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ABSTRACT

Adversarial distillation (AD) has emerged as a potential solution to tackle the challenging optimization problem
of loss with hard labels in adversarial training. However, fixed sample-agnostic and student-egocentric attack
strategies are unsuitable for distillation. Additionally, the reliability of guidance from static teachers diminishes
as target models become more robust. This paper proposes an AD method called Learnable Distillation Attack
Strategies and Evolvable Teachers Adversarial Distillation (LDAS&ET-AD). Firstly, a learnable distillation attack
strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored
for distillation. A strategy model is introduced to produce attack strategies that enable adversarial examples (AEs)
to be created in areas where the target model significantly diverges from the teachers by competing with the target
model in minimizing or maximizing the AD loss. Secondly, a teacher evolution strategy is introduced to enhance
the reliability and effectiveness of knowledge in improving the generalization performance of the target model.
By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,
the impact of distillation from each training sample and AE on the target model’s generalization and robustness
abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly. Experiments evaluate
the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.
The experimental results demonstrate that the proposed method achieves a robust precision of 45.39% and 42.63%
against AutoAttack (AA) on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2, respectively, marking an
improvement of 2.31% and 3.49% over the baseline method. In comparison to state-of-the-art adversarial defense
techniques, our method surpasses Introspective Adversarial Distillation, the top-performing method in terms of
robustness under AA attack for the CIFAR-10 dataset, with enhancements of 1.40% and 1.43% for ResNet-18 and
MobileNet-V2, respectively. These findings demonstrate the effectiveness of our proposed method in enhancing
the robustness of deep learning networks (DNNs) against prevalent adversarial attacks when compared to other
competing methods. In conclusion, LDAS&ET-AD provides reliable and informative soft labels to one of the most
promising defense methods, AT, alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD
techniques. We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps
ensure a more secure and dependable future for artificial intelligence systems.
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1 Introduction

In recent years, deep neural networks (DNNs) have become increasingly popular for solving
complex real-world problems, including computer vision [1], natural language processing [2], and other
fields [3]. However, Szegedy et al. [4] have revealed that DNNs are susceptible to adversarial examples
(AEs), which involve imperceptible perturbations on input. These perturbations can easily mislead
the prediction model, posing a challenge to the development of DNNs in trust-sensitive fields like
autonomous driving [5], facial authentication [6], and healthcare [1].

To combat adversarial attacks, various defense strategies have emerged, including input prepro-
cessing [7–9], adversarial training (AT) [10–13], and certified defense [14–17]. Among them, AT is
considered one of the most effective methods for improving the robustness of DNNs. It achieves this by
incorporating AEs into the training procedure through a minimax formulation [13]. However, learning
directly from AEs is challenging due to the difficult optimization of loss with hard labels [18], hindering
improvements in both clean accuracy and adversarial robustness.

Recent studies have shown that knowledge distillation (KD) can enhance AT by providing data-
driven soft labels to smooth the hard labels. Adversarial distillation (AD) methods aim to have target
models to mimic the outputs or features of either a single adversarially pre-trained teacher [19–21]
or both an adversarially pre-trained teacher and a standard pre-trained teacher [22–24]. By utilizing
the guidance of these teachers, the target model can learn the ability to identify AEs and clean
samples simultaneously. In the aforementioned methods, the target models fully trust teacher models.
Zhu et al. [25] noted that the knowledge from static teacher models becomes less reliable over time,
as they become progressively less accurate in predicting stronger AEs. To enhance the reliability of
guidance received by the target model, Introspective Adversarial Distillation (IAD) was introduced
to encourage the target model to partially trust the teacher model and gradually trust itself more.
However, the parameters of the teacher models remain constant, hindering the target model from
acquiring increasingly reliable knowledge from the teachers.

Additionally, the fixed sample-agnostic and student-egocentric attack strategies used to generate
AEs may not be suitable for distillation, limiting the target model’s generalization performance
improvement.

To address the reliability reduction of teacher knowledge in KD, the emerging field of learning
to teach (L2T) distillation algorithms [26] has made significant progress. Existing L2T distillation
techniques involve fine-tuning teachers to enforce similarity between the outputs of teacher and
student models on the training set [27–30], maximizing the student model’s generalization ability on
a held-out dataset [31–34], and incorporating distillation influence to estimate the impacts of each
training sample on the student’s validation performance [35]. By incorporating distillation influence
and self-evolution into the teacher’s learning process, Reference [35] prioritized samples likely to
enhance the student’s generalization ability, resulting in superior performance when updating the
teacher model. However, existing L2T distillation techniques only utilize the clean accuracy of the
student model to update the standard teacher, without considering updating the robust teacher to
enhance the target model’s robustness.

To solve the issue of limited generalization performance caused by fixed attack strategies, some
works [12,36–38] have improved AT by exploiting different attack strategies at different training stages.
Reference [12] proposed a novel AT framework by introducing a learnable attack strategy (LAS-AT),
which consists of a target network trained with AEs to improve robustness and a strategy network that
automatically produces attack strategies based on the target model’s robustness and the given sample.
This framework requires less domain expertise. However, directly extending it into the AD framework



CMC, 2024, vol.79, no.2 2333

makes the generated AEs independent of the teacher model and unsuitable for distillation, hindering
the closer matching between teacher and target models.

In this paper, an adversarial defense method called Learnable Distillation Attack Strategies and
Evolvable Teachers Adversarial Distillation (LDAS&ET-AD) is proposed, which aims to improve the
performance of AD by enhancing the quality of AEs and the reliability of teacher knowledge. Our
contributions are summarized as follows:

1. A learnable distillation attack strategies generating mechanism is proposed to automatically
generate sample-dependent attack strategies tailored for distillation. A strategy model is
introduced to generate attack strategies capable of misleading the target model and creating
maximum divergence between the target and teacher models by competing with the target
model in minimizing or maximizing the AD loss. AEs are produced by perturbing clean
samples in the direction of the gradient of the difference between the target and teacher models,
causing a closer match between them.

2. A teacher evolution strategy is devised to enhance the reliability and effectiveness of knowledge
in improving the target mode’s generalization performance on both clean samples and AEs.
The adversarial distillation influence, which estimates the impact of distillation from each
training sample and AE on the target model’s performance on the validation set and AEs,
is introduced to assign loss weights of the training samples and AEs. The standard and robust
teachers are fine-tuned on prioritized samples that are likely to enhance the target model’s
clean and robust generalization abilities, respectively.

To evaluate the effectiveness of the LDAS&ET-AD method, we construct two typical DNNs,
namely ResNet-18 and MobileNet-V2, and test them against various adversarial attacks on the
CIFAR-10 and CIFAR-100 datasets. In comparison to state-of-the-art adversarial defense techniques,
our method demonstrates robustness enhancements ranging from 0.80% to 1.47% for the CIFAR-
10 dataset and 1.43% to 2.11% for the CIFAR-100 dataset when applied to ResNet-18. When
implemented on MobileNet-V2, our method showcases improvements ranging from 1.20% to 2.55%
for the CIFAR-10 dataset and 1.23% to 2.30% for the CIFAR-100 dataset.

The remainder of the paper is organized as follows: Section 2 reviews related background and
recent research. Section 3 describes the proposed LDAS&ET-AD method in detail. Section 4 presents
experimental results and comparisons. Section 5 gives discussions. Section 6 concludes the paper and
Section 7 provides limitations.

2 Related Work
2.1 Adversarial Attacks and Adversarial Training

Since the identification of DNNs’ vulnerability to adversarial attacks, several effective attack
algorithms have been proposed [13,39–41]. These methods can be categorized as white-box attacks
and black-box attacks based on the adversary’s knowledge. White-box attacks such as the fast gradient
sign method (FGSM) [39], projection gradient descent method (PGD) [13], and Carlini Wagner Attack
(CW) [40], have full access to all the parameter information of the attacked model. To comprehensively
evaluate the effectiveness of the proposed defense method, we employ PGD [13], FGSM [39], CW [40],
and AutoAttack (AA) [41].

To mitigate the threat of adversarial attacks, various defense methods have been proposed
[5,10,14]. AT [10–13], which adds adversarial perturbations to the inputs during training, has
proven to be one of the most effective approaches for enhancing the DNNs’ adversarial robustness.
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Madry et al. [13] formulated standard AT (SAT) as a minimax optimization problem, where the inner
maximization represents the attack strategy guiding AE generation. Solving the inner maximization
problem in SAT is achieved using the PGD attack.

