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ABSTRACT

Deep neural network-based relational extraction research has made significant progress in recent years, and
it provides data support for many natural language processing downstream tasks such as building knowledge
graph, sentiment analysis and question-answering systems. However, previous studies ignored much unused
structural information in sentences that could enhance the performance of the relation extraction task. Moreover,
most existing dependency-based models utilize self-attention to distinguish the importance of context, which
hardly deals with multiple-structure information. To efficiently leverage multiple structure information, this paper
proposes a dynamic structure attention mechanism model based on textual structure information, which deeply
integrates word embedding, named entity recognition labels, part of speech, dependency tree and dependency type
into a graph convolutional network. Specifically, our model extracts text features of different structures from the
input sentence. Textual Structure information Graph Convolutional Networks employs the dynamic structure
attention mechanism to learn multi-structure attention, effectively distinguishing important contextual features in
various structural information. In addition, multi-structure weights are carefully designed as a merging mechanism
in the different structure attention to dynamically adjust the final attention. This paper combines these features
and trains a graph convolutional network for relation extraction. We experiment on supervised relation extraction
datasets including SemEval 2010 Task 8, TACRED, TACREV, and Re-TACED, the result significantly outperforms
the previous.
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1 Introduction

Relation Extraction (RE) aims to identify and extract the relation between two given entities in
the input sentence. This task is vital in information extraction and has significant implications for
various downstream natural language processing (NLP) applications, including sentiment analysis
[1,2], question-answering systems [3] and text summarization [4]. As a critical and challenging task,
how to improve the performance of RE has attracted considerable attention from researchers.

It is very important to fully exploit the different types of features in text to enhance the
performance of the RE task [5–7]. To leverage rich feature information in the word sequences, many
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RE models [8–13] have been proposed for extracting relations between entities. These models include
recurrent neural network (RNN)-based approaches, long short-term memory (LSTM)-based models
and transformer-based architecture methods. However, such models struggle to capture long-distance
connections between words when modeling the linear sequence of text. Many studies utilize additional
features and knowledge to deal with this problem. In all the options, dependency parses have been
widely used and proven to be effective [14–17]. Dependency trees can provide long-distance word-word
relations, which are essential supplementary structures for existing RE models. To effectively utilize
dependency trees, most methods [15,16,18–20] employ graph convolutional networks (GCN) to model
dependencies and extract relations between entities. Nevertheless, excessive reliance on dependency
information could introduce confusion into RE [21–26]. Recently, Zhang et al. [15] combined a pruning
strategy with GCN to model the dependency structure and perform RE. Tian et al. [20] proposed a new
model that distinguishes important contextual information by dependency attention. These methods
focus on utilizing the graph structure information within word sequences but do not leverage other
important text inner features, such as part-of-speech (POS) labels and named entity recognition (NER)
labels. This omission may impact the performance of the RE model.

Despite their effectiveness, existing methods have the following drawbacks:

1) Most previous studies [27–29] could not simultaneously utilize sequence-structure information
and graph-structure information in the input text to extract the relation between entities. Some types
of introduced sequence information in the model may help mitigate the effects of dependency noise.
Such as the NER tags can provide entity features and build constrained relation between words, the
POS tags can determine the function and feature of words, and the dependency trees can provide
long-distance distances of words.

2) The attention mechanism in traditional research make it difficult to learn important infor-
mation from multi-graph structures. Besides, pruning dependency tree strategies may introduce new
noise to the dependency tree. These dependency trees are automatically extracted by the NLP toolkits.
It is difficult to distinguish the noise by directly using dependency trees for modeling. Previous
studies [7,15] have consistently required pruning strategies before utilizing dependency information
for modeling. While some studies [20] employ self-attention mechanisms to distinguish dependency
tree noise, they often focus on specific types of information which makes it challenging to discern
noise in various dimensions.

