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ABSTRACT

Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective
treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast
cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign
tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation
and classification. The main objective of the research paper is to develop an advanced methodology for breast
ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and
machine learning-based classification. A unique approach is introduced that combines Enhanced Speckle Reduced
Anisotropic Diffusion (SRAD) filters for speckle noise reduction, U-NET-based segmentation, Genetic Algorithm
(GA)-based feature selection, and Random Forest and Bagging Tree classifiers, resulting in a novel and efficient
model. To test and validate the hybrid model, rigorous experimentations were performed and results state that
the proposed hybrid model achieved accuracy rate of 99.9%, outperforming other existing techniques, and also
significantly reducing computational time. This enhanced accuracy, along with improved sensitivity and specificity,
makes the proposed hybrid model a valuable addition to CAD systems in breast cancer diagnosis, ultimately
enhancing diagnostic accuracy in clinical applications.
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1 Introduction

As per World Health Organization (WHO), in the year 2020, there were about 2.3 million
diagnosed breast cancer cases and 685,000 died of breast cancer worldwide. It constitutes about 12% of
all cancer cases and 25% of cancer among women. In addition, the breast cancer mortality rate dropped
by 40% between 1980 and 2020 in high-income countries especially. There are about 4 million breast
cancer survivors in the world. The primary reason behind mortality reduction and survival is attributed
to the early diagnosis of the disease supported by improved awareness among the population. The
prima facia requirements given for tackling breast cancer are also the same (i) creating awareness and
(ii) facilitating early diagnosis. As early diagnosis could result in early interventions and medications
that could prevent the spread of malignancy hugely reducing the mortality risk factor. The risks
associated with the malignancy being stated, the importance of diagnostic tools and their development
are in the limelight. Though mammogram is a gold standard diagnostic tool, ultrasound imaging is
a promising tool due to its effectiveness in diagnosing the disease stages from dense tissues easily.
Thus, research that concentrates on improving ultrasound diagnosing efficiency is always gaining
significance.

The paramount importance of early cancer detection and diagnosis cannot be overstated, espe-
cially when considering breast cancer, which stands as the most prevalent malignancy among women
[1]. Alarmingly, 60% of cancer cases are diagnosed in advanced stages [2], highlighting the urgency
of improving diagnostic methodologies. Current statistics reveal that about 2.26 million breast cancer
cases are newly registered every year [3], further underscoring the pressing need for enhanced detection
strategies for the early diagnosis of breast cancer.

1.1 Objectives of the Paper

The objectives of the paper are:

1. To conduct a comprehensive study and provide an enlightened literature review with regard to
the state of the art in artificial intelligence powered Ultrasound imaging based breast cancer
screening.

2. To propose a novel methodology for the effective classification of breast tumor lesions from
Ultrasound images that could aid in early diagnosis and thus treatment. A novel image
processing pipeline with excellent pre-processing of US images by tailored eSRAD filtering
followed by accurate segmentation of tumor lesions by U-NET DNN and feature selection by
GA facilitated early classification of breast cancer stages with highest accuracy. The novelty
of the model lies in the combination of techniques selected for improving performance in each
stage of image processing which collectively resulted in an improved accuracy of classification.

3. To test and validate the proposed methodology in terms of performance metrices accuracy, sen-
sitivity, specificity, precision, F-measure, Jaccard index, dice coefficient, Matthews Correlation
Coefficient and Area -Under the Receiver Operating Characteristics (ROC) Curve (AUC).

4. To compare the proposed methodology with existing techniques like Random Forest, U-NET,
Selective Kernel U-NET and GLCM based classification models.

1.2 Organization of Paper

The rest of the paper is organized as: Section 2 enlitens related works with regard to Breast
cancer embarking all the contributions done by diverse researchers across the world for improvising
diagnostics in breast cancer. Section 3 discusses Materials and Methods. Section 4 highlights proposed
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methodology. Section 5 focusses on Experimentations, Resuls and Analysis. And, finally, Section 6
concludes the paper with future scope.

