5 5 5 5 5 5 5
K 10 10 10 10 10 10 10 10
Convergedist 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

In the cache strategy of LRU+Value, setting different substitution range thresholds has different
results. Here is an experiment comparing the results at three thresholds:

1) The threshold is 5, indicated as LV5;

2) The threshold is 10, which is indicated as LV10;

3) The threshold is 20, which is expressed as LV20.

(2) Experimental Results

In the results, we use different colored dots and lines to represent other cache replacement policies
and run time to represent running performance. The specific effects and expressions are as follows in
Fig. 3.

1) WordCount application

As shown in the Fig. 3, when the amount of data is less than 1 G, the difference between the
caching strategies is not very obvious, and LRU still shows good performance. When the amount of
data gradually increases, the cache replacement strategy based on the value of the data begins to deliver
better performance. Among the three different threshold caching strategies that combine the LRU and
Value strategy, a point of 10 is better.

2842 CMC, 2024, vol.79, no.2

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

R
un

ti
m

e(
s)

The group number

FIFO LRU Value

LRU+Value(LV5) LRU+Value(LV10) LRU+Value(LV20)

Figure 3: WordCount application performance

2) PageRank

Because the running time is enormous, to reflect the difference better, the data of groups 1–8 are
represented by a line chart again as follows.

As shown in the Fig. 4, when the amount of data is small, the difference between the caching
strategies is not very obvious, and LRU still indicates good performance. When the amount of data
gradually increases, the number of data iterations increases, and the number of pages increases, the
cache replacement strategy based on the value of the data begins to show better performance. Among
the three different threshold caching strategies that combine LRU and Value strategy, the threshold
value of 10 shows better performance.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

R
un

ti
m

e(
s)

The group number

FIFO LRU Value

LRU+Value(LV5) LRU+Value(LV10) LRU+Value(LV20)

Figure 4: PageRank application performance (groups 1–8)

3) K-Means

As shown in the Fig. 5, it can be seen that when the amount of data is small, the difference between
the cache strategies is not very obvious, and the LRU still performs well; As the data scale grows,
cache substitution strategies based on the value of the data begin to show better performance, and
in the cache strategies with three different thresholds combined with the LRU and Value policies, the
threshold of 10 performs better.

Comparing the above three histograms, we find that when the experimental data is small, the best
performance is LRU and FIFO instead of the strategy proposed in this article. Combining with the
data scale at this time and analyzing, we find that the memory is sufficient. During the execution of
the task, there is a no-cache replacement. Compared with the default strategy, the calculation of the

CMC, 2024, vol.79, no.2 2843

RDD data value table and the cost of the value replacement priority list are extra. Therefore, the
performance of the algorithm designed for cache replacement proposed in this article is not the best.

0

100

200

300

400

500

1 2 3 4 5 6 7 8

R
un

ti
m

e(
s)

The group number

FIFO LRU Value

LRU+Value(LV5) LRU+Value(LV10) LRU+Value(LV20)

Figure 5: K-Means application performance (groups 1–8)

When the data scale reaches a certain level, the cache replacement strategy Value for the data value
begins to show performance similar to LRU. After analysis, we found that there may be no significant
data skew on the input data due to multiple experiments and stable results. Combined with the log,
the difference between the storage value of RDD is not particularly large, so the cache replacement
strategy for the value of data does not achieve excellent results. Moreover, the comparison found that
the performance of LRU+Value is relatively better. On the one hand, LRU has a high hit rate and
better applicability. On the other hand, combined with comparing data values, the performance of
cache replacement and recovery is better.

In the three thresholds set, compared to the other two, the overall performance of LRU+Value
(LV10) is better, the analysis is related to the task division of Spark itself, in the above experimental
applications, according to logging, a stage is divided into 30 jobs to execute, so the threshold set to 10
effect is better. A threshold setting too low performance is closer to LRU because there is less range
to choose from; If the threshold is set to 20 and greater, the processing process of the entire algorithm
is closer to Value.