To alleviate the impact of dependency tree noise on RE and effectively leverage textual inner
features, we propose Textual Structure information Graph Convolutional Networks (TS-GCN). The
model employs dynamic structure attention to learn the contextual feature weight from multiple types
of information, filling the gap left by previous methods that did not simultaneously leverage both
sequence information (such as POS type and NER type) and graph information (such as dependency
trees and dependency type). We collectively refer to sequence information and graph information as
‘Textual Structure Information’. In addition, when there is noise in some structural information, the
dynamic structural attention mechanism alleviates interference by adjusting the contextual attention
weights for different structural information. Specifically, we first utilize the Standard CoreNLP
Toolkits (SCT) to extract textual structure information from the input, then build various graphs
based on the dependency tree to represent different textual structure information. Next, TS-GCN
dynamically calculates the weights between words connected by dependency relation based on multiple
graphs of text structure information, and finally utilizes dynamic weights to predict relations between
entities. Besides, the TS-GCN dynamic distributes the weights among different graph structures
based on information features, a crucial aspect often overlooked in previous studies, especially those
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employing attention mechanisms [18,20]. Experimental results on four English benchmark datasets—
TACRED, TACREV, Re-TACRED, and SemEval 2010 Task 8—demonstrate the effectiveness of our
RE approach using TS-GCN equipped with a dynamic structure attention mechanism. State-of-the-
art performance is observed across all datasets.

The contribution of this paper can be summarized as follows:

1) A TS-GCN model based on textual structure information. This model can effectively model
both sequential and graphical information within a sentence, realizing the extraction of entity relations.

2) We propose a dynamic structure attention mechanism aimed at mitigating the impact of
dependency tree noise on relation extraction. This mechanism independently assigns weights to the
feature connections within various text structure graphs. It then dynamically adjusts the contextual
attention based on these individual connection weights, thereby mitigating the impact of the noise in
structure (such as dependency tree noise, etc.) on relation extraction.

3) A relation modeling method is designed, which is based on multiple sources of structure
information. By integrating sequence structure into the graph convolutional network, we create a
multi-layered graph structure within the sentence, leading to a significant improvement in model
performance.

2 Related Work

Early RE methods [30–33] typically relied on rule-based techniques or statistical mechanisms.
These approaches heavily depended on the high-quality design of manually crafted features, and the
effectiveness of the models was significantly influenced by the quality of these handcrafted features.

With the development of deep learning technology, neural network methods [34–38] excel in
extracting semantic features embedding in text and have found widespread applications in RE tasks.
Current RE models can be broadly categorized into two main types: Sequence-based and graph-based.

Sequence-based models [13,34], including CNNs, RNNs, and Transformers, employ neural
networks to encode contextual information and capture latent features from word sequences. DNN
[5] is recognized as one of the pioneering models that first introduced the use of CNNs for relation
extraction, employing a convolutional method to acquire sentence features. Att-BLSTM [11] employed
Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to extract crucial semantic features
from a sentence. It utilized an attention mechanism to capture associations between entities while
taking the text context into account. This approach significantly enhanced the performance of
relation extraction. SpanBERT [34] was a pre-training method specialized in predicting text spans. It
achieved relation extraction by masking contiguous random spans within a given text and subsequently
training the model based on representations of these span boundaries. This unique approach equipped
SpanBERT with the ability to capture intricate contextual information within the text. Zhou et al. [13]
introduced an innovative baseline approach for relation extraction, which integrates an entity repre-
sentation technique. This technique was designed to effectively tackle the challenges associated with
entity representation and ameliorate the influence of noisy or ambiguously defined labels. However,
this modeling method faces challenges in effectively leveraging various knowledge sources, particularly
the dependency tree and syntactic information.

Graph-based models, different from sequence-based models, leverage graph structure from depen-
dency parsing information to capture long-distance contextual features. Currently, utilizing depen-
dency trees for RE has become a mainstream trend. However, in most studies, dependency trees
are automatically generated by toolkits, which may introduce some noise. Therefore, it is crucial to
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mitigate the impact of noise on RE. C-GCN [15] was the first to apply a graph convolutional network
to relation extraction. It enabled effective aggregation of features from dependency structures, and the
implementation of a novel path-centric pruning strategy designed to eliminate superfluous dependency
information. C-GCN-MG [19] addressed cross-sentence n-ary relation extraction. It utilized a con-
textualized graph convolutional network spanning multiple dependent sub-graphs, and a method for
building graphs around entities based on the dependency tree. A-GCN [20] leveraged dependency-type
information and self-attention mechanisms to reduce the reliance on pruning strategies. RE-DMP [31]
introduced multiple order dependency connections and types into the pre-training model to obtain an
encoder equipped with dependency information. Zhang et al. [28] proposed a dual attention graph
convolutional network (DAGCN) with a parallel structure. This network can establish multi-turn
interactions between contextual and dependency information, simulating the multi-turn looking-back
actions observed in human comprehension. Wu et al. [29] designed an engineering-oriented RE model
based on Multilayer Perceptron (MLP) and Graph Neural Networks (GNN). This model replaces the
information aggregation process in GCN s with MLP and achieves improved RE performance.