2 Related Work

While mammography remains a stalwart in breast cancer screening, ultrasound (US) imaging
offers a cost-effective and easily accessible alternative [3]. Beyond affordability and accessibility,
ultrasound’s distinct advantage lies in its capacity to unveil the intricacies of dense breast tissue, a feat
often elusive to mammography [4]. Breast tumor detection and classification in ultrasound imaging
have been the focus of recent research efforts. Breast cancer is a significant health concern, and the
accurate detection and classification of breast tumors are crucial for effective clinical management.
Ultrasound imaging has emerged as a valuable tool for breast tumor detection, and recent research
has focused on enhancing the accuracy of this modality through advanced image processing and
classification techniques. Various novel approaches had been proposed to enhance the precision of
breast ultrasound image analysis for identifying tissues, organs, and lesions. These approaches include
the use of deep learning techniques such as convolutional neural networks (CNN), global average
pooling (GAP)-guided attention loss function, generative adversarial networks (GAN), transfer
learning (TL), and ensemble deep-learning-enabled clinical decision support systems.

A dual-input CNN with GAP-guided attention loss function was proposed for improved breast
ultrasound tumor classification by Zou et al. [5], whereas a framework for breast mass classification
from ultrasound images, incorporating GAN-based data augmentation and TL-based feature extrac-
tion was proposed by Chaudhary et al. [6]. Additionally, an ensemble deep-learning-enabled clinical
decision support system was developed for breast cancer diagnosis and classification using ultrasound
images by Ragab et al. [7]. Furthermore, the use of hybrid approaches, such as the CNN-Inception-
V4-based hybrid approach for classifying breast cancer in mammogram images, was explored by
Nazir et al. [8]. Several studies by diverse researchers had explored the application of deep learning
algorithms for automatic breast tumor detection and classification using ultrasound images [9–11].
These studies had demonstrated the potential of deep learning techniques in improving the efficiency
and accuracy of breast tumor diagnosis. Additionally, the development of automated systems for
breast tumor detection and classification, including automatic tumor volume estimation, using deep
learning techniques had been a focus of research. Furthermore, the combination of different imaging
modalities, such as photoacoustic tomography and ultrasound, had shown promise in improving the
detection of breast tumors [12]. Moreover, the integration of microwave imaging techniques had also
been explored for breast cancer detection, highlighting the diverse range of imaging modalities being
investigated for this application [13].

Moreover, the importance of early diagnosis in improving treatment outcomes for breast cancer
patients had been emphasized by Anupama et al. [14] and this in turn required tailored processing steps
in each stage of image processing. As a result, research efforts had been directed towards developing
efficient pre-processing techniques and segmentation algorithms to classify lesions within breast
cancer mammograms and ultrasound images [14,15]. These techniques aim to address challenges such
as speckle noise and accurate segmentation of small tumors in ultrasound images. Bilateral filters
[16], Speckle Reducing Anisotropic Diffusion filters [17], were introduced in the image pre-processing
stages for the efficient removal of speckle noise. Additionally, the use of advanced image processing
methods, such as speckle noise reduction algorithms, had been proposed to enhance the quality of
ultrasound images for more accurate tumor detection [18]. A detailed case study of the importance of
data augmentation in medical image processing was presented by Wulff et al. [19].
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The efficiency of the segmentation stage is governed by the clear definition of linear boundaries,
and avoiding the overprediction of certain classes. Segmentation of ultrasound images was effectively
carried out using Active Contours [20] and enhanced level set Active Contours [21]. A dual-attention
network-based concurrent segmentation method was introduced by Iqbal et al. [22] that improved the
accuracy of lesion segmentation. A Deep learning approach with U-NET segmentation was presented
by Tarighat [23] and Zhao et al. [24]. U-NET architectures had demonstrated effectiveness in enhanc-
ing segmentation quality, especially for varying-size objects, and had outperformed baseline models
across different datasets and imaging modalities [25–28]. A combination of traditional methods in the
early image processing stages and then using machine learning-based classification was experimentally
found effective by many researchers. Convolution Neural Network CNN with Active Contours [29],
Machine Learning (ML), and Genetic Optimization [30] were studied.