However, although the LRU+Value strategy is improved compared to the default strategy, the
increase is not particularly large. In this regard, we conducted research and analysis mainly for
two reasons. Conversely, the value strategy can exert better performance when the stage division is
relatively unbalanced, and the value and advantages of cache replacement can be more reflected. The
applications used in the experiment are pretty balanced. On the other hand, LRU needs to generate and
maintain a list, and the Value policy also needs to calculate the cost of the list, although LRU+Value
takes into account the advantages of these two strategies, the additional overhead is also increased,
and the expected performance is also reduced.

To verify the effectiveness of the strategies proposed in this article, we compared the LRU
algorithm, WCSRP algorithm [41], and LRU+Value cache replacement methods for the same test
task. We selected the standard dataset provided by SNAP [42] for experimental data, and the dataset
information is shown in Table 5.

2844 CMC, 2024, vol.79, no.2

Table 5: SNAP dataset information

Name Nodes Edges Description

soc-sign-epinions 131828 841372 Epinions signed social network
Amazon0302 262111 1234877 Amazon product co-purchasing

network from March 02 2003
Web-Stanford 281903 2312497 Web graph of Stanford.edu
Amazon0601 403394 3387388 Amazon product co-purchasing

network from June 01 2003
com-youtube 1134890 2987624 YouTube online social network
Wiki-Talk 2394385 5021410 Wikipedia talk (communication)

network

We used the PageRank task for the experimental task. The page ranking task is a typical data-
intensive job that involves multiple iterations during its run process. As the RDD partitions are often
replaced, it is easier to analyze the effectiveness of the proposed replacement algorithm. To avoid
experimental results being accidental, we ran all experiments 10 times independently and took the
average value as the final result. The experimental results are shown in Fig. 6.

0
50

100
150
200
250
300
350

R
un

ni
ng

 T
im

e/
s

LRU WCSRP LRU+Value

Figure 6: SNAP dataset execution time comparison

From the Fig. 6, it can be observed that as the number of nodes and edges in the dataset increases,
there is a significant difference in the task execution time among the various cache replacement
algorithms. When running on the soc-sign-epinions dataset, due to the small amount of computation,
the three algorithms show little difference in execution time. However, as the computation workload
increases, both LRU+Value and WCSRP show a noticeable increase in execution time. The average
running time of the LRU+Value algorithm is 18.17% higher than the default LRU algorithm and
7.61% higher than the WCSRP algorithm. This is because when the data volume is small, fewer RDD
partitions need to be cached in the application, and the internal memory space of the task executor is
sufficient. During the execution process, there are rarely occurs cache replacements, so the differences
between the cache replacement algorithms are barely noticeable, resulting in a small difference in task
completion time. As the dataset increases, the workload increases and cache replacements continue to
occur, the LRU+Value algorithm can better preserve high-value RDD partitions, shortening the task
completion time.

CMC, 2024, vol.79, no.2 2845

To further verify the effectiveness of the LRU+Value algorithm, multiple datasets from Tables 4,
5 were combined into a single dataset to validate the impact of the algorithm on Spark platform
performance. The iteration times of the task were gradually increased from 2 to 10 times. To avoid
accidental results, each iteration was executed 10 times, and the average execution time was taken as
the final result, as shown in Fig. 7.