With the recent advancements in large language models (LLMs) in NLP, recent studies have often
employed prompt learning or in-context learning (ICL) for RE tasks. However, most studies [39–43]
indicate that most ICL models perform less effectively in relation extraction tasks, especially when the
relation label space is extensive or the input sentence structure is complex, compared to traditional pre-
train fine-tuning models. The performance of ICL in RE is influenced by various factors, including
computational costs [40,41], prompt templates [42], LLM parameters [39], and constraints on input
sequence length. These factors contribute to significant differences in the performance of the models.
Yang et al. [43] observed when relation extraction task datasets already comprise rich and well-
annotated data, with very few out-of-distribution examples in the test set, pre-train fine-tuned models
consistently outperform ICL approaches. Longpre et al. [44] observed that the current upper limit of
the capabilities of pre-train fine-tuning models has not been reached.

Although the graph-based studies mentioned above have made significant progress in the field
of RE, they still have some shortcomings. On the one hand, some of the models [20,38] solely
utilize the graph structure feature from the input for modeling, they fall short in comprehensively
leveraging sequence-structure features. On the other hand, to mitigate the impact of the dependence
noise on relation extraction, some models [18–20] utilize a self-attention mechanism based on word
features and dependency types for extracting relations between entities, while other models [19,21]
incorporate manually designed complex pruning methods to alleviate the impact of dependency tree
noise. However, these methods face challenges in handling input information with multiple structural
features and a large amount of noise.

Different from the existing RE models, our model has a dynamic structure attention mechanism
to capture the important features from diverse structure information, thus alleviating the influence of
dependency tree noise on the RE task. Additionally, our model deeply integrates POS types, NER
types, dependency trees, and dependency types in RE tasks. In summary, our model is a textual
structure model that effectively integrates various types of features and dynamically adjusts attention
weights in textual structure information.

3 Proposed Methodology
3.1 Task Definition

A conventional method for relation extraction involves approaching it as a classification task. We
propose TS-GCN, which leverages textual structure information to enhance the sparsity features of
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dependency matrices. This augmentation improves the ability of TS-GCN to distinguish dependency
tree noise and enhances the performance of TS-GCN in relation extraction. In this study, we aim to
mitigate the impact of dependency tree noise on the RE task. To achieve this, we propose a graph
convolutional neural relation extraction model. This model is based on a dynamic structure attention
mechanism, which operates within the framework of graph convolutional networks. Fig. 1 is the overall
architecture of TS-GCN.

Figure 1: The overall architecture of our model TS-GCN for RE illustrated with an example input
sentence (the two entities “I” and “sound” are highlighted in blue and red colors. Green color is
coalesced other structure information into our model, example NER label)

Specifically, given an unstructured input sentence τ = x1 · · · xn with n words, and two entity
words (e1, e2) in a sentence. Then, utilize an off-the-shelf toolkit to obtain various textual structure
information Z in τ. The prediction relation formula of τ between e1 and e2 in each sentence by

τ = argmaxr∈RP (r|TS − GCN (τ, Z)) (1)
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where R is the relation set, Z is the textual structure information set, including POS, dependency types
and NER labels. τ and A is the input of TS-GCN. The following sections begin by elaborating on
the main components of our proposed TS-GCN and conclude by illustrating the process of applying
TS-GCN to the classification paradigm for relation extraction.