As a step above the detection and segmentation of lesions, the classification of tumors [31] and
hence paving the way towards fully automated cancer diagnosis systems [32] is possible with the help
of Artificial Intelligence (AI) techniques and is the topic of recent research. Optimization of AI-based
techniques [33] is on the verge of development. A varied number of existing deep learning architectures
were used in lesion detection from breast ultrasound (BUS) images [34]. Results could reveal that
Convolutional Neural Network performs well in the detection and classification tasks [35]. A Deep
neural network (DNN) model BUSnet that used an unsupervised bounding box regression algorithm
was introduced by Li et al. [36]. A fusion of Reformed Differential Evaluation (RDE) techniques along
with the Reformed Gray Wolf (RGW) optimization algorithm was used for the feature selection in the
classification of the BUS dataset [37]. Detection and classification of the BUS dataset based on the TV
model and GoogleLeNet model was proposed by Chen et al. [38]. Random forest-based classification
was found effective in classifying BUS images [39]. A modified Random Forest classifier enhanced by
a GridSearchCV was proposed by Li et al. [40].

Challenges such as identifying smaller lesions from noisy regions in (automated breast ultrasound)
ABUS images were addressed with a stereoscopic attention network (SA-Net) [41]. The multi-view
SA-Net unit uses a split output design to construct the 3D localization tensor and classification
was done based on two features stereoscopic view and plane view to achieve excellent accuracy in
the classification of ABUS images. Transfer learning based on combining different features is used
effectively in prediction tasks [42]. While ultrasound imaging has shown promise in breast tumor
detection, challenges such as differentiating between benign and malignant tumors persist. Some
studies highlighted the limitations of current imaging modalities in accurately distinguishing between
benign and malignant tumors [43]. This underscores the ongoing need for advanced diagnostic
tools and techniques to address these challenges. While significant progress has been made, further
research is needed to address the remaining challenges and advance the state-of-the-art in breast tumor
detection and classification.

Major challenges associated with processing Ultrasound images for the classification of breast
cancer are (i) the presence of speckle noise which reduces image’s contrast and resolution (ii) lack of
well-annotated datasets which makes machine learning difficult (iii) over prediction of certain classes
in segmentation which affects classification accuracy (iv) selecting the most appropriate features that
could reduce overtraining and thus produce good classification accuracy. The proposed hybrid model
addresses these challenges to achieve good classification accuracy.
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3 Materials and Methods
3.1 Materials

3.1.1 Dataset

The fundamental cornerstone of this research lies in the utilization of the Breast Ultrasound
Images (BUSI) Database, a meticulously curated collection accessible at https://scholar.cu.edu.eg/
Dataset_BUSI.zip. This repository comprises a diverse array of breast ultrasound images, meticulously
selected and annotated for research purposes. The dataset encompasses 780 images, consisting of 133
normal (N), 437 benign (B), and 210 malignant (M) images.

Each image within the BUSI Database is endowed with crucial attributes vital for tumor
classification, including patient information, lesion type (benign or malignant), image quality metrics,
and pertinent clinical metadata. For this research, a subset of 160 images was strategically employed
for both training (100 images) and testing (60 images). The training dataset comprises 30 normal (N),
30 malignant (M), and 40 benign (B) images, while the testing dataset encompasses 20 images from
each class.

The significance of this dataset lies in its representation of diverse breast tissue conditions, enabling
comprehensive training and evaluation of the classification models. Fig. 1 visually represents samples
from the dataset across various classes. Fig. 1 represents the sample images depicting different classes
within the dataset: Normal, Benign, and Malignant.

Normal    Benign      Malignant 

Figure 1: Sample images from the input dataset revealing the different classes of infection

3.1.2 Data Pre-Processing

Before any analytical procedures, a rigorous pre-processing phase was undertaken to elevate the
dataset’s quality and consistency. Speckle noise, a common challenge in ultrasound image processing,
was specifically addressed through various techniques:

• Noise Reduction: The focal point of this phase was the reduction of speckle noise, achieved
through an Enhanced Speckle-Reducing Anisotropic Diffusion technique. This approach
adeptly eliminated speckle noise while preserving critical image details, thus enhancing image
clarity.