0

100

200

300

400

500

600

700

2 4 6 8 10

R
un

ni
ng

 T
im

e/
s

Iterative Number

LRU WCSRP LRU+Value

Figure 7: Comparison of iterative calculation execution time

Fig. 7 compares the execution time of iterative calculations among three algorithms. It can be
observed that as the iteration count increases, the difference in execution time among the three
algorithms increases. The LRU algorithm only uses the parameter of recent usage frequency to evaluate
the value of a partition, which is not able to accurately assess the value of the partition for the entire
job. This results in high-value partitions being evicted and additional time being incurred. As the
task workload increases, the execution time increases rapidly, which is also reflected in the figure. In
contrast, the execution time of the WCSRP and LRU+Value algorithms increases relatively steadily.
Although WCSRP has a significant improvement compared to LRU, its calculation of weight factors
such as the computational cost is too simple, which affects the accuracy of weight values. The DWCR
algorithm considers more comprehensive weight factors for RDD partitions compared to WCSRP and
updates the partition weights as the application executes, allowing the most valuable RDD partitions
to continue to be cached in memory, efficiently utilizing memory space. Therefore, under multiple task
sets, the execution time is 5.41% lower than that of the WCSRP algorithm and 18.33% lower than that
of the LRU algorithm. As a result, the algorithm proposed in this article considers weight factors for
RDD partitions more comprehensively and accurately, reducing job execution time and significantly
improving job execution efficiency.

Through monitoring the iterative experiments, the cache hit rates of the three algorithms are
calculated and presented in Table 6.

Table 6: Cache hit rate comparison

LRU WCSRP LRU+Value

Cache hit rate 63.8% 72.6% 75.1%

As can be seen from the table, when the task workload increases, the LRU algorithm replaces a
larger number of partitions, resulting in a low cache hit rate that affects the job execution efficiency.

2846 CMC, 2024, vol.79, no.2

Compared to the existing improved algorithm WCSRP, the LRU+Value algorithm has a slight
increase in hit rate, which is consistent with the task execution time shown in Fig. 7.

In the Spark’s Storage module, which is responsible for storage management, new classes LoadPre-
dict and BlockInfo have been introduced to encapsulate load prediction and RDD block information
respectively. Additionally, modifications and enhancements were made to methods within the Block-
Manager and BlockEvictionHandler to integrate the cache replacement mechanism proposed in this
paper into a real-world Spark cluster.

A Spark Executor with 2 GB of memory was configured within the cluster, and the task
completion time during the execution of iterative applications was tested, comparing it against the
default cache replacement mechanism in Spark, which is the LRU algorithm. To ensure fairness in the
experiments, each set of experiments was repeated five times, with the average value taken as the final
result. The experiments employed five distinct datasets: Com-amazon, Amazon0302, Amazon0601,
com-youtube, and Wikipedia talk network, sourced from literature [40–42]. The computational
complexity and completion time of the dataset are related to the number of nodes and edges, and
the corresponding relationship between the number of nodes and edges is shown in Table 7.

Table 7: Information on the number of nodes and edges in the dataset

Dataset Number of nodes Number of edges

com-amazon 334863 925872
Amazon0302 410236 3356824
Amazon0601 403394 3387388
com-YouTube 1134890 2987624
Wikipedia talk network 2394385 5021410

The same iterative application was run on all five experimental datasets, ensuring an equal number
of iterations across each experiment. The experimental results are illustrated in Fig. 8.

0

100

200

300

400

500

600

com-amazon Amazon0302 Amazon0601 com-youtube Wikipedia
talk network

T
im

e/
s

DataSet

LRU LRU+Value

Figure 8: Comparison of task completion times on different datasets in a real cluster

The experimental results indicate that there are noticeable differences in task completion times
across different datasets. When executed on datasets with larger numbers of nodes and edges, resulting
in greater computational loads, both the LRU algorithm and the mechanism proposed in this
paper exhibited longer completion times compared to when executed on smaller datasets. However,

CMC, 2024, vol.79, no.2 2847

regardless of whether running on large or small datasets, the mechanism proposed in this paper
consistently demonstrated a slight improvement in task completion times over the LRU algorithm.
Moreover, as the scale of the dataset increased, the advantage of the proposed mechanism became
more pronounced. This is because when dealing with smaller datasets where the data file sizes are
also relatively small, the storage space within the Executor’s memory is ample, leading to almost no
cache replacement occurring during iterations. Consequently, the benefits of the proposed mechanism
could not be fully leveraged, resulting in task completion times similar to those of the LRU algorithm.
Conversely, when handling larger datasets where cache replacements occur frequently, the proposed
mechanism can better utilize memory space, thereby significantly reducing the task completion time.