3.2 Textual Structure Information Encoder

To enhance the reliability of dependency information, we combine word embedding, POS,
dependency types and NER labels into a dependency matrix. As shown in Fig. 1, the data shown
can be mined by toolkits from the given input sentence τ with n words (our datasets have given
that information). After that we select word information τ, POS p = {

pos1, · · · , posn

}
represents the

corresponding POS features of the words and dependency type matrix Tm = (
ti,j

)
n×n

where ti,j is type
class if two words xi and xj have dependency connection and otherwise ti,j = 0. Due to POS information
is inherently word dependent and exhibits a sequential contextual structure. The POS graph structure
is not proficient at capturing these sequential features. In contrast to previous research, we employ Bi-
LSTM to acquire contextual POS information, enabling us to learn contextual structure effectively.

pos = Linear (BiLSTM(p)) (2)

where pos ∈ Rn×d and d is the encoder’s hidden dimension. Finally, we utilize the pos and x feature
sequence to build respective matrices of learning contextual information Pm = (

posi,j

)
n×n

and Xm =(
xi,j

)
n×n

where pi,j = posi × posj, xi,j = xi × xj. The matrices Pm, Xm, and Tm are all n ∗ n dimension
matrices.

3.3 TS-GCN

TS-GCN employs a novel approach to model word connections, distinct from the classic GCN-
based model that assigns weights of either 0 or 1. We propose a dynamic structure attention mechanism
to learn the node weights from different textual graphs. It allows the model to attend to diverse
information across distinct structures simultaneously. This method can avoid interference from
structure noise in the model. The structure attention mechanism can learn the bidirectional weights
of dependency paths by considering the differences in text structure information among nodes.

First, we concatenate multiple input matrices Pm, Xm, and Tm into a complete matrix Ts with multi-
structure information and Ts is a n ∗ n ∗ 3 dimension matrix. Then, leverage the dot product of Ts and
standard dependency connections matrix A to retain node information with dependency connections
in the matrix Ts.

Ts = (Pm ⊕ Xm ⊕ Xm) × A (3)

where ⊕ denotes the vector concatenation operation, Ts = (
tsi,j

)
n×n

, A is the standard dependency
matrix (if node exists dependency connection is 1, else 0).

The dynamic structure attention dynamically computes attention weights for Ts based on the
combination of structure information. Next, set the weight wh to dynamically filter the feature
information in Ts and selectively enhance the representative information by

hi,j = tsi,j × wh (4)

where tsi,j ∈ R3d, wh ∈ R3d → R3d. wh is a learnable weight 3d ∗ 3d dimension matrix. × is matrix
multiplication. Different from previous methods, our structural attention is directional, i.e., tsi,j �= tsj,i.
This implies that during dynamic structure attention acquisition of contextual semantic information
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weight, distinct weights are assigned based on the direction of the dependency path by
−⇀
attheadt = H · −⇀a headt (5)

where H = (
hi,j

)
n×n

, −⇀a ∈ R6d and headt is the number of attention head. �a is the forward dependency

path attention weight from i to j. Afterwards, we aggregate forward
−⇀
att and reverse

↼

att to obtain the
one-head attention matrix aheadt

i,j and compute the output of each one-head attention by

aheadt
i,j = LeakyReL

(−⇀
attheadt + ↼

att
headt

)
(6)

attentionheadt
i,j = softmax

(
aheadt

i,j

) = exp
(

a
headt
i,j

)

∑
j∈n exp

(
a

headt
i,j

) (7)

Finally, we utilize the head weight wt
a to normalize dynamic structure attention by

atten = ∑
t∈head attentiont × wt

a (8)

where wt
a ∈ Rhead → R and wt

a is a head∗1 dimension matrix. We apply the attention atteni,j to the
commonly associated connection between Thi and Thj and obtain the output representation of oi by

Thi,j = (
Pmi,j + Xmi,j + Tmi,j

) · W (9)

oi = ReLU
(∑

j∈n

(
atteni,j · Thi,j

) + b
)

(10)

where W ∈ Rd → Rd, W is a n ∗ n dimension paranoid matrix. Compared with traditional GCN,
TS-GCN uses dynamic structure attention to dynamic weights to distinguish the importance of
different structure content. This method helps the model more fully understand and leverage complex
textual structure information. Furthermore, our approach allows for the incorporation of additional
features, such as NER labels, etc., into the textual structure information. This approach enhances the
extensibility and convenience of our model, enabling the exploration of additional textual structure
information.