• Image Enhancement: Additional techniques like contrast adjustment and brightness normal-
ization were meticulously applied to augment image quality and ensure uniform illumination
across all images.

• Normalization: Intensity normalization was meticulously performed to standardize pixel val-
ues, mitigating variations attributed to diverse image acquisition settings.

https://scholar.cu.edu.eg/Dataset_BUSI.zip
https://scholar.cu.edu.eg/Dataset_BUSI.zip
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• Data Augmentation: The augmentation process encompassed a spectrum of techniques includ-
ing rotation, scaling, flips, and various geometric transformations. Iteratively, these operations
augmented the original dataset, diversifying and enriching it with additional samples. This
augmentation strategy is pivotal, particularly in scenarios where limited data availability poses
a challenge in training robust deep-learning models.

Enhanced SRAD for Noise Reduction

The Enhanced SRAD technique, an integral facet of the pre-processing stage, merits specific
attention due to its role in effectively reducing speckle noise in ultrasound images. This subsection
elaborates on the theoretical underpinnings of Enhanced SRAD, delineating its mathematical models
for noise reduction.

Conventional Anisotropic Diffusion (AD) effectively eliminates additive noise but tends to
compromise edge information, especially when confronted with speckle noise. To overcome this
limitation, the Enhanced SRAD technique incorporates the Instantaneous Coefficient of Variation
(ICOV) to selectively reduce speckle noise while preserving edges.

The SRAD process operates via partial differential equations, as delineated by the Eqs. (1) through
(10) provided below. These equations encapsulate the diffusion coefficient, threshold for diffusion, and
the mathematical representation of the ICOV-based diffusion.

Mathematical Modeling

Let I(a, b) be the image intensity matrix without zeros and have finite power in the two-
dimensional coordinate grid (�), a partial differential equation model of SRAD will produce an output
I(a, b, t).

I (a, b, 0) = Io (a, b) ,

⎛
⎝∂I (a, b; t)

→
∂n

⎞
⎠ |∂� = 0 (1)

∂I
(

a, b, t
∂t

)
= div [c (f ) ∇I (a, b; t)] (2)

c (f) = 1
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⌋

/T
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{
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T

}
(3)

where, I(a, b) represents the image intensity matrix, div denotes divergence, ∇ is the gradient, c(f) is
the diffusion coefficient, and T is the threshold. The characteristic of this diffusion coefficient is that
it is more pronounced in homogenous regions and restricted around the image boundaries. Where,
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z(t)′ (5)



CMC, 2024, vol.79, no.2 1881

T = f 2
o (t) (1 + f 2

0 (t) (6)

Here f(a, b, t) is the instantaneous variation coefficient (ICOV) that is introduced to identify the
edges in the image as it is more pronounced near the edges and less pronounced in the homogeneous
regions. And ∇2 is the Laplacian operator, T is the threshold of diffusion, fo is the coefficient of
variation at t = 0, z(t)′ is the mean and var[z (t)] variance of the intensity function.

When f 2 (a, b, t) − f 2
0 (t) is greater than T, c(f) → zero, and diffusion stops (near edges).

When f 2 (a, b, t) − f 2
0 (t) is less than T, c(f) → 1, diffusion function acts as a filter (homogeneous

region).

As T, the threshold is the determining factor of diffusion; T determines the amount of speckle
reduction and edge information perseverance. Without using log compression, the SRAD filtering
approach may process data immediately at the same time retaining the information content of the
image.