Several studies have proposed methods to improve the performance of SAT. Zhang et al. [10]
introduced TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization (TRADES) to
balance adversarial robustness and clean accuracy. Wang et al. [42] further improved performance by
Misclassification-Aware Adversarial Training (MART). While these methods employed fixed attack
strategies, other studies [12,36–38] demonstrated that employing different attack strategies at different
training phases can further improve AT. Cai et al. [36] introduced curriculum adversarial training
(CAT), which employs AEs generated by attacks with varying strengths in a curriculum manner.
Zhang et al. [37] proposed friendly adversarial training (FAT) that trains a DNN using both wrongly-
predicted and correctly-predicted AEs. Wang et al. [38] introduced First-Order Stationary Condition
for constrained optimization (FOSC) as a quantitative indicator for assessing AE convergence quality.
However, these methods rely on manually designed metrics to evaluate the AE difficulty and still use a
single strategy at each stage, thus limiting the robustness improvement and requiring domain expertise.
Jia et al. [12] proposed a learnable attack strategy that allows the strategy model to automatically
produce sample-dependent attack strategies using a gaming mechanism. However, when directly
applied to AD, this method generated the AEs that are independent of the teacher model and not
applicable for distillation, thus limiting the closer match between teacher and student models.

To address this limitation and generate sample-dependent attack strategies advantageous to
distillation, reference [12] is improved and introduced into the AD framework. This improvement
considers the differences in output between the target and teacher models, resulting in a closer match
between them.

2.2 Adversarial Distillation

Recently, there has been a growing body of research highlighting the potential for improving
AT through the integration of KD. KD offers data-driven soft labels to smooth the hard labels. In
Adversarially Robust Distillation (ARD) [19], the target model was encouraged to mimic the softmax
output of an adversarially pre-trained teacher model on clean input when facing an adversary. In
Robust Soft Label Adversarial Distillation (RSLAD) [21], the generation of AEs and the training of
target models were guided by the Robust Soft Labels (RSLs) derived from adversarially pre-trained
teachers. Adversarial Knowledge Distillation (AKD) [20] leveraged a linear combination of the AEs’
predictions from the teacher model and the original labels, effectively guiding the student model’s
predictions on AE.

However, these methods only utilize the knowledge of adversarially pre-trained teachers to
enhance the adversarial robustness of the target model, overlooking considerations related to clean
accuracy. Chen et al. [23] imposed the adversarial predictions of the target model to mimic those
of standard teachers and robust teachers, hereinafter referred to as self-teacher training (STS). This
method notably improves accuracy on both clean samples and AEs, yet it heavily relies on trust in
teacher models. IAD [25] highlighted the diminishing reliability of teacher guidance, advocating for
a gradual development of confidence in the student model’s adversarial robustness while partially
trusting the teacher model. The methods mentioned earlier predominantly focus on distilling logit
knowledge from the teacher model. Vanilla Feature Distillation Adversarial Training (VFD-Adv) [22]
distilled feature knowledge from the teacher’s intermediate layer, aligning features of clean examples
from the teacher model with those from the student model in the feature space. We utilize logit
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distillation since it requires less computational and storage costs and logits are at a higher semantic
level than deep features.

The baseline in our paper is STS presented in [23], and we use the same AD framework.
The adversarial robustness and clean accuracy of the target model are simultaneously improved by
leveraging the standard and robust teachers to provide clean and robust knowledge, respectively.
Recognizing the decreasing reliability of teacher knowledge during training [24], we update the
parameters of teacher models by incorporating supervision from the training set and AEs, as well
as feedback from the target model’s performances on the validation set and AEs.

2.3 Learning to Teach Distillation

Current AD techniques employ the conventional two-stage offline KD technique, where the
teacher model’s parameters remain unchanged during the distillation process. However, this technique
cannot guarantee a match between the teacher and student models, especially when there is a
significant difference in predictive performance between them. Additionally, two-stage offline KD
cannot adjust the knowledge transfer process in real time based on the learning status of the student
model. To address these issues, L2T distillation has been proposed [26], which involves training the
student model and fine-tuning the teacher model simultaneously, allowing the teacher model to adjust
its behavior based on the feedback from the student model.

Online distillation [27–30] is a commonly used L2T algorithm, which involves simultaneously
training the student and teacher models and ensuring similarity between their outputs on the training
set by minimizing the Kullback-Leibler (KL) divergence between them. However, this only considers
the knowledge transfer on the training set without considering the validation performance of the
student model. Meta distillation [31–34] addresses this issue by fine-tuning the teacher model to
minimize the loss of the updated student on the validation set. However, the teacher model only receives
supervision from the student model, which can result in performance degradation.

Recently, Ren et al. [35] proposed a novel L2T distillation framework called Learning Good
Teacher Matters (LGTM), which introduced the distillation influence to assign a loss weight to each
training sample based on the student model’s performance on the validation set. However, this method
does not consider the accuracy of the target model on AEs as feedback to fine-tune the robust teacher.

To improve the reliability and effectiveness of the standard and robust teachers’ knowledge in the
generalization ability of the target model on both clean samples and AEs, LGTM [35] is extended and
incorporated into the AD framework. We use feedback from the target model on the validation data
and AEs to update both standard and robust teachers. Fine-tuning the teachers narrows the capacity
gap between the teacher and target models and makes teacher models more adaptable to the stronger
AEs, increasing their reliability. Additionally, due to the involvement of teacher knowledge in the AE
generation in our method, more reliable teachers can also improve the quality of AEs.

3 Method
3.1 Method Overview

Existing AD techniques employ fixed and sample-agnostic attack strategies that are centered
around the target model, which leads to AEs being irrelevant to the teacher models and unsuitable
for AD. Besides, static teachers face challenges in accurately predicting stronger AEs generated by the
increased robustness of the target model. Distilling unreliable knowledge can hurt the performance
of the target model. To enhance the suitability of AEs for distillation and improve the reliability and
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effectiveness of teachers’ knowledge in promoting the generalization performance of the target model,
LDAS&ET-AD is proposed to generate AEs by leveraging a learnable distillation attack strategies
generating mechanism that considers prediction differences between the teacher and target models, as
well as update teachers by using a teacher evolution strategy that takes into account the performance of
the target model on validation set and AEs. The proposed AD framework, depicted in Fig. 1, comprises
a target model, a strategy model, and standard and adversarially pre-trained teacher models.

Figure 1: The framework of proposed LDAS&ET-AD. Given a clean training image xr
clean

i, the strategy
model generates an attack strategy a. The target model utilizes a to generate an AE xr

adv
i. The update

of the target model consists of experimental updates and actual updates. In each training step, we first
obtain a copy of the target model and experimentally update it using the AD loss. Then, we sample
xe

clean from the validation set and generate AEs xe
adv, and calculate the losses of the copied model on

these samples. The losses provide feedback signals to fine-tune the teachers by calculating adversarial
distillation influence. The losses of the teachers on the training set and AEs are also utilized to update
teachers. Finally, we discard the copied target model and employ the updated teachers to guide the
training of the target model on the same training batches and AEs

The training process consists of two stages: Generating AEs and fine-tuning teachers.

1. In the stage of generating AEs, the target model and the strategy model compete with each
other in minimizing or maximizing the same objective function. The strategy model is trained
to automatically generate attack strategies that produce AEs capable of misleading the target
model and inducing maximum divergence between the target and teacher models. The target
model is trained to defend against AEs generated by the attack strategies while receiving
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guidance from both standard and adversarially pre-trained teachers to minimize the prediction
distance with them.

2. In the stage of fine-tuning teachers, a temporary copy of the target model first performs
experimental AD and provides feedback for fine-tuning teachers based on its accuracy on
the validation set and AEs. The standard and adversarially pre-trained teachers are then fine-
tuned based on their performances on the training set and AEs, respectively, as well as the
feedback provided by the temporary copy of the target model. Finally, the parameters of the
target model are actually updated under the guidance of fine-tuned teachers’ knowledge.

In the subsequent section, we provide a detailed description of the learnable distillation attack
strategies generating mechanism that considers prediction differences, as well as the teacher evolution
strategy that takes into account the validation performance of the target model. The equation symbols
and abbreviations used throughout this paper are summarized in Tables 1 and 2, respectively.