3.4 Relation Extraction with TS-GCN

Before employing TS-GCN for RE, we firstly employ BERT [45] to encode the input x into hidden
embedding, with t(0)

i representing the hidden embeddings for xi. We next apply our proposed TS-GCN
with N layers to obtain the corresponding output oi

n based on the input t(0)

i . Then, we employ the max
pooling mechanism to obtain the output hidden embeddings te (e = subj, obj) for the entity words by

te = MaxPooling
({

t(N)

i |i = subj, obj
})

(11)

Afterward, we utilize matrix multiplication on the concatenated embeddings of the two entities
using the trainable matrix Wp and apply the ReLU activation function to obtain the output embedding
by

P (r) = exp (Wrz + br)∑
r′∈|R| exp (Wr′z + br′)

(12)

where Wr ∈ Rd, Wr′ ∈ Rd, br ∈ R, br′ ∈ R and |R| is the type of relation. Wr and Wr′ are d dimension
paranoid matrixes. br and br′ are paranoid weights.
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4 Experiments and Analyses
4.1 Preliminary

Datasets. We use four English datasets in the experiments including SemEval 2010 Task 8
(SemEval) [46] and three versions of TACRED: The original TACRED [12], TACREV [47], and Re-
TACRED [48]. Due to the presence of approximately 6.62% noisily labeled instances in the TACREV
dataset, Alt et al. [47] relabeled it using the TACRED development and test set, and Stoica et al. [48]
relabeled the whole dataset by further refining the label definitions on TACRED. For SemEval, we
use its official train/test split. We provide the statistics of the datasets in Table 1.

Table 1: The statistics of datasets

Dataset Train Dev Test Class

SemEval 8000 – 2717 10
TACRED 68124 22631 15509 42
TACREV 68124 22631 15509 42
Re-TACRED 58465 19584 13418 40

4.2 Results and Discussion

Model configurations. We follow the study of Soares et al. [49] to insert four special tokens, which
are “e1”, “/e1”, “e2”, and “/e2” into the input sentence to mark the boundary of the two entities. This
strategy allows the encoder to distinguish the position of entities during encoding and improves model
performance. For the encoder, we utilize the uncased versions of BERT-base and BERT-large [45] from
HuggingFace, while following the default settings. Our model is optimized with Adam [50] using the
learning rate of 7E-6 on BERT-base and BERT-large, setting four-head dynamic structure attention
to obtain important representations. We evaluate all combinations of each model and use the one with
the best performance (i.e., F1 scores) on the development set.

Evaluation. For SemEval, we follow previous studies and use the official evaluation to evaluate
it. (The official evaluation script downloaded from https://huggingface.co/datasets/sem_eval_2010_
task_8/blob/main/sem_eval_2010_task_8.py).

For three versions of TACRED, we use the mainstream evaluation formula, P, R and Micro-
F1(F1).

P = 1
C

∑C

i=1 Pi × 100% (13)

R = 1
C

∑C

i=1 Ri × 100% (14)

F1 = 2 × (P × R)

P + R
(15)

where C is the relation class, Pi is the precision score results in class i and R is the recall score results
in class i.

Baseline. We compare TS-GCN on Bert-Large and Bert-Base with the state-of-the-art sentence-
level relation extraction model proposed by Tian et al. [20]. They utilized dependency types to acquire
attention in dependency nodes, which represent the importance of the node in the information matrix.

https://huggingface.co/datasets/sem_eval_2010_task_8/blob/main/sem_eval_2010_task_8.py
https://huggingface.co/datasets/sem_eval_2010_task_8/blob/main/sem_eval_2010_task_8.py
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We follow Tian et al. [20] given the best default settings to train their model on three versions of
TACRED, since they only showed the best F1 points on SemEval.

Furthermore, TS-GCN demonstrates performance improvements on the TACRED, TACREV,
and RETACRED datasets. We also conducted a comparison with the latest baseline model by Zhou
et al. [13], which is based on a transformer architecture.