5 Conclusion

With the advent of the significant data era, more and more data information needs to be processed,
bringing substantial challenges to storage and computing. The amount of data is getting larger and
larger, and the I/O bottleneck of computing and scheduling from the disk has increasingly become
an essential factor restricting performance. The Spark came into being and proposed in-memory
computing, significantly improving the computing speed. It is a distributed computing framework
based on memory. The effective use of memory is one of the critical factors in the performance of
Spark. Among them, Spark’s cache replacement mechanism is an essential aspect of Spark system
management and the use of memory resources. This paper studies the Spark memory optimization
method based on NVM, optimizes the original cache replacement strategy, defines the data value of
the cached RDD, and proposes a Value strategy that is more in line with the characteristics of Spark
itself, combined with the original LRU, and proposes The LRU+Value is calculated. A threshold with
better results is obtained through experiments. At the same time, the broadcast block and memory
parameters generated by Spark’s tasks are optimized.

The paper describes the improved scheduling algorithm and cache replacement algorithm for
the Spark platform, which have led to enhanced system execution efficiency. However, further
optimization of the cache replacement algorithm has only been validated in a homogeneous cluster. In
the next step, it will be deployed to a heterogeneous cluster to verify the effectiveness of the dynamic
weight-based cache replacement algorithm. By exploring these adaptations, the process would involve
extensive research, design, development, and validation stages to ensure successful integration and
optimal performance within these new contexts. We aim to demonstrate the versatility and broader
impact potential of our methods, highlighting their value in enhancing the performance and efficiency
of modern distributed computing ecosystems beyond the original scope of Spark.

Acknowledgement: The authors would like to thank the editors and reviewers for their valuable work,
as well as the supervisor and family for their valuable support during the research process.

Funding Statement: This work is supported by the National Natural Science Foundation of China
(61872284); Key Research and Development Program of Shaanxi (2023-YBGY-203,2023-YBGY-
021); Industrialization Project of Shaanxi Provincial Department of Education (21JC017); “Thirteenth
Five-Year” National Key R&D Program Project (Project Number: 2019YFD1100901); Natural
Science Foundation of Shannxi Province, China (2021JLM-16, 2023-JC-YB-825); Key R&D Plan of
Xianyang City (L2023-ZDYF-QYCX-021)

Author Contributions: The authors confirm contribution to the paper as follows: Qinlu He: Method-
ology, Investigation, Software, Writing, Funding. Fan Zhang: Investigation, Writing-Original Draft,

2848 CMC, 2024, vol.79, no.2

Writing-Review and Editing. Genqing Bian, Weiqi Zhang and Zhen Li: Resources, Validation,
Writing-Review and Editing. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: This article uses the experimental data set is open-source. Data
source address: https://www.github.com/.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to core,” in IDC White Paper,

2018.
[2] M. AlJame, I. Ahmad, and M. Alfailakawi, “Apache Spark implementation of whale optimization

algorithm,” Cluster Comput., vol. 23, pp. 2021–2034, 2020.
[3] M. Zaharia, An Architecture for Fast and General Data Processing on Large Clusters. Association for

Computing, Machinery and Morgan & Claypool, 2016.
[4] M. X. Duan, K. Li, Z. Tang, G. Q. Xiao, and K. Q. Li, “Selection and replacement algorithms for memory

performance improvement in Spark,” Concurr. Comput. Pract. Exp., vol. 28, no. 8, pp. 2473–2486, 2016.
doi: 10.1002/cpe.3584.