The ICOV-based diffusion selectively acts as a filter during image pre-processing, enhancing
images for subsequent machine learning-based segmentation. The quality of the image pre-processing
step is verified by measurements such as SNR (Signal to Noise Ratio), Peak SNR (PSNR) that reveal
the noise reduction capability, Mean Square Error (MSE) that shows the error, Structural Similarity
Index Measure (SSIM) and the formula used for calculating the same are given by Eqs. (7) through
(10) below:

SNR = 10 log10

[ ∑na−1

0

∑nb−1

0 [r (a, b)]2∑na−1

0

∑nb−1

0 [r (a, b) − t(a, b)]2

]
(7)

PSNR = 10 log10

⎡
⎢⎢⎣ max

(
r, (a, b)

2)
1

nanb

∑na−1

0

∑nb−1

0 [r (a, b) − t (a, b)]2

⎤
⎥⎥⎦ (8)

MSE = 1
n

n∑
i=1

(Yi − Y ′
i )

2 (9)

SSIM = (2μaμb + C1) (2σab + C2)(
μ2

a + μ2
b + C1

)
(σ 2

a + σ 2
b + C2)

(10)

Mathematical models govern the diffusion process, wherein a threshold parameter (T) plays a
pivotal role in determining the balance between speckle reduction and edge information preservation.
A meticulous evaluation of the pre-processing quality ensued, as showcased by the quantitative metrics
in Table 1 and visualized in Fig. 2.
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Table 1: Pre-processing quality evaluation

Pre-
processing
technique

Image-1 Image-2

Signal to
noise ratio
(dB)

Peak
SNR
(dB)

Mean
square
error

Similarity
index

Signal to
noise ratio
(dB)

Peak
SNR
(dB)

Mean
square
error

Similarity
index

SRAD 30.2365 32.4008 0.0012 0.9874 28.4837 35.1211 0.0013 0.9745
eSRAD 33.2315 35.2315 0.0003 0.9987 30.3646 38.0021 0.0001 0.9996

Image –  1(a)                                     SRAD(b)  eSRAD(c) 

Image –  2(d) eSRAD(f)SRAD(e)

Figure 2: Sample input images (a & d), Noise removed output images (b, c, e & f)

3.1.3 Data Augmentation

The effective prediction and classification accuracy of a Deep Learning architecture fundamen-
tally hinges upon the quantity and diversity of data samples used for training. In medical image
processing scenarios where data scarcity prevails, data augmentation plays a pivotal role in enriching
the training dataset. In our research, data augmentation strategies encompassed an array of operations
including translation, rotation, gray value variation, and elastic deformations. These operations
iteratively augmented the original dataset, ultimately diversifying it to accommodate an extensive
sample set. This augmentation process significantly expanded the dataset to a total of 9000 samples,
ensuring a more comprehensive and diverse representation across normal, malignant, and abnormal
images.
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3.2 Methods

3.2.1 U-NET-Based Image Segmentation

Segmentation plays an essential role in both image processing and pattern recognition. It facilitates
the identification and separation of abnormalities for improved diagnosis. In our Computer-Aided
Diagnosis (CAD) system, we employ segmentation to delineate Regions of Interest (ROIs). U-
NET-based architecture dependent entirely on the convolution network is found to enhance the
segmentation of ultrasound images effectively. Whereas, an Active Contour (snake model) is also a
commonly used method for ROI separation. In many medical applications, active contour is widely
adopted and hence a comparison between the active contour and U-NET architecture is carried out.
U-NET is chosen for the framework and a tailored U-NET architecture is constructed for image
segmentation. To achieve an optimal performance in time and complexity, a novel pre-processing is
done and a tailored 5-stage U-NET is used for segmenting the pre-processed and augmented dataset.
The equations that define the U-NET working include its activation function and its energy function.
The U-NET energy function is given by

E =
∑

w (x) log(pkx (x)) (11)

where, this summation is taken over x ∈ �, kx is the pixel label and w, is the weight map. Here, the
activation function is SoftMax and is applied on a pixel-wise basis. This is defined as below:

pk = exp (ak (x)) /
∑k

k′=1
exp(ak (x)

′
) (12)

where, Pk = approximation of maximum function, ak(x) is an activation in feature channel k at pixel
position x, and k is the number of classes.