Table 2 shows the comparison of our TS-GCN approach to the baseline, which uses dependency-
driven relation extraction and other studies. Our approach outperforms the baseline methods on the
four datasets. Especially on the TACRED dataset, our approach achieves an F1 score of 87.73% and
88.28%, which is significantly higher than the baseline model of 86.76% and 87.64% by Tian et al. [20]
and achieves a new SOTA compared to previous studies such as 72.9% by Zhou et al. [13], 70.8%
by Joshi et al. [27], 66.3% by Zhang et al. [15]. This proves our method can bring consistent and
considerable performance improvements to all the datasets. Besides, when utilizing BERT-BASE
as the encoder, TS-GCN still achieves state-of-the-art (SOTA) performance on four datasets. One
the one hand, this indicates that TS-GCN effectively learns the representations of textual structure
information in the input text, which reduces the impact of noise in dependency trees on relation
extraction. On the other hand, it demonstrates that the performance enhancement in TS-GCN does
not result from the encoder replacement.

Table 2: Result of F1 scores (in %) between previous studies and our best models

Models SemEval TACRED TACREV Re-TACRED

F1 P R F1 P R F1 P R F1

BERTEM+MTB [49] 89.5 71.8 68.4 70.1 – – – – – –
LST-AGCN [1] 86.0 69.6 68.0 68.8 – – – – – –
C-GCN-MG [19] 85.9 67.1 65.1 66.1 – – – – – –
PA-LSTM [12] – 66.6 63.6 65.1 74.5 72.1 73.33 82.1 76.8 79.42

C-GCN [15] 84.8 87.2 82.5 84.8 84.9 84.7 84.83 86.6 83.1 84.82

SpanBERT [27] – 71.2 70.3 70.8 80.5 75.6 78.01 85.8 84.7 85.32

RE-Improved
(BERTLARGE) [13]

– – – 72.9 – – 81.3 – – 89.7

DAGCN [28] 72.4 64.8 68.4 – – – – – –
Wu et al. [29] 83.5 71.1 62.8 66.7 – – – – – –
A-GCN (BERTBASE)
[20]

89.16 87.874 83.744 85.764 88.754 87.124 87.944 90.014 86.514 88.234

A-GCN (BERTLARGE)
[20]

89.85 88.734 84.634 86.644 89.404 87.064 88.224 92.314 86.714 89.434

Our Model
TS-GCN (BERTBASE) 89.86 90.41 85.20 87.73 92.41 89.09 90.72 92.93 87.86 90.33
TS-GCN (BERTLARGE) 91.61 89.78 86.82 88.28 93.37 90.33 91.81 93.76 88.56 91.09
Note: 1 Marks re-implemented results from Alt et al. [47]. 2 Marks re-implemented results from Stoica et al. [48]. 3 Marks re-implemented
results from Zhou et al. [13]. 4 Marks our re-implemented results.

In Fig. 2, we present the F1 score progression of TS-GCN with the increasing number of epochs. It
shows that TS-GCN reaches convergence faster than the A-GCN baseline model. This is a significant
advantage because it means that the model can be trained more efficiently, which saves both time and



3308 CMC, 2024, vol.79, no.2

resources. Additionally, the figure shows that TS-GCN consistently achieves faster convergence results
than A-GCN on all four datasets that we tested. This finding confirms that TS-GCN is a robust and
effective model that can be applied to a wide range of NLP tasks with high accuracy.

Figure 2: The contrasted F1 scores for four datasets were obtained during training using the BERT-
large encoder

Overall, all evaluation demonstrates that TS-GCN is a powerful and efficient model for RE. Its
ability to reach convergence quickly and achieve a higher F1 score than the A-GCN baseline model
makes it an excellent choice for RE.

4.3 Ablation Study

To further analyze TS-GCN, we conduct an ablation study on best model to study the effectiveness
of each component on four datasets. Compared to the previous RE model that applies GCN, TS-
GCN enhances the semantic exploration ability in two aspects: 1) using a Bi-directional long short-
term memory (Bi-LSTM) to enrich the representation of POS representations and enhance the
sensitivity to context, 2) introducing multi-head dynamic structure attention to weight different textual
structure information for reducing the impact of dependency tree noise interference, To investigate the
independent enhancement effects of each modules, we conduct an ablation study on our best model.
The best model includes two layers of TS-GCN, 4 heads of dynamic structure attention, and utilizes
dependency type and POS information.

Table 3 shows the experimental results of different modules, including the performance of the
GCN baseline and the BERT-only baseline for reference. The results indicate the ablation of modules
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could result in worse results. Especially, the ablation of the multi-head dynamic structure attention
module significantly impairs TS-GCN. This indicates that the guided learning of information is
abandoned, making TS-GCN susceptible to dependency tree noise, making it difficult to learn correct
features.