Table 1: The symbols of the equations used in this paper

Symbols Meanings Symbols Meanings

a An attack strategy. It is
determined by the values chosen
for attack parameters, such as the
maximal perturbation strength ε,
the attack step size α, and the
attack iteration I

xadv
i xadv

i = xclean
i + δ =

g
(
xclean

i, a, θm
tar

)
The adversarial example of a
given clean image xclean

i by an
attack strategy a at the mth

training step, g (·) is the PGD
attack

δ The adversarial perturbation xadv
i(n) The adversarial example of

xclean
i at step n∏

Bε[xadv
i(0)] (·) The projection function that

projects the AEs back into the
ε-ball centered at xadv

i(0)

Dtrain A distribution of the clean
training examples xr

clean and the
ground truth labels yr

clean

L
(
fθm

tar

(
xadv

i(n)
)

,

yclean
i)

The cross-entropy loss between
fθm

tar

(
xadv

i(n)
)

and yclean
i

fθm
tar

(·) The target model at the mth

training step. θm
tar is the model

parameters

zr
adv zr

adv = (
xr

adv, yr
adv

)
The adversarial examples of
training samples xr

clean

KL
(
fθm

tar

(
xr

adv

)
,

fθ∗
(
xr

adv

)) The Kullback-Leibler
divergence between fθm

tar

(
xr

adv

)
and fθ∗

(
xr

adv

)
∇v ∂f /∂v γ A small scalar
fθstd−T

(·)fθadv−T
(·) The static standard and

adversarially pre-trained teachers
θm+1

std−T , θm+1
adv−T The parameters of the

standard and robust teachers
after fine-tuning

θm
std−T , θm

adv−T The parameters of the standard
and robust teachers before
fine-tuning

λstd, λadv Two hyperparameters to
control the guidance ratio of
standard and robust teachers

(Continued)
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Table 1 (continued)

Symbols Meanings Symbols Meanings

θm+1
tar The parameters of the target

model after the update
θstra The parameters of the strategy

model
Br The batch size of a training batch 	P 	P = {δ : ||δ||P ≤ ε}. A bound
k A hyperparameter to control

alternative updates of θtar and
θstra. We update θtar every k times
of updating θstra

αstd, αadv The loss ratios to control the
self-evolution of standard
teacher and robust teacher,
respectively

ze
adv ze

adv = (
xe

adv, ye
clean

)
The AEs of

validation samples xe
clean, ye

clean are
their ground truth labels

x̂r
adv x̂r

adv = g
(
xr

clean, â, θm+1
tar

)
The

adversarial examples
generated by another attack
strategy â which is used to
evaluate the robustness of the
one-step updated target model
f
θ

m+1
tar

Table 2: The abbreviations used in this paper

Abbreviations Symbols Abbreviations Symbols

Adversarial examples AEs Adversarial training AT
Knowledge distillation KD Carlini wagner attack CW
Learnable Distillation Attack
Strategies and Evolvable
Teachers Adversarial
Distillation

LDAS&ET-AD TRadeoff-inspired adversarial
defense via Surrogate-loss
minimization

TRADES

Learning to teach L2T Fast gradient sign method FGSM
Deep neural networks DNNs Projection gradient descent

method
PGD

AutoAttack AA Standard AT SAT
An adversarial training
framework by introducing a
learnable attack strategy

LAS-AT Curriculum distillation attack
strategy and evolvable
teachers adversarial
distillation

CDAS&ET-
AD

Curriculum adversarial training CAT Friendly adversarial training FAT
First-order stationary
condition

FOSC Adversarially robust
distillation

ARD

Robust soft label adversarial
distillation

RSLAD Multi-teacher adversarial
robustness distillation

MTARD

Adversarial knowledge
distillation

AKD Self-teachers training STS

(Continued)
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Table 2 (continued)

Abbreviations Symbols Abbreviations Symbols

Robust soft labels RSLs Introspective adversarial
distillation

IAD

Vanilla feature distillation
adversarial training

VFD-Adv Kullback-Leibler KL

Learning good teacher matters LGTM Ground truth GT
Cross-entropy CE Standard training ST
Stochastic gradient descent SGD N-step PGD PGD-N
MobileNet-V2 MN-V2 ResNet-18 RN-18
Fixed distillation attack
strategy and evolvable teachers
adversarial distillation

FDAS&ET-AD Learnable attack strategy and
evolvable teachers adversarial
distillation

LAS&ET-AD

Learnable distillation attack
strategies and evolvable robust
teachers adversarial distillation

LDAS&ERoT-
AD

Learnable distillation attack
strategies and evolvable
standard teachers adversarial
distillation

LDAS&EStT-
AD

Learnable distillation attack
strategies adversarial
distillation

LDAS-AD Misclassification-aware
adversarial training

MART

First-order stationary
condition distillation attack
strategy and evolvable teachers
adversarial distillation

FOCSDAS&ET-
AD

Friendly distillation attack
strategy and evolvable
teachers adversarial
distillation

FriDAS&ET-
AD

Learnable distillation attack
strategy and mate adversarial
distillation

LDAS&meta-AD Learnable distillation attack
strategy and online
adversarial distillation

LDAS&OL-
AD

Adversarial distillation AD

3.2 Learnable Distillation Attack Strategies Generating Mechanism Considering Prediction Differen-
ces between Teacher and Target Models
An attack strategy is determined by the values chosen for attack parameters, such as the maximal

perturbation strength ε, attack step size α, and attack iteration I . These parameters play a crucial role
in the inner optimization problem of AT, significantly impacting performance. Given a clean image
xclean

i and its ground truth (GT) label yclean
i, the generation of AE xadv

i using an attack strategy a at the
mth training step can be defined as follows:

xadv
i = xclean

i + δ = g
(
xclean

i, a, θm
tar

)
(1)

where δ represents the adversarial perturbation, θm
tar is the parameters of the target model at the mth

training step, g (·) denotes the PGD attack employed in our method following [13]. Concretely, PGD
recursively searches:

xadv
i(n+1) =

∏
Bε[xadv

i(0)]
xadv

i(n+1) + α · sign
(∇xadv

i(n)L
(
fθm

tar

(
xadv

i(n)
)

, yclean
i
))

(2)
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until a stopping criterion is met. xadv
i(n) are the AEs at step n, and

∏
Bε[xadv

i(0)] (·) is the projection function

that projects the AEs back into the ε-ball centered at xadv
i(0), L

(
fθm

tar

(
xadv

i(n)
)

, yclean
i
)

is the cross-entropy
(CE) loss between fθm

tar

(
xadv

i(n)
)

and yclean
i. For simplicity, we annotate ∂f /∂v as ∇v.

Current AD techniques still rely on fixed sample-agnostic and student-egocentric attack strategies,
where the attack parameters are artificially set and remain unchanged during training. The loss
function for current AD at the mth training step can be expressed as:

min
θm
tar

E(xr
clean ,yr

clean)∼Dtrain

[
max

δ=(xr
adv−xr

clean)∈	P
(1 − λstd − λadv) · L

(
fθm

tar

(
xr

adv

)
, yr

clean

) + λstd·

KL
(
fθm

tar

(
xr

adv

)
, fθstd−T

(
xr

adv

)) + λadv · KL
(
fθm

tar

(
xr

adv

)
, fθadv−T

(
xr

adv

)) ] (3)

where fθm
tar

(·) denotes the target model at the mth training step, fθstd−T
(·) and fθadv−T

(·) represent the static
standard and adversarially pre-trained teachers, respectively. Dtrain denotes the distribution of the clean
training examples xr

clean and their GT labels yr
clean. 	P represents a bound defined as 	P = {δ : ||δ||P ≤ ε}.

xr
adv are the AEs of xr

clean. L
(
fθm

tar

(
xr

adv

)
, yr

clean

)
represents the CE loss of the target model between fθm

tar

(
xr

adv

)
and yr

clean. KL
(
fθm

tar

(
xr

adv

)
, fθstd−T

(
xr

adv

))
and KL

(
fθm

tar

(
xr

adv

)
, fθadv−T

(
xr

adv

))
are the KL divergence between

fθm
tar

(
xr

adv

)
and fθstd−T

(
xr

adv

)
and between fθm

tar

(
xr

adv

)
and fθadv−T

(
xr

adv

)
. λstd and λadv are hyperparameters that

control the guidance ratio of the standard and robust teachers, respectively. The target model is trained
to minimize both the AT loss and the prediction distance with standard and adversarial pre-trained
teachers on AEs. The process of AE generation in existing AD methods is illustrated in Fig. 2a, which
results in AEs unsuitable for distillation, limiting the closeness between the teacher and target models.

Figure 2: Comparison of the attack strategies of vanilla AD and our LDAS&ET-AD

3.2.1 The AD Loss of Target Model

To enhance the suitability of AEs for distillation, a learnable distillation attack strategies gen-
erating mechanism that takes into account the prediction disparities between the teacher and target
models is introduced into the AD framework. A strategy model is utilized to automatically produce
sample-dependent attack strategies by competing with the target model in minimizing or maximizing
the AD loss. Consequently, the generated AEs not only mislead the target model but also maximize
the difference in predictions between the target and teacher models. In this worst-case scenario of
AD, updating the parameters of the target model towards correctly classifying and minimizing the
difference makes the AEs more suitable for distillation and brings the target and teacher models closer
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together. The attack strategies are based on the given samples xclean
i, where the attack parameters are

related to the strategy model’s parameters θstra and the samples a ∼ p (a|xclean
i; θstra). The loss function

of AD with a learnable distillation attack strategies generating mechanism can be written as follows:

min
θm
tar

E(xr
clean ,yr

clean)∼Dtrain

[
max
θstra

Ea∼p(a|xr
clean ;θstra) (1 − λstd − λadv) · L

(
fθm

tar
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3.2.2 The Evaluating Loss of Strategy Model

The evaluation metric proposed in [12] serves as a guiding principle for the training of the strategy
model in our approach. First, an attack strategy a is employed to create AEs and then the target
model is updated based on these samples using first-order gradient descent for one step, as described
in Eq. (4). If the updated target model can effectively defend against the AEs generated by another
attack strategy â, a can be considered effective. The evaluation metric of robustness can be defined as
follows:

L2 (θstra) = −L
(

f
θ

m+1
tar

(
x̂r

adv

)
, yr

clean

)
(5)

where x̂r
adv = g

(
xr

clean, â, θm+1
tar

)
presents the AEs generated by another attack strategy â, which is used to

evaluate the robustness of the one-step updated target model f
θ

m+1
tar

.