[5] Y. Geng, X. H. Shi, C. Pei, H. Jin, and W. B. Jiang, “LCS: An efficient data eviction strategy for Spark,”
Int. J. Comput. Inf. Sci., vol. 45, no. 6, pp. 1285–1297, 2017. doi: 10.1007/s10766-016-0470-1.

[6] Z. Y. Yang, D. L. Jia, S. Ioannidis, N. F. Mi, and B. Sheng, “Intermediate data caching optimization for
multi-stage and parallel big data frameworks,” Future Gener. Comput. Syst., vol. 27, no. 5, pp. 543–549,
2018. doi: 10.1109/CLOUD.2018.00042.

[7] P. Bailis, C. Fournier, J. Arulraj, and A. Pavlo, “Research for practice: Distributed consensus and
implications of NVM on database management systems,” Commun. ACM, vol. 59, no. 11, pp. 52–55, 2016.
doi: 10.1145/2949033.

[8] Q. L. He, G. Bian, W. Q. Zhang, F. L. Wu, and Z. Li, “TCFTL: Improved real-time flash memory two
cache flash translation layer algorithm,” J. Nanoelectron. Optoelectron., vol. 16, no. 3, pp. 403–413, 2021.
doi: 10.1166/jno.2021.2970.

[9] D. Nellans, M. Zappe, J. Axboe, and D. F. Fusionio, “Ptrim () + exists (): Exposing new FTL primitives to
applications,” in 2nd Annu. Non-Volatile Mem. Workshop (NVMW), La Jolla, CA, USA, UCSD, 2011.

[10] Y. Y. Lu, J. W. Shu, and L. Sun, “Blurred persistence: Efficient transactions in persistent memory,” ACM
Trans. Storage, vol. 12, no. 1, pp. 1–29, 2016. doi: 10.1145/2851504.

[11] X. H. Shi et al., “Deca: A garbage collection optimizer for in-memory data processing,” ACM Trans.
Comput. Syst., vol. 36, no. 1, pp. 1–47, 2018.

[12] D. Swain, B. Paikaray, and D. Swain, “AWRP: Adaptive weight ranking policy for improving cache
performance,” Comput. Sci., vol. 35, no. 8, pp. 285–297, 2011.

[13] P. Xuan, F. Luo, R. Ge, and P. K. Srimani, “DynIMS: A dynamic memory controller for in-memory storage
on HPC systems,” 2016. doi: 10.48550/arXiv.1609.09294.

[14] D. Chen, H. P. Chen, Z. P. Jiang, and Y. Zhao, “An adaptive memory tuning strategy with high performance
for Spark,” Int. J. Big Data Intell., vol. 4, no. 4, pp. 276–286, 2017. doi: 10.1504/IJBDI.2017.086970.

[15] L. N. Xu, M. Li, L. Zhang, A. R. Butt, Y. D. Wang and Z. Z. Hu, “MEMTUNE: Dynamic memory
management for in-memory data analytic platforms,” in 2016 IEEE Int. Parallel Distr. Process. Symp.
(IPDPS), IEEE, 2016, pp. 383–392.

[16] K. H. Zhang, Y. Tanimura, H. Nakada, and H. Ogawa, “Understanding and improving disk-based
intermediate data caching in Spark,” in 2017 IEEE Int. Conf. Big Data (Big Data), Boston, MA, USA,
2017, pp. 2508–2517. doi: 10.1109/BigData.2017.8258209.

https://www.github.com/
https://doi.org/10.1002/cpe.3584
https://doi.org/10.1007/s10766-016-0470-1
https://doi.org/10.1109/CLOUD.2018.00042
https://doi.org/10.1145/2949033
https://doi.org/10.1166/jno.2021.2970
https://doi.org/10.1145/2851504
https://doi.org/10.48550/arXiv.1609.09294
https://doi.org/10.1504/IJBDI.2017.086970
https://doi.org/10.1109/BigData.2017.8258209

CMC, 2024, vol.79, no.2 2849

[17] Y. H. Yu, W. Wang, J. Zhang, and K. B. Letaief, “LRC: Dependency-aware cache management for data
analytics clusters,” in IEEE INFOCOM 2017-IEEE Conf. on Comput. Commun., Atlanta, GA, USA, IEEE,
2017, pp. 1–9.