Table 3: The ablation study results (F1) of TS-GCN on whether use dynamic structure attention
mechanism and POS Bi-LSTM. ‘�’ and ‘×’ stand for that whether a module is used

Bi-LSTM G-ATT SemEval TACRED TACREV Re-TACRED

BERTBASE GCN 88.62 83.35 86.21 86.75

TS-GCN
� � 89.86 87.73 90.10 90.33
× � 89.21 86.51 89.55 89.87
� × 88.03 85.79 88.13 88.36

Only Bert 87.87 71.56 79.33 85.91

BERTLARGE GCN 89.13 84.95 86.68 87.02

TS-GCN
� � 91.61 88.28 91.81 91.09
× � 89.56 87.22 90.22 90.26
� × 88.39 86.98 89.88 89.18

Only Bert 89.02 72.95 81.31 86.72

Table 4 shows the experimental results of textual structure information with different feature
combinations, which include dependency types (Dep), POS labels (POS), and NER labels (NER).
The results indicate that an increase in the types of textual structure information leads to improved
performances. Multiple types of textual structure data are important to TS-GCN, especially with some
noise in input information. Without the introduction of POS and NER features, the F1 performance
of TS-GCN using BERT-Base decreases by 0.88%, 0.93%, and 1.12%, while using BERT-Large, it
decreases by 0.89%, 1.53%, and 0.55%. This illustrates that our method effectively mitigates the impact
of noise in the dependency tree on context learning, leading to improved results in relation extraction.

Table 4: The ablation study results (F1) of TS-GCN on textual structure information module

Dep POS NER TACRED TACREV Re-TACRED

BERTBASE � � � 88.24 91.71 91.04
TS-GCN � � × 87.73 90.72 90.33

� × × 87.36 89.75 89.92
BERTLARGE � � � 88.72 92.26 91.38
TS-GCN � � × 88.28 91.81 91.09

� × × 87.83 90.73 90.83
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4.4 Case Study

To investigate the effect of the number of heads in dynamic structure attention on TS-GCN,
we conducted a case study using our TS-GCN models with different numbers of dynamic structure
attention heads.

Table 5 shows the experimental results with different numbers of dynamic structure attention
heads, including 1, 2, 4, 8, and 12. In this table, we observe that the 4-head dynamic structure attention
obtains better performance compared to the 1-head and 2-head configurations. Furthermore, com-
pared to the 8- head and 12-head configurations, the 4-head configuration requires fewer computing
resources and achieves similar optimal performance. Therefore, using 4 heads can enhance the training
efficiency of our model. Overall, we conclude that the optimal configuration for multi–head dynamic
structure attention is 4.

Table 5: The case study results (F1) for multi-head dynamic structure attention (BERT-Large), S is
train computing resources consumed by TS-GCN

Head Num SemEval TACRED TACREV Re-TACRED

F1 S (GB) F1 S (GB) F1 S (GB) F1 S (GB)

1 head 89.37 2.4 86.10 3.6 89.05 2.9 89.08 3.2
2 head 90.16 5.1 87.09 7.7 90.33 6.6 90.09 6.9
4 head 91.61 9.1 88.28 15.9 91.81 14.5 91.09 15.3
8 head 91.36 14.0 88.36 21.4 91.73 19.8 90.40 20.0
12 head 91.46 20.6 87.94 30.0 90.82 28.3 91.11 28.8

To investigate the effect of the number of layers in TS-GCN on RE, we conducted a case study by
training our model with different numbers of layers.

Table 6 shows the experimental results on the test datasets for TS-GCN with varying numbers
of layers, 1, 2, 3, and 4. In this table, we can observe that the TS-GCN with 2 layers precedes other
configurations. We consider this result to be due to the ease with which the weights of the multi-
head dynamic structure attention can be influenced by the number of convolutional layers. When the
number of layers is set to 1, it is difficult for TS-GCN to learn deep contextual features. On the other
hand, when the number of layers exceeds 2, the multi-head dynamic structure attention weight of TS-
GCN becomes averaged, which makes it less sensitive to noise in the input text. Overall, we conclude
that the optimal configuration for TS-GCN is with 2 layers.