Furthermore, an effective attack strategy should ensure good performance in predicting clean
samples. Thus, we also consider the performance of the one-step updated target model in predicting
clean samples for training the strategy model. The evaluation metric of clean accuracy can be defined
as follows:

L3 (θstra) = −L
(

f
θ

m+1
tar

(
xr

clean

)
, yr

clean

)
(6)

3.2.3 The AD Process with Learnable Distillation Attack Strategies

During the initial training stage, the target model is susceptible to attacks and there are significant
differences in predictions between the target and pre-trained teacher models. Therefore, effective attack
strategies can be easily generated by the strategy model. As the training process progresses, the target
model becomes more robust, and the prediction differences decrease. Consequently, the strategy model
needs to learn how to generate attack strategies that can produce stronger AEs.

The game formulation between the target and teacher models can be defined as follows:

min
θm
tar

E(xr
clean ,yr
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[
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(7)

where L1
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λadv KL
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)
, fθadv−T

(
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))
is a function of the parameters of the target model, strategy model,

and two teacher models. L2 and L3 involve the parameters of the strategy model. αL2
and αL3

are
the trade-off hyperparameters of the two loss terms. The target model and strategy model are
alternatively optimized using the REINFORCE algorithm [12]. The alternative update is controlled
by a hyperparameter k, where we update θtar every k times of updating θstra. Fig. 2b illustrates the
generation process of AEs in our proposed LDAS&ET-AD.
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3.3 Teacher Evolution Strategy Considering the Validation Performance of the Target Model

As the robustness of the target model increases and AEs become stronger, the reliability of static
teachers’ knowledge diminishes. This unreliable guidance not only negatively impacts the performance
of the target model, but also affects the quality of AEs that rely on the knowledge of teacher models.
To enhance the reliability and effectiveness of teachers’ knowledge in promoting the generalization
performance of the target model, a teacher evolution strategy is introduced in our AD framework.
This strategy takes into consideration the validation performance of the target model. The feedback
for fine-tuning teachers is determined by the adversarial distillation influence, which extends the
distillation influence proposed in [35].

3.3.1 Adversarial Distillation Influence

To ensure both clean accuracy and adversarial robustness of the target model, it is necessary to
update both standard and adversarially pre-trained teachers. Therefore, we expand the distillation
influence and difference approximation method [35], which does not consider adversarial robustness.
The adversarial distillation influence measures the change in clean accuracy and adversarial robustness
of the target model on validation data and AEs when the AE of a training sample is included in the
AD process. Specifically, the adversarial distillation influence of the standard teacher is determined by
calculating the similarity of gradients between the AE of the training sample zr

adv
i = (

xr
adv

i, yr
clean

i
)

before
updating the target model parameters and the validation batch ze

clean = (
xe

clean, ye
clean

)
after updating

(Eq. (8)). The adversarial distillation influence of the robust teacher is obtained by calculating the
similarity of gradients between the AE of the training sample zr

adv
i before updating and the AE of the

validation batch ze
adv = (

xe
adv, ye

clean

)
after updating (Eq. (9)).
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where θm
tar and θm+1

tar are the parameters of the target model before and after the update, respectively.
θm

std−T and θm
adv−T are the parameters of the standard and robust teachers before fine-tuning.

3.3.2 The Fine-Tuning Loss of Teacher Models

The adversarial distillation influence highlights the importance of each training sample’s AE in
improving the target model’s generalization performance. Therefore, we consider it as feedback from
the target model’s performance on the verification set and use it to assign a weight to each AE for
fine-tuning the teacher models. This fine-tuning process enhances the teachers’ teaching abilities. The
weighted fine-tuning losses can be defined as Eq. (10) for the standard teacher and Eq. (11) for the
robust teacher:
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where Br is the batch size of a training batch, wstd
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)
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we approximate them by:
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where θms±
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tar ±γ ·L
(

ye
clean, f

θ
m+1
tar

(
xe

clean

))
, θma±

tar = θm
tar ±γ ·L

(
ye

clean, f
θ

m+1
tar

(
xe

adv

))
and γ is a small scalar.

In addition to improving teaching abilities, teacher models should also focus on minimizing CE
loss related to GT labels (clean accuracy for the standard teacher and adversarial robustness for the
robust teacher). This is crucial for optimizing their reasoning performance. The overall losses for fine-
tuning the standard teacher and robust teacher can be defined as Eqs. (14) and (15), respectively.
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where the hyperparameters αstd and αadv control the self-evolution of standard teacher and robust
teacher, respectively.

3.3.3 The Fine-Tuning Process

To obtain adversarial distillation influence involving gradients before and after updating the target
model parameters, an experimental update mechanism is introduced as shown in Fig. 3a. First, a
temporary copy of the current target model fθm

tar
is created. This copy is then experimentally updated by

applying the AD loss on the AEs generated using the learnable distillation attack strategies generating
mechanism, as proposed in Section 3.2. The losses of the updated copy f

θ
m+1
tar

on the validation set and
their AEs are calculated to obtain the adversarial distillation influence.

The adversarial distillation influence serves as feedback from the target model on the validation
set for fine-tuning the teachers fθm

std−T
and fθm

adv−T
to improve their teaching abilities. Their training

performance is also taken into account to achieve self-evolution as described in Fig. 3b.

After fine-tuning the teachers, the real target model fθm
tar

is actually updated through the AD of
the fine-tuned teachers f

θ
m+1
std−T

and f
θ

m+1
adv−T

by Eq. (7), as depicted in Fig. 3c. The entire process of our
LDAS&ET-AD is presented in Algorithm 1.
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Figure 3: The workflow of teacher evolution strategy in our LDAS&ET-AD

Algorithm 1: Proposed Method: LDAS&ET-AD
Input: f (θstd−T): Standard teacher, f (θadv−T): Robust teacher, f (θtar): Target model, m: The time step
before model parameters update, m+1: The time step after model parameters update, f (θstra): Strategy
model, Dtrain: Training set, Dval: Training set, N: Number of epochs, Br: Batch size, M: Number of
batches, γ : A small scalar; k: A hyperparameters to control the update frequency of f (θstra), a: An
attack strategy output by f (θstra)

Output: f ∗ (θtar): Adversarially robust model;
1: for epoch = 1,...,N do
2: for mini-batch = 1,...,M do
3: Sample a batch of the training set zr

clean = (
xr

clean, yr
clean

) ∼ Dtrain

4: if epoch % k == 0 then
5: Train a strategy model f (θstra) by Eq. (7)
6: end if
7: Obtain adversarial data xr

adv of xr
clean by attack strategy a output from f (θstra) by Eqs. (1) and

(2)
8: Copy target model parameters θm

tar

9: Experimentally update the copy to obtain θm+1
tar by Eq. (7)

10: Sample a batch of validation set ze
clean = (

xe
clean, ye

clean

) ∼ Dval

(Continued)
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Algorithm 1 (continued)
11: Obtain adversarial data xe

adv of xe
clean by attack strategy a output from f (θstra) by Eqs. (1) and

(2)

12: Calculate θms±
tar : θms±

tar = θm
tar ± γ · L

(
ye

clean, f
θ

m+1
tar

(
xe

clean

))
13: Calculate θma±

tar : θma±
tar = θm

tar ± γ · L
(

ye
clean, f

θ
m+1
tar

(
xe

adv

))
14: Calculate the adversarial distillation influence loss with ze

clean, zr
adv, θm

std−T , θm
adv−T , θms±

tar , θma±
tar , and

γ by Eqs. (12) and (13)
15: Update θm

std−T and θm
adv−T by Eqs. (14) and (15)

16: Actually update the original target model θm
tar by Eq. (7) using updated θm+1

std−T and θm+1
adv−T

17: end for
18: end for

4 Experiments
4.1 Experiment Setup

4.1.1 Datasets and Competitive Methods

We conducted experiments on various benchmark datasets, including CIFAR-10 and CIFAR-
100 [43]. All models were implemented in PyTorch and trained on a single RTX 2080 Ti GPU. We
compared our LDAS&ET-AD with baseline STS [23]. Besides, standard training (ST) method and
four state-of-the-art adversarial defense methods (SAT [13], TRADES [10], LAS-AT [12], and IAD
[25]) were considered for comparison.