[18] M. M. Khan, M. A. U. Alam, A. K. Nath, and W. K. Yu, “Exploration of memory hybridization for RDD
caching in Spark,” in Proc. 2019 ACM SIGPLAN Int. Symp. Mem. Manag., Phoenix, AZ, USA, ACM,
2019, pp. 41–52.

[19] C. L. Li, Y. Zhang, and Y. L. Luo, “Intermediate data placement and cache replacement strat-
egy under Spark platform,” J. Parallel Distr. Comput., vol. 2022, no. 13, pp. 114–135, 2022. doi:
10.1016/j.jpdc.2022.01.020.

[20] Q. He, B. Shao, and W. Zhang, “Data deduplication technology for cloud storage,” Tehnički vjesnik, vol.
27, no. 5, pp. 1444–1451. doi: 10.17559/TV-20200520034015.

[21] R. Myung and S. Choi, “Machine-learning based memory prediction model for data parallel workloads in
apache Spark,” Symmetry, vol. 13, no. 4, pp. 697–713, 2021. doi: 10.3390/sym13040697.

[22] B. T. Rao and L. S. S. Reddy, “Scheduling data intensive workloads through virtualization on MapReduce
based clouds,” Int. J. Comput. Sci. Net., vol. 13, no. 6, pp. 105–112, 2013.

[23] Q. L. He, G. Q. Bian, W. Q. Zhang, F. Zhang, S. Q. Duan and F. L. Wu, “Research on routing
strategy in cluster deduplication system,” IEEE Access, vol. 9, pp. 135485–135495, 2021. doi: 10.1109/AC-
CESS.2021.3116270.

[24] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in hadoop,” in Int. Conf. Job Sched.
Strat. Parallel Process., Atlanta, GA, USA, 2010, pp. 110–131.

[25] Q. He et al., “File block multi-replica management technology in cloud storage,” Cluster Comput, vol. 27,
pp. 457–476, 2024. doi: 10.1007/s10586-022-03952-1.

[26] Q. L. He, P. Z. Gao, F. Zhang, G. Q. Bian, W. Q. Zhang and Z. Li, “Design and optimization of a distributed
file system based on RDMA,” Appl. Sci., vol. 13, no. 15, pp. 8670, 2023. doi: 10.3390/app13158670.

[27] A. Verma, L. Cherkasova, V. S. Kumar, and R. H. Cambell, “Deadline-based workload management for
MapReduce environments: Pieces of the performance puzzle,” in Netw. Oper. Manag. Symp., Maui, HI,
USA, 2012, pp. 900–905. doi: 10.1109/NOMS.2012.6212006.

[28] H. J. Li, H. C. Wang, A. P. Xiong, J. Lai, and W. H. Tian, “Comparative analysis of energy-efficient
scheduling algorithms for big data applications,” IEEE Access, vol. 6, pp. 40073–40084, 2018. doi:
10.1109/ACCESS.2018.2855720.

[29] N. Zacheilas and V. Kalogeraki, “Real-time scheduling of skewed MapReduce jobs in heterogeneous
environments,” in ICAC 2014, Philadelphia, PA, USA, 2014, pp. 189–200.

[30] I. Gog et al., “Broom: Sweeping out garbage collection from big data systems,” in Usenix Conf. Hot Topics
Oper. Syst., Switzerland, 2015.

[31] L. Yan et al., “CoPIM: A concurrency-aware PIM workload offloading architecture for
graph applications,” in IEEE/ACM Int. Symp. Low Power Electr. Des., IEEE, 2021. doi:
10.1109/ISLPED52811.2021.9502483.