The network learns the distinct borders between cells by making use of morphological operations.
The weight map is given by

w (x) = wc (x) + w0 exp
(

−(d1 (x) + d2 (x))2

2σ 2

)
(13)

where, wc is the weight map to balance class frequencies, d1 is the distance to the border of the nearest
cell, d2 is the distance to the border of the second nearest cell. Initial weights are assigned from
Gaussian distribution with standard deviation

√
2/N where N is the number of inbound nodes of

one neuron.

U-NET Architecture

The pre-processed image is segmented in the next step and U-NET segmentation is governed by
the energy function defined by Eq. (11). Softmax activation is used for U-NET and the segmented
output obtained is used for classification of tumor lesions. Fig. 3 presents the architecture of U-NET.

The U-NET architecture presents a reliable and quick network for segmenting ultrasound images.
It comprises of three sections: Contraction, Bottleneck, and Expansion. The Contraction phase
consists of CNN layers, Rectified Linear Unit—(ReLU) layer, and down-sampling max-pooling layers.
The Bottleneck layer mediates between Contraction and Expansion, while the Expansion section
consists of CNN layers, ReLU layer, and up-sampling layers. The combination of these operations
results in the U-shaped network architecture called the U-NET.
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Ultrasound 

images
Conv+ReLU+MaxP

Conv+ReLU+MaxP

Conv+ReLU+MaxP

Conv+ReLU+MaxP

Conv+ReLU

Conv+ReLU+TConv

Conv+ReLU+TConv

Conv+ReLU+TConv

Conv+ReLU+TConv

Segmented 

Output

Down sampling 

Up sampling

Convolution

Figure 3: Architecture of U-NET

Inherent to the U-NET architecture are the contracting or down-sampling stages constructed from
2D convolution layers with fixed kernels and doubling channels or feature maps, followed by a tracking
unit to converge cost functions faster and a max-pooling layer to divide the input at each stage. In our
experiment, each of the contracting stages consists of two 2D convolution layers of kernel size 3 ×
3 followed by a ReLU that thresholds the pixels less than zero and smoothens the image and a max-
pooling layer that downsamples the image by a pool size of [5,5]. The first stage of the U-NET starts
with a feature map of 32 which doubles in each stage up to 512 features. The image at the bottleneck is
up-sampled by a transposed 2D convolution function of a 3 × 3 kernel and a feature map size of 256.
Now, the expanding or up-sampling stages are constructed from two 2D CNNs with a kernel size of
3 × 3 followed by ReLU layers and a transposed 2D convolution layer of 3 × 3 kernel, feature map
of size half that of the previous stage. The U-NET in total consists of 18-2D convolution layers,
4 transposed convolution layers, 18 ReLU layers, 4 max-pooling layers, one fully connected layer,
and one soft-max layer. A pixel classification layer follows the soft-max to label each pixel for the
segmentation step. The flowchart depicting the process involved with segmenting an image using the
U-NET algorithm is given in Fig. 4.

Figure 4: U-NET segmentation flowchart
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Classification Stage

The efficiency of the classification stage is dependent on the effectiveness of feature extraction and
selection. Twelve different combinations of classification experiments are conducted to determine the
best-performing classification stage. The experiments are framed by using (i) Three different classifiers
say Random Forest, Neural Network, and Bagging tree, (ii) Two feature selection algorithms say
Genetic Algorithm and Leave One Out Cross-Validation (LOOCV) algorithm and (iii) Two feature
extraction algorithms say Wavelet transforms and Gray Level Co-occurrence Matrix (GLCM). Each
of them is explained below.

Feature Extraction

Texture feature extractions can be classified as statistical, structural, transform-based, model-
based, graph-based, learning-based, and entropy-based approaches and in this experiment, the most
frequently used transform-based approach say multiscale wavelet transform is compared with Gray
Level Co-occurrence Matrix (GLCM) for texture feature extraction. Textural features are calculated
using wavelet transforms and GLCM to gain insights into image content. Wavelet transforms and—
GLCM-based textural feature extractions were found to perform well in the extraction of features
from ultrasound images and thus they are chosen for the extraction process.