4.1.2 Student, Teacher, and Strategy Models

We considered ResNet-18 [44] and MobileNet-V2 [45] as the target models. Their structures are
described in Table 3. The pre-trained models with the same architectures were utilized as self-teachers,
following previous work [23]. One model could be trained using either AT or ST way, resulting
in two self-teachers: Adversarial and standard pre-trained self-teachers. The models with the same
architectures were chosen as the strategy models.

Table 3: The architecture of the target networks ResNet-18 and MobileNet-V2

ResNet-18 MobileNet-V2

Conv2D (64, 3 × 3) + BatchNorm2D + ReLU Conv2D (32, 3 × 3) + BatchNorm2D +
ReLU

[Conv2D (64, 3 × 3) + BatchNorm2D + ReLU] × 2 DepthwiseConv2D (16, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (16, 1 × 1) +
BatchNorm2D + ReLU

[Conv2D (128, 3 × 3) + BatchNorm2D + ReLU] × 2 [DepthwiseConv2D (24, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (24, 1 × 1) +
BatchNorm2D + ReLU] × 2

(Continued)
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Table 3 (continued)

ResNet-18 MobileNet-V2

[Conv2D (256, 3 × 3) + BatchNorm2D + ReLU] × 2 [DepthwiseConv2D (32, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (32, 1 × 1) +
BatchNorm2D + ReLU] × 3

[Conv2D (512, 3 × 3) + BatchNorm2D + ReLU] × 2 [DepthwiseConv2D (64, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (64, 1 × 1) +
BatchNorm2D + ReLU] × 4

AvgPooling2D ((2, 2)) [DepthwiseConv2D (96, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (96, 1 × 1) +
BatchNorm2D + ReLU] × 3

Linear () [DepthwiseConv2D (160, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (160, 1 × 1) +
BatchNorm2D + ReLU] × 3
DepthwiseConv2D (320, 3 × 3) +
BatchNorm2D + ReLU
PointwiseConv2D (320, 1 × 1) +
BatchNorm2D + ReLU
Conv2D (1280, 1 × 1) + BatchNorm2D +
ReLU
AvgPooling2D ((2, 2))
Linear ()

4.1.3 Training Settings

We trained the target models and the pre-trained teachers using the Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9 and weight decay 5e-4. The training process consisted of
200 epochs with a batch size of 128. The learning rate started from 0.1 for ResNet-18 and 0.01 for
MobileNet-V2 and decayed to one-tenth at epochs 50 and 150, respectively. The strategy model in
our method employed an SGD momentum optimizer with a learning rate of 0.001 for ResNet-18
and 0.0001 for MobileNet-V2. The pre-trained teachers were fine-tuned using an SGD momentum
optimizer with a learning rate of 0.01. For ST, we trained the models for 100 epochs on clean images
with standard data augmentations. The learning rate was divided by 10 at the 75th and 90th epochs.
We strictly followed the original settings of SAT [13], TRADES [10], and LAS-AT [12]. For STS [23]
and IAD [25], we used the same self-teachers as our LDAS&ET-AD. A 10-step PGD (PGD-10) with
a random start size of 0.001, step size 2/255 was employed to solve the inner maximization.

In our method, we actually updated the target model every k= 30 times updating the strategy
model. The hyperparameters αstd and αadv related to the balance between self-evolution and knowledge
transfer were set to 0.8 and 0.7, respectively. The trade-off hyperparameters αL2

and αL3
were set to 2.0

and 4.0. These selections were based on the results of ablation studies in Section 5. The selection of
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the hyperparameters of attack strategies was followed by [12]. Specifically, the maximum perturbation
strength ranged from 3 to 15, the attack step ranged from 1 to 6, and the attack iteration ranged from
3 to 15. We set λSTS1 to 0.25 and λSTS2 to 0.5, as recommended in [23].

4.1.4 Evaluation Attacks

After training, we evaluated the models against four commonly used adversarial attacks: FGSM
[39], PGD [13], CW∞ [40], and AA [41]. The maximum perturbation allowed for evaluation was set to
8/255 for both datasets. The perturbation steps for PGD and CW∞ were both set to 20. We calculated
the natural accuracy (‘Natural’ in Tables) on the natural test data and the robust accuracy on the
adversarial test data generated by FGSM, PGD, CW∞, and AA attacks, following [24].

4.2 Adversarial Robustness Evaluation

In accordance with previous studies [24], we reported the test accuracy at both the best checkpoint
and the last checkpoint. The best checkpoint of ST is chosen based on its performance on clean test
examples, while the best checkpoints of SAT [13], TRADES [10], LAS-AT [12], STS [23], IAD [25],
and our LDAS&ET-AD are selected based on their robustness against the PGD attack.

4.2.1 Comparison with Baseline

The test accuracy of our LDAS&ET-AD and the baseline STS [23] are presented in Table 4 for
CIFAR-10 and Table 5 for CIFAR-100.

Table 4: Test accuracy (%) on the CIFAR-10 dataset using our proposed LDAS&ET-AD and baseline:
STS [23]. MN-V2 and RN-18 are abbreviations of MobileNet-V2 and ResNet-18, respectively. The best
results are boldfaced

Best checkpoint Last checkpoint

Model Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA

RN-
18

STS [23] 83.15 63.97 51.30 50.61 43.08 83.77 62.71 48.41 48.71 42.72
Ours 85.20 64.92 53.90 52.14 45.39 85.44 64.44 50.71 50.11 44.24

MN-
V2

STS [23] 81.15 62.65 50.10 48.75 39.14 82.27 62.36 48.41 46.43 38.20
Ours 84.72 66.40 54.32 52.78 42.63 84.96 64.76 51.49 49.52 41.28

Table 5: Test accuracy (%) on the CIFAR-100 dataset using our proposed LDAS&ET-AD and base-
line: STS [23]. MN-V2 and RN-18 are abbreviations of MobileNet-V2 and ResNet-18, respectively.
The best results are boldfaced

Best checkpoint Last checkpoint

Model Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA

RN-
18

STS [23] 58.02 35.87 26.83 25.35 25.23 56.75 32.28 23.15 22.19 22.55
Ours 60.41 39.29 30.52 29.62 29.21 60.22 37.06 27.10 25.49 25.11

MN-
V2

STS [23] 54.28 33.33 24.74 23.07 23.89 53.87 32.48 23.14 21.96 22.35
Ours 56.87 36.34 27.07 26.39 27.22 56.17 34.64 25.22 23.10 24.74
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Our LDAS&ET-AD builds upon the AD framework proposed in [23] which applies a robust
teacher and a clean teacher to guide robustness and clean accuracy simultaneously. We have made
improvements in two aspects: AE generation and teacher knowledge.

Firstly, instead of using hand-crafted strategies, sample-dependent attack strategies are automat-
ically generated by the strategy network, which takes into account the prediction distance between
target and teacher models. This results in more suitable AEs for AD and a closer match of target and
teacher models. Secondly, the model parameters of the teachers are fine-tuned based on the validation
performance of the target model, rather than being static, making teacher knowledge more helpful in
improving the generalization performance of the target model and the quality of AEs involving teacher
knowledge.

As shown in Tables 4 and 5, our LDAS&ET-AD outperforms the baseline on both CIFAR-
10 and CIFAR-100 datasets, at either the best or the last checkpoints. Specifically, for ResNet-18,
LDAS&ET-AD improves accuracy by 2.05%, 0.95%, 2.60%, 1.53%, and 2.31% under clean, FGSM,
PGD-20, CW∞, and AA attacks on CIFAR-10 dataset, and by 2.39%, 3.42%, 3.69%, 4.27%, and
3.98% on CIFAR-100 dataset compared to benchmark results. For MobileNet-V2, LDAS&ET-AD
brings 3.57%, 3.75%, 4.22%, 4.03%, and 3.49% improvements on CIFAR-10 dataset and 2.59%, 3.01%,
2.33%, 3.32%, and 3.33% improvements on CIFAR-100 dataset.

In conclusion, our LDAS&ET-AD consistently improves clean and adversarial accuracy on two
commonly used datasets against four attacks when applied to two target models compared to the
baseline. This indicates the effectiveness of (I) considering the prediction differences of teacher and
target models in the generation of sample-dependent AEs, and (II) fine-tuning the teacher models
based on the accuracy of the target model on the validation set and AEs in improving AD.

4.2.2 Comparison with State-of-the-Art Adversarial Defense Methods

We present the test results of our LDAS&ET-AD framework applied to ResNet-18 and
MobileNet-V2 target models in comparison to state-of-the-art adversarial defense methods on
CIFAR-10 and CIFAR-100 datasets in Tables 6 and 7, respectively.