[32] J. Liu, N. Ravi, S. Chakradhar, and M. Kandemir, “Panacea: Towards holistic optimization of MapReduce
applications,” in CGO ‘12 Proc. Tenth Int. Symp. Code Gen. Opt., San Jose, California, USA, 2012, pp. 33–
43.

[33] Q. A. Chen, F. Li, Y. Cao, and M. S. Long, “Parameter optimization for Spark jobs based on runtime data
analysis,” (In Chinese), Comput. Eng. & Sci., vol. 2016, pp. 11–19, 2016.

[34] J. G. Xu, G. L. Wang, S. Y. Liu, and R. F. Liu, “A novel performance evaluation and optimization model
for big data system,” in Int. Symp. Parallel Distrib. Comput., Fuzhou, China, 2016, pp. 121–130.

[35] Y. Y. Lu, J. W. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight transactional design in flash-based
SSDs to support flexible transactions,” in Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Asheville,
North Carolina, USA, IEEE, 2013, pp. 115–122.

[36] Q. L. He, G. Q. Bian, B. L. Shao, and W. Q. Zhang, “Research on multifeature data routing strategy in
deduplication,” Sci. Program., vol. 2020, no. 10, pp. 118–132, 2020. doi: 10.1155/2020/8869237.

https://doi.org/10.1016/j.jpdc.2022.01.020
https://doi.org/10.17559/TV-20200520034015
https://doi.org/10.3390/sym13040697
https://doi.org/10.1109/ACCESS.2021.3116270
https://doi.org/10.1007/s10586-022-03952-1
https://doi.org/10.3390/app13158670
https://doi.org/10.1109/NOMS.2012.6212006
https://doi.org/10.1109/ACCESS.2018.2855720
https://doi.org/10.1109/ISLPED52811.2021.9502483
https://doi.org/10.1155/2020/8869237

2850 CMC, 2024, vol.79, no.2

[37] I. O. Fusion, “The fusion-io difference,” Accessed: May 6, 2015. [Online]. Available:
http://www.fusionio.com/load/-media-/lqaz4e/docsLibrary/FIO_SSD_Differentiator_Overview.pdf.

[38] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than interrupt,” in Conf. File Storage Tech.
(FAST), San Jose, CA, USA, USENIX, 2012, pp. 25–32.

[39] Z. H. Cheng, W. Shen, W. Fang, and C. W. Lin, “A parallel high-utility item set mining algorithm based on
hadoop,” Complex Syst. Model. Simul., vol. 3, no. 1, pp. 47–58, 2023. doi: 10.23919/CSMS.2022.0023.

[40] S. Kumar and K. K. Mohbey, “UBDM: Utility-based potential pattern mining over uncertain data using
Spark framework,” in Int. Conf. Emerg. Tech. Comput. Eng., Cham, Springer, 2022.

[41] M. X. Duan, K. L. Li, Z. Tang, G. Q. Xiao, and K. Q. Li, “Selection and replacement algorithms for
memory performance improvement in Spark,” Concurr. Comput. Pract. Exp., vol. 28, no. 8, pp. 2473–2486,
2016. doi: 10.1002/cpe.3584.

[42] J. Leskovec, “Stanford network analysis project,” Accessed: Dec. 23, 2018. [Online]. Available:
http://snap.stanford.edu/data/index.html.

http://www.fusionio.com/load/-media-/lqaz4e/docsLibrary/FIO_SSD_Differentiator_Overview.pdf
https://doi.org/10.23919/CSMS.2022.0023
https://doi.org/10.1002/cpe.3584
http://snap.stanford.edu/data/index.html

	Research on Performance Optimization of Spark Distributed Computing Platform
	1 Introduction
	2 Related Work
	3 Spark Memory Replacement Strategy Based on Data Value
	4 Evaluation
	5 Conclusion
	References