Table 6: The case study results (F1) on varying the number of layers in TS-GCN (BERT-Large), S is
train computing resources consumed by TS-GCN

Layers Num SemEval TACRED TACREV Re-TACRED
F1 Size (GB) F1 Size (GB) F1 Size (GB) F1 Size (GB)

1 Layers 88.67 4.7 87.16 7.5 90.00 6.1 88.76 7.4
2 Layers 91.61 9.1 88.28 15.9 91.81 14.5 91.09 15.3

(Continued)
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Table 6 (continued)

Layers Num SemEval TACRED TACREV Re-TACRED
F1 Size (GB) F1 Size (GB) F1 Size (GB) F1 Size (GB)

3 Layers 90.87 14.5 88.03 23.6 91.22 21.8 90.71 22.9
4 Layers 89.60 18.8 87.77 31.1 90.96 30.1 89.85 30.7

To investigate the resistance to dependency tree noise interference of TS-GCN, we conducted a
case study by randomly masking some of the dependency nodes in the test sets.

Table 7 shows the test results of experiments conducted on the best-trained model having noisy
testsets. These test sets had 5%, 10%, and 20% of their dependent connections randomly removed,
respectively. The results indicate that when the noise proportion is less than or equal to 10%, there is
no significant decrease in our model performance. We believe that textual structure information can
enhance the capacity of our model for self-correction. Furthermore, the dynamic structure attention
mechanism adapts the contextual attention weights based on distinct information characteristics,
thereby mitigating the interference of dependency tree noise in the context of RE. Overall, we conclude
that TS-GCN with strong resilience to noise features.

Table 7: The case study results (F1) on the noise resistance of TS-GCN (BERT-Large)

Mask Pct SemEval TACRED TACREV Re-TACRED

F1 F1 F1 F1

0% 91.61 88.28 91.81 91.09
5% 90.49 88.04 90.97 89.24
10% 89.87 87.84 89.58 88.21
20% 88.91 85.47 84.52 86.76

5 Conclusion

In this paper, we propose a graph convolutional network embedding textual structure information
for relation extraction. We transform the task into a multi-information graph structure problem by
incorporating different sequence information into graph nodes and propose a TS-GCN model that
utilizes a dynamic structure attention mechanism to learn the importance of contextual information
on dependency tree paths. This attention-learning process is dynamic and will selectively highlight and
express important path information according to the composition of structural information features.
Furthermore, we assign different learning weights to all information graph structures to reduce
the impact of noise generated during the generation of information graphs on relation extraction.
Experiments are conducted on the popular TACRED dataset, TCREV dataset, Re-TACRED dataset
and SemEval 2010 Task 8 dataset. The results demonstrate that TS-GCN surpasses the best existing
GCN-based models on the four datasets. We demonstrate that TS-GCN is a multiple-structure
attention method, which emphasizes the importance of textual structure information in concerning
extraction. To validate our approach, we conduct ablation experiments on the proposed dynamic
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structure attention mechanism and additional textual structure information. The experimental results
show that increasing the types of information can mitigate the impact of dependency noise on relation
extraction. Dynamic structure attention can improve the ability of the model to effectively learn
multiple structure information. However, the size of the TS-GCN model will increase significantly
as the number of attention heads and the number of graph convolution layers increases, but the model
performance gradually levels off. Although our model achieves satisfactory results in representing
relation extraction with graph neural networks, there is still significant study room for future work.
Specifically, we plan to propose a more generalizable model template that minimizes the training
cost of the model when introducing new textual structure information. Additionally, a meaningful
direction is to compress the existing TS-GCN model to reduce computational costs. The dependency
tree matrix is often a sparse matrix with huge computational costs, which presents a challenging yet
important problem. We also would like to explore LLM and combine textual structure information
to learn contextual features and enhance the performance of relation extraction. In addition, relation
extraction can be combined with technologies such as knowledge graphs to provide technical support
for practical problems in many industrial fields. For example, it helps to construct an intelligent
knowledge graph belonging to industrial parts or manufacturing processes and infers whether the
part is a qualified part through external information such as the size of the shape. Such research can
provide application directions for GCN-based relation extraction methods and promote the further
development of relation extraction technology.
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