As shown in the tables, LAS-AT [12], an AT framework incorporating learnable attack strategies,
outperforms SAT [13] and TRADES [10] in terms of adversarial robustness due to the automatic
generation of sample-dependent attack strategies. IAD [25] solve the problem of reduced reliability
of teacher guidance in AD is alleviated by partially instead of fully trusting the teacher model.
These observations highlight the effectiveness of KD, learnable attack strategies, and reliable teachers
in enhancing AT on both CIFAR-10 and CIFAR-100 datasets. Our LDAS&ET-AD introduces a
learnable distillation attack strategies generating mechanism and a teacher evolution strategy into the
AD framework to integrate their benefits of them.

Compared to state-of-the-art AT methods (SAT [13], TRADES [10], and LAS-AT [12]), our
proposed method introduces the AD of evolvable teachers, which can provide more reliable soft labels
to better smooth hard labels in AT. In addition, maximizing the prediction distance between teacher
and target models is introduced to automatically generate attack strategies by the strategy model,
making AEs more suitable for distillation and leading to a closer match between the teacher and target
models. The results in Tables 6 and 7 demonstrate superior clean accuracy and robustness against
four different attacks on both CIFAR-10 and CIFAR-100 datasets. Specifically, for ResNet-18, our
LDAS&ET-AD outperforms the best AT method with improvements of 1.24%, 0.80%, 1.28%, 1.47%,
and 2.61% in clean, PGD-20, CW∞, and AA accuracy on CIFAR-10 dataset, and 3.52%, 2.04%,
1.52%, 2.55%, and 1.20% on CIFAR-100 dataset. For MobileNet-V2, our proposed method improves
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accuracy by 2.38%, 1.58%, 1.86%, 2.11%, and 2.18% on CIFAR-10 dataset, and 2.20%, 1.98%, 1.46%,
2.30%, and 4.36% on CIFAR-100 dataset.

Table 6: Test accuracy (%) on the CIFAR-10 dataset using our proposed LDAS&ET-AD, current
commonly used and state-of-the-art defense methods. MN-V2 and RN-18 are abbreviations of
MobileNet-V2 and ResNet-18, respectively. The best results are boldfaced

Best checkpoint Last checkpoint

Model Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA
RN-18 ST 94.95 29.38 0 0 0 94.79 31.62 0 0 0

SAT [13] 83.96 63.43 49.13 48.83 37.14 84.39 60.23 43.76 44.49 35.00
TRADES [10] 81.70 64.12 51.22 50.03 41.69 82.62 61.87 46.90 46.62 40.09
LAS-AT [12] 81.43 63.34 52.62 50.67 42.78 82.93 62.01 49.00 48.91 41.29
IAD [25] 83.40 63.95 51.32 50.32 43.99 83.45 62.77 48.42 48.37 42.34
Ours 85.20 64.92 53.90 52.14 45.39 85.44 64.44 50.71 50.11 44.24

MN-V2 ST 93.04 19.55 0 0 0 92.84 20.04 0 0 0
SAT [13] 82.07 63.38 48.71 48.01 37.62 82.52 60.96 45.27 45.40 34.05
TRADES [10] 81.00 64.40 50.15 48.84 39.44 81.34 61.39 47.86 46.68 35.30
LAS-AT [12] 82.34 64.82 52.46 50.67 40.45 82.93 63.80 49.45 48.63 39.18
IAD [25] 80.49 62.70 50.75 48.95 41.20 81.41 61.83 48.63 47.46 40.64
Ours 84.72 66.40 54.32 52.78 42.63 84.96 64.76 51.49 49.52 41.28

Table 7: Test accuracy (%) on the CIFAR-100 dataset using our proposed LDAS&ET-AD, current
commonly used and state-of-the-art defense methods. MN-V2 and RN-18 are abbreviations of
MobileNet-V2 and ResNet-18, respectively. The best results are boldfaced

Best checkpoint Last checkpoint

Model Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA
RN-18 ST 76.11 3.89 0 0 0 75.91 3.91 0 0 0

SAT [13] 56.89 33.94 24.01 23.68 22.91 56.11 30.27 19.68 20.09 20.12
TRADES [10] 55.10 35.12 26.16 25.16 24.36 54.75 32.08 21.44 22.60 21.31
LAS-AT [12] 55.95 37.25 29.00 27.07 28.01 55.20 31.96 22.52 22.60 20.74
IAD [25] 56.46 35.75 27.02 25.52 25.75 56.13 32.39 22.45 21.65 21.52
Ours 60.41 39.29 30.52 29.62 29.21 60.22 37.06 27.10 25.49 25.11

MN-V2 ST 71.62 3.19 0 0 0 71.44 3.19 0 0 0
SAT [13] 53.62 31.42 22.82 21.58 20.98 53.82 29.30 19.88 19.74 18.60
TRADES [10] 52.29 32.41 23.88 22.68 22.86 52.01 30.62 20.16 21.58 20.13
LAS-AT [12] 54.67 34.36 25.61 24.09 22.22 54.20 31.14 21.86 21.22 19.39
IAD [25] 53.56 33.32 25.16 23.16 25.99 54.06 33.22 23.60 21.91 23.99
Ours 56.87 36.34 27.07 26.39 27.22 56.17 34.64 25.22 23.10 24.74

IAD [25] encourages the target model to partially trust the teacher models and gradually trust itself
more as the teacher models become progressively unreliable. The teacher knowledge in our proposed
method has a more significant effect on improving the generalization performance of the target model
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since the teacher models in our method are updated based on the validation performance of the target
model. Besides, the generation of sample-dependent attack strategies that consider teacher knowledge
enhances the quality of AEs. The results highlight the superior performance of our LDAS&ET-AD
on both CIFAR-10 and CIFAR-100 datasets. Specifically, our LDAS&ET-AD improves the accuracy
of ResNet-18 by 1.80%, 0.97%, 2.58%, 1.82%, and 1.40% in terms of clean, FGSM, PGD-20, CW∞,
and AA accuracy on CIFAR-10 dataset, and 3.95%, 3.54%, 3.50%, 4.10%, and 3.46% on CIFAR-100
dataset. For MobileNet-V2, our LDAS&ET-AD shows improvements of 4.23%, 3.70%, 3.57%, 3.83%,
and 1.43% on CIFAR-10 dataset, and 3.31%, 3.02%, 1.91%, 3.23%, and 1.23% on CIFAR-100 dataset.

Overall, our LDAS&ET-AD surpasses state-of-the-art adversarial defense methods against var-
ious attacks using different models due to the more reliable teachers and more suitable AEs for
distillation by introducing the learnable distillation attack strategies generating mechanism that
considers prediction differences between the teacher and target models, as well as the teacher evolution
strategy that takes into account the validation performance of target model in the AD framework.

5 Analysis and Discussion

To comprehensively understand our LDAS&ET-AD, we conducted a series of experiments on the
CIFAR-10 dataset. These experiments encompassed ablation studies of each component, utilization
of diverse dynamic attack strategies generating methods, adoption of distinct teacher fine-tuning
methods based on L2T distillation, exploration of different k concerning the optimized frequency
of the strategy model, examination of different αstd and αadv associated with the self-evolution of the
teachers, and investigation of different αL2

and αL3
related to the trade-off between robustness and clean

accuracy. Subsequently, we delve into the training and inference complexity of our LDAS&ET-AD.
The ResNet-18 model was selected as the backbone model.

5.1 Ablation of LDAS&ET-AD

We conducted a set of ablation studies to better grasp the impact of each component in our
LDAS&ET-AD.

Firstly, the learnable distillation attack strategies generating mechanism in our LDAS&ET-AD
was replaced with the fixed distillation attack strategy in STS [23] considering prediction differences
between student and teacher, denoted as Fixed Distillation Attack Strategy and Evolvable Teachers
Adversarial Distillation (FDAS&ET-AD), to verify the effectiveness of the introduction of learnable
attack strategies. Besides, this mechanism was replaced with the learnable attack strategies in LAS-
AT [12], denoted as Learnable Attack Strategy and Evolvable Teachers Adversarial Distillation
(LAS&ET-AD), to demonstrate the importance of the consideration of the prediction differences.

Secondly, we fine-tuned the model parameters of one, denoted as Learnable Distillation
Attack Strategies and Evolvable Robust Teachers Adversarial Distillation (LDAS&ERoT-AD) and
Learnable Distillation Attack Strategies and Evolvable Standard Teachers Adversarial Distillation
(LDAS&EStT-AD), or none, denoted as Learnable Distillation Attack Strategies Adversarial
Distillation (LDAS-AD), of the two pre-trained teachers in our LDAS&ET-AD. The purpose was
to illustrate the different effects of each teacher’s update on performance improvement. Subsequently,
the test clean and adversarial accuracy of the trained target models were evaluated. The results of the
ablation studies are presented in Table 8.