Wavelet coefficients when employed for feature extraction from hyperspectral data involve calcu-
lating entropy, standard deviation, energy, waveform length, and variance from the image. GLCM
serves as a fundamental tool for extracting second-order statistical texture features which include
Mean, Contrast, Standard Deviation, Correlation, Energy, Homogeneity, Skewness, Kurtosis, and
Entropy. The formulae for these features are provided in Table 2.

Table 2: Features from GLCM

Features
from GLCM

Equations Features
from GLCM

Equations

Mean
1
n

∑L−1

i=0 rip(ri) Contrast
∑N−1

x=0

∑N−1

y=0 |x − y|2 p (x, y)

Standard
deviation

√∑N

i=1(x − x′)2

N − 1
Correlation

∑N−1

x=0

∑N−1

y=0

(1 − μx)
(
1 − μy

)
p(x, y)

σxσy

Energy
∑N−1

x=0

∑N−1

y=0 p(x, y)2 Kurtosis

∑T

i=1(xi − x′)4

σ 4

Entropy
∑N−1

x=0

∑N−1

y=0 p (x, y) log(p (x, y)) Skewness

∑T

i=1(xi − x′)3

σ 3

Homogeneity
∑N−1

x=0

∑N−1

y=0

p(x, y)

1 + |x − y|

Feature Selection

In this phase, we assess two commonly used feature selection methods Genetic Algorithm (GA)
and Leave One Out Cross-Validation (LOOCV) to determine the most efficient approach.
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LOOCV Algorithm: LOOCV is a type of K-fold validation technique that estimates machine
learning model performance. It involves leaving one observation out for validation while the rest serve
as the training set. The model is then used to make predictions on the left-out observation, and the
Mean Square Error (MSE) is computed. This process is repeated ‘n’ times, as illustrated by Eqs. (14)
and (15). LOOCV provides deterministic and accurate results. The advantage of using LOOCV is that
it is highly deterministic and tends to be accurate.

Genetic Algorithm: Genetic Algorithms (GA) are stochastic methods employed for optimizing
machine learning-based systems. GA is particularly effective for feature selection in image processing,
hyperparameter tuning in Artificial Neural Networks (ANNs), and pipeline optimization in machine
learning. Here in our experiment the classification accuracy is used to select the most relevant features
alone from the feature set and this is found to result in better accuracy. Table 3 presents the LOOCV
and Genetic Algorithm based algorithms being used for feature selection.

Mean Square Error

Table 3: Algorithms used for feature selection

Algorithm 1 (LOOCV algorithm) Algorithm 2 (Genetic algorithm)

1. Divide the dataset → training and testing set 1. Create initial Random Population n, chromosomes
crossover percentage of 0.7 and mutation rate of 0.1

2. Build model → training dataset 2. Evaluate fitness function → classification accuracy

3. Make Prediction → testing dataset 3. Check exit criteria → Pj = fj∑N
i=1 fi

, where j =
1,2, . . . ,N Probability of fitness, report best solution. Else

4. Measure MSE → Eq. (15). “Test MSE” 4. Selection of features from the feature set
5. Measure Model performance → from MSE 5. Perform Crossover and obtain crossover offspring
6. Predict the response → for the observation
left out using the model

6. Perform mutation to obtain offspring

7. Repeat the process ‘n’ times 7. Sort out the offspring and move to step 2

MSE =
(

1
n

)
∗
∑

(yi − f (xi))
2 (14)

Test MSE =
(

1
n

)
∗
∑

MSEi (15)

ffit =
∑d

i=1 Cii∑m

i=1

∑n

j=1 Cij

(16)

Classification Step

Three different models Random Forest, Bagging tree, and Neural Network classifiers are chosen
for evaluating the best model for lesion classification. Their classification efficiencies are compared
to select the best classifier for our model. The theoretical explanations, mathematical modeling, and
algorithmic descriptions of the classifiers are discussed below.
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Random Forest (RF) Classifier: Random Forest (RF) is a versatile ML algorithm used for
prediction and classification tasks. It builds decision trees from random samples and combines their
results through majority voting or averaging. Capable of handling both continuous and discrete
variables, random forest improves accuracy while reducing error rates when multiple decision trees
are involved. The RF accuracy depends on the number of trees created in the forest and it uses
batching and randomisation in constructing each tree which is prescribed by the Gini index given
by Gi = 1 −∑c

i (Pi)
2, where ‘Pi’ denotes the frequency of class noticed and ‘c’ denotes the number of

classes in the dataset.