CMC, 2024, vol.79, no.2 2351

Table 8: Ablation studies on CIFAR-10 with ResNet-18. The best results are boldfaced

Best checkpoint Last checkpoint

Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA
Attack
strategy

FDAS&ET-AD 83.39 64.25 51.63 51.18 43.21 83.96 62.95 49.75 48.89 43.05
LAS&ET-AD 84.19 64.63 52.10 52.08 44.28 84.41 63.98 49.80 50.25 43.60

Teacher
evolution
strategy

LDAS-AD 83.71 63.90 52.87 50.85 42.90 83.18 63.76 50.12 49.39 42.90
LDAS&ERoT-AD 83.55 64.71 53.51 51.83 44.53 84.38 64.08 50.47 49.82 43.87
LDAS&EStT-AD 84.49 63.85 52.69 50.55 43.69 84.41 63.22 49.28 49.04 43.25
Ours 85.20 64.92 53.90 52.14 45.39 85.44 64.44 50.71 50.11 44.24

As shown in Table 8, our LDAS&ET-AD outperforms all five variants against all four attacks.
Firstly, our LDAS&ET-AD automatically generates sample-dependent and increasingly stronger
attack strategies, enabling the creation of AEs that can adapt to more robust target models. Con-
sequently, our LDAS&ET-AD outperforms FDAS&ET-AD, resulting in improvements of 1.81%,
0.67%, 2.27%, 0.96%, and 2.18% in clean, FGSM, PGD-20, CW∞, and AA accuracy, respectively.
Furthermore, by incorporating prediction differences into the learnable attack strategies, AEs are
not only able to mislead the target model but also maximize the prediction discrepancy between the
target and teacher models, achieving a closer match between them. Therefore, our LDAS&ET-AD
outperforms LAS&ET-AD in terms of clean, FGSM, PGD-20, CW∞, and AA accuracy by 1.01%,
0.29%, 1.80%, 0.06%, and 1.11%, respectively. These findings highlight the superiority of introducing
the learnable attack strategies and prediction differences into the AD framework due to the generation
of AEs that are more suitable for AD and a closer match between the teacher and target models.

Secondly, fine-tuning only the adversarially pre-trained teacher in LDAS&ERoT-AD ensures the
reliability and effectiveness of adversarial knowledge which aims to guide the target model in accurately
classifying AEs. Therefore, LDAS&ERoT-AD outperforms LDAS-AD solely in terms of adversarial
robustness. LDAS&EStT-AD, on the other hand, only updates the standard pre-trained teacher to
enhance the quality of clean knowledge, which is designed to specifically enhance the clean accuracy
of the target model. LDAS&EStT-AD achieves higher accuracy on clean samples compared to LDAS-
AD. Our LDAS&ET-AD, which fine-tunes both teacher models, shows improved clean, FGSM, PGD-
20, CW∞, and AA accuracy by 0.71%, 0.21%, 0.39%, 0.31%, and 0.86%, respectively, compared to the
methods that either do not update or only update one teacher. The experimental results indicate that
fine-tuning both robust and standard teachers has positive effects on improving both clean accuracy
and adversarial robustness of the target model, highlighting the potential of evolvable standard and
robust teachers.

5.2 Comparison of Different Dynamic Attack Strategies Generating Methods

To verify the superiority of the learnable distillation attack strategies generating mechanism in our
LDAS&ET-AD over other dynamic hand-crafted attack strategies generating methods, we replaced it
with CAT [36], FOCS [38], and FAT [37] and considered prediction differences, denoted as Curricu-
lum Distillation Attack Strategy and Evolvable Teachers Adversarial Distillation (CDAS&ET-AD),
First-Order Stationary Condition Distillation Attack Strategy and Evolvable Teachers Adversarial
Distillation (FOCSDAS&ET-AD), and Friendly Distillation Attack Strategy and Evolvable Teachers
Adversarial Distillation (FriDAS&ET-AD), respectively. The results are shown in Table 9.
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Table 9: Test accuracy (%) on CIFAR-10 dataset of ResNet-18 target model trained using our
LDAS&ET-AD with four types of attack strategies generating mechanisms (CAT [36], FOCS [38],
FAT [37], and ours). The best results are boldfaced

Best checkpoint Last checkpoint

Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA

CDAS&ET-AD 80.56 63.68 51.43 51.32 40.83 81.29 62.41 49.28 48.96 39.20
FOCSDAS&ET-AD 82.15 64.24 51.73 51.56 43.54 83.97 62.85 49.53 49.14 42.34
FriDAS&ET-AD 84.24 64.60 52.86 51.91 44.25 84.81 63.31 50.21 49.83 43.07
Ours 85.20 64.92 53.90 52.14 45.39 85.44 64.44 50.71 50.11 44.24

The obtained results demonstrate that the learnable distillation attack strategies generating
mechanism in our LDAS&ET-AD outperforms all three variants. This improvement can be attributed
to the AEs being more suitable for AD of the increasingly robust target model. Specifically, compared
to the best variant, our LDAS&ET-AD achieves higher accuracy in clean, FGSM, PGD-20, CW∞,
and AA attacks by 0.96%, 0.32%, 1.04%, 0.23%, and 1.14%, respectively. These findings emphasize
the advantages of introducing learnable attack strategies in the proposed LDAS&ET-AD method
for generating AEs suitable for AD when compared to other dynamic hand-crafted attack strategy
methods.

5.3 Comparison of Different Teacher Fine-Tuning Methods Based on L2T Distillation

To assess the superiority of the teacher fine-tuning strategy in our LDAS&ET-AD over other
teacher fine-tuning methods based on L2T distillation, we replace it with (1) meta distillation [31],
which considers feedback from the target model on the validation set while all training samples equally
and solely receiving supervision from the target model, referred to as Learnable Distillation Attack
Strategy and Mate Adversarial Distillation (LDAS&meta-AD) and (2) online distillation [27], which
enforces similarity between the outputs of the target and teacher models on the training set without
considering the target model’s performance on the validation set, denoted as Learnable Distillation
Attack Strategy and Online Adversarial Distillation (LDAS&OL-AD). The results are presented in
Table 10.

Table 10: Test accuracy (%) on CIFAR-10 dataset of ResNet-18 target model trained using our
LDAS&ET-AD with three types of teacher fine-tuning methods (meta distillation [31], online dis-
tillation [27], and ours). The best results are boldfaced

Best checkpoint Last checkpoint

Method Natural FGSM PGD-20 CW∞ AA Natural FGSM PGD-20 CW∞ AA

LDAS&meta-AD 84.16 64.57 53.36 51.62 43.60 84.43 64.29 50.37 49.72 43.88
LDAS&OL-AD 84.71 64.13 52.98 51.17 43.11 84.92 63.84 49.90 49.54 43.26
Ours 85.20 64.92 53.90 52.14 45.39 85.44 64.44 50.71 50.11 44.24
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Table 10 demonstrates that our LDAS&ET-AD outperforms all two variants, achieving the
highest test accuracy on both clean samples and AEs. Our LDAS&ET-AD uses the target model’s
performance on the verification set as feedback to assign the loss weight of each training sample
for fine-tuning of teacher models, enhancing the effectiveness of the teachers’ knowledge in the
generalization ability of the target model on both clean samples and AEs. This improvement is achieved
by introducing adversarial distillation influence. Additionally, the training of teacher models is also
supervised by the AEs of the training set, improving the reliability of their knowledge. Our LDAS&ET-
AD demonstrates significant improvements compared to the best variant, achieving enhancements
of 0.96%, 0.32%, 1.04%, 0.23%, and 1.14% on clean, FGSM, PGD-20, CW∞, and AA accuracy,
respectively. These results validate the effectiveness of the teacher fine-tuning teacher strategy in our
proposed LDAS&ET-AD, surpassing other teacher fine-tuning methods.

5.4 Comparison of Different k Values

The hyperparameter k controls the alternating update of θtar and θstra. Every k times θtar are updated,
θstra are updated once. It affects not only performance but also training efficiency. Firstly, the efficiency
of the proposed method decreases with the increase of k. Smaller k results in more frequent updates of
θstra, thus requiring more training time. Secondly, selecting an appropriate k is crucial for the adversarial
robustness of the target model. If k is too small, the target model’s discrimination ability towards attack
strategies generated by the strategy model may be impaired. This, in turn, affects the diversity of attack
strategies and the update stability of the teacher models. On the other hand, if k is excessively large, the
generation ability of the strategy model may be compromised, resulting in insufficiently effective AEs
for updating the teacher and target models. To determine the optimal k, we conducted experiments
on hyperparameter selection. The performance results are depicted in Fig. 4, and the efficiency results
are listed in Table 11.

(a) (b)

Figure 4: The accuracy on the CIFAR-10 dataset with the ResNet-18 target model trained using our
LDAS&ET-AD about different values of k

Table 11: Training time (s) on CIFAR-10 dataset with ResNet-18 target model trained using our
LDAS&ET-AD about different values of k. The best results are boldfaced

Values SAT [13] 1 10 20 30 40 50

Time (Avg. Epoch) 674 5166 1954 1705 1482 1269 910
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Fig. 4 shows how the selection of k impacts the clean and PGD-20 accuracy of the target model
and there is a trade-off between these two metrics. Specifically, when k is too small, the target model
exhibits poor discrimination ability against attack strategies generated by the frequently updated
strategy model. Consequently, the diversity of attack strategies diminishes, leading to low-quality AEs,
lower adversarial robustness, and higher clean accuracy of the target model. Conversely, when k is
too large, the attack strategies generated by the strategy model with low generation ability become
approximately fixed, preventing the target model from achieving optimal adversarial robustness. The
results in Fig. 4 indicate that the proposed LDAS&ET-AD achieves the best adversarial robustness
when k is set to 30.

Table 11 demonstrates that the training time of the proposed LDAS&ET-AD decreases with the
increase of k. As k increases, the update frequency of the strategy model decreases, resulting in a
decrease in the overall training time.

Considering both efficiency and adversarial robustness, we set k to 30.

5.5 Comparison of Different αstd and αadv Values

The hyperparameters αstd and αadv play vital roles in controlling the self-evolution of standard and
robust teachers and impact the guidance quality for classifying clean samples and AEs. Specifically,
an excessive focus on self-evolution may lead to neglecting the feedback provided by the target model,
resulting in guidance not meeting the target model’s needs. Besides, a lack of focus on self-evolution
may hinder teachers from enhancing their abilities, reducing the reliability of teacher knowledge. The
controlled experiments were conducted to analyze the impact of self-evolution on the target model’s
performance.

We fix αstd at 0.6 and vary αadv from {1.0, 0.9, 0.8, 0.7, 0.6, 0.5} to evaluate the adversarial robustness
of ResNet-18 on CIFAR-10 against PGD-20 attack since αadv controls fine-tuning of the robust teacher
and mainly affects the robustness of the target model. Fig. 5a demonstrates that when αadv is too large,
the feedback from the target model has little influence on the robust teacher’s update. Consequently,
the fine-tuned robust teacher does not significantly improve the generalization performance of the
target model on AEs. Conversely, when αadv is too small, neglect of self-evolution causes performance
degradation. The guidance from low-performance teachers impairs the robustness of the target model.
Both situations result in suboptimal adversarial robustness. The results indicate that LDAS&ET-AD
achieves the best robustness when αadv is set to 0.7.

adv� std� std� adv�

Figure 5: Test accuracy on CIFAR-10 dataset with ResNet-18 target model trained using our
LDAS&ET-AD about different values of αstd and αadv
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Next, we fix αadv at 0.7 and vary αstd from {1.0, 0.9, 0.8, 0.7, 0.6, 0.5} to evaluate the clean accuracy
of ResNet-18 on CIFAR-10 since αstd controls fine-tuning of the standard teacher and mainly affects
the clean accuracy of the target model. Consistent with the analysis of αadv, both excessively large and
small αadv hamper the fine-tuning of the standard teacher, preventing the target model from achieving
optimal generalization on clean samples. Fig. 5b illustrates that LDAS&ET-AD performs well when
αstd is set to 0.8.

In conclusion, we set αstd to 0.8 and αadv to 0.7 to strike a balance between self-evolution and target
model feedback, ensuring the best performance of LDAS&ET-AD.

5.6 Comparison of Different αL2
and αL3

Values

The hyperparameters αL2
and αL3

balance the trade-off between evaluating robustness loss term
and predicting clean samples loss term in attack strategies generating mechanism. When αL2

is relatively
large compared to αL3

, it may result in lower clean accuracy. Conversely, an excessively large αL3
can

lead to insufficient attention to robustness, resulting in low adversarial robustness. We present the
performance of our proposed LDAS&ET-AD with various αL2

and αL3
pairs on CIFAR-10 using the

ResNet-18 target model in Table 12.

Table 12: Test accuracy (%) on CIFAR-10 dataset with ResNet-18 target model trained using our
LDAS&ET-AD about different values of αL2

and αL3
. The best results are boldfaced

Values Natural PGD-20 AA

αL2
= 2 αL3

= 2 85.05 52.49 44.11
αL3

= 4 85.20 53.40 45.39
αL3

= 6 84.39 53.26 45.21
αL3

= 4 αL2
= 2 85.20 53.40 45.39

αL2
= 4 84.98 52.67 44.52

αL2
= 6 85.06 52.14 43.87

Firstly, we fix αL2
at 2 and vary αL3

from {2, 4, 6} to evaluate performance. As αL3
increases, the

total loss function places more emphasis on the robustness evaluation loss term. The results in Table 12
demonstrate that the clean accuracy shows a downward trend. Although the best robustness is achieved
when αL3

is 4, there is only a small improvement compared to when αL3
is 2. The robustness continues

to increase, and the optimal value is still achieved when αL3
is 4, but the difference is minimal compared

to when αL3
is 2.

Secondly, we fix αL3
at 4 and vary αL2

from {2, 4, 6}. As αL2
increases, the total loss function focuses

more on the clean accuracy loss term. It can be observed from the results in Table 12 that increasing
αL2

leads to robustness decreasing and clean accuracy with little change. This indicates that when αL3

is fixed at 4, the clean accuracy is not sensitive to the change of αL2
.

Although the performance of the target model is affected by αL2
and αL3

, the changes do not
occur within a large range. Therefore, the proposed method is not highly sensitive to these two
hyperparameters, which aligns with the observation in [12]. Overall, we set αL2

to 2 and αL3
to 4.
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5.7 Training and Inference Complexity

The proposed method entails a higher training complexity than the baseline, primarily due to the
training of the strategy model parameters and the fine-tuning of the teacher models. However, our
LDAS&ET-AD offers pronounced improvements over state-of-the-art adversarial defense methods.
Specifically, the sample-dependent attack strategies generated by the strategy model in the game with
the target model are highly effective, as are the more reliable teacher models fine-tuned according to
the validation performance of the target model. In contrast, fixed hand-crafted attack strategies and
static teacher models are far less effective.

Besides, to ensure a suitable trade-off between efficiency and robustness during the training of the
strategy model, we have considered various factors, including the frequency of updating parameters.
We have also introduced a finite difference approximation [35] to address the slowness of computing
per-sample gradients and improve computational efficiency. Importantly, no additional complexity is
introduced in the inference stage. However, we acknowledge that further work is necessary to reduce
the training complexity of our approach.

6 Conclusion

To enhance the quality of AEs and the reliability of teacher knowledge in existing AD techniques,
an AD method LDAS&ET-AD is proposed. Firstly, a learnable distillation attack strategies generating
mechanism is developed to automatically create sample-dependent AEs well-suited for AD. A strategy
model is introduced to produce attack strategies by competing with the target model in minimizing
or maximizing the AD loss. Secondly, a teacher evolution strategy is devised to enhance the reliability
and effectiveness of knowledge in improving the target model’s generalization performance. The model
parameters of the standard and robust teachers are dynamically adjusted based on the target model’s
performance on the validation set and AEs. We evaluate the method using ResNet-18 and MobileNet-
V2 on the CIFAR-10 and CIFAR-100 datasets. Experiments demonstrate the superiority of our
proposed LDAS&ET-AD method over state-of-the-art adversarial defense techniques in improving
robustness against various adversarial attacks. The results confirm that introducing teacher knowledge
to enhance the applicability of AEs and considering the target model’s validation performance to
improve the reliability of the teacher knowledge are effective in promoting robustness.

7 Limitations and Prospects

While the proposed LDAS&ET-AD method demonstrates superiority over existing AD methods,
it is essential to recognize its limitations. Firstly, the reliance on a separate validation set is crucial
for obtaining feedback to fine-tune the teachers. However, this approach results in a reduction of
training samples, which may impact performance, particularly in datasets of limited or moderate size.
Exploring an alternative approach that leverages all data samples for both training and validation
holds the potential for extracting more comprehensive information from the dataset. This avenue
warrants further exploration in future research. Secondly, the proposed method involves various
hyperparameters that significantly influence performance, necessitating manual configuration based
on experimental results. This trial-and-error method demands additional time. To address this chal-
lenge, future endeavors will encompass the introduction of automatic hyperparameter optimization
methods such as Random Search and Bayesian Optimization to identify the optimal combination of
hyperparameters. Lastly, while our experiments have primarily focused on image classification tasks,
which are relatively straightforward for current deep learning models, it is imperative for future work to
extend the application of LDAS&ET-AD to more complex computer version tasks, and other domains
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such as natural language processing, and beyond. Such expansion will provide a more comprehensive
evaluation of the method’s efficacy across diverse applications.
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