Bagging Tree Classifier: The Bagging Tree is an ensemble-based Bootstrap Aggregation algorithm
that efficiently optimizes classifier robustness and accuracy, especially in high-dimensional data with
missing values. It reduces inconsistency in machine learning models, making it useful for handling
variations in datasets. An ensemble method of numerous models predicts the class with the highest
probability of the chosen category. The formula to determine the class with the highest probability is
given by Class with high Probability Ch = mode(Nc

(
y1

t

)
, Nc

(
y2

t

)
, . . . . . . ., Nc

(
yn

t

)
)

Neural Network Classifier: Artificial Neural Networks (ANNs) mimic the behavior of the human
brain and have been effectively employed for ultrasound image classification. ANNs consist of input,
hidden, and output layers, with interconnected nodes applying thresholds and weights. They are
particularly suited for classification tasks.

4 Proposed Methodology

Early diagnosis remains the cornerstone of saving lives from cancer and thus has motivated
researchers to explore the potential of computer-aided diagnosis (CAD) for cancer detection and
classification tasks. Our proposed image processing model aims to improve the classification and seg-
mentation accuracy of breast ultrasound images. The model is capable of categorizing the ultrasound
images into normal, affected benign, or malignant. The image processing model is developed in steps
by comparing the efficiencies of the most popular algorithms used in each image processing stage.
A block diagram representation of the techniques and algorithms studied in each stage of the hybrid
model development is illustrated in Fig. 5. A hybrid model is developed comparing the experimental
results obtained from each stage of image processing.

4.1 Hybrid Model Architecture—Flowchart and Its Algorithm

Highlighting feature of the proposed hybrid model is the collective use of best techniques in every
stage of US image processing. The image processing pipeline starts with an efficient pre-processing
stage powered by tailored eSRAD filtering that uses anisotropic diffusion (AD) filtering which is
efficient towards reducing speckle noise in US images. A major limitation with AD filtering is its
inability to preserve edges, which is addressed in eSRAD filtering by fixing the diffusion threshold
based on the instantaneous variation coefficient (ICOV). Edge preserved, speckle reduced US images
are segmented by using U-NET DNN. The U-NET architecture introduced in the model uses a
5-stage encoding powered by 2D Convolutional layers, ReLU layer, Max-pooling layer ending up
in a bottleneck layer which is followed by 5-stage decoding carried out by transposed convolution
layer, 2D convolution layer and ReLU layer. A fully connected layer and softmax layer follows
the decoding stage and feeds the pixel classification layer which could effectively descriminate the
background and the foreground pixels. Segmentation by U-NET is chosen, as it is experimentally
proven effective compared to the conventional active contour (Snake) model. US image pre-processing
and segmentation being done by tailored diffusion filtering and U-NET DNN, respectively, the
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classification stage of the hybrid model is chosen by conducting twelve different experiments to select
the best techniques for feature extraction, selection and classification tasks. Based on experimental
results, Genetic algorithm that uses classification accuracy based fitness function is used to select
the most appropriate texture features extracted by GLCM. Comparing the classification accuracies,
Bagging tree classifier is used in the proposed hybrid model for effective classification of lesions.
Flowchart of the proposed model is given in Fig. 6 whereas its algorithm is detailed in Algorithm
3.

Pre-processing
SRAD filter,

eSRAD filter

Segmentation
Active Contour,

U-NET

Feature Extraction
GLCM,

Wavelet transforms

Feature Selection
LOOCV,

Genetic Algorithm

Classification
Random Forest,

Bagging Tree,

Neural Network

Figure 5: Different techniques and algorithms studied in the development of proposed hybrid model
system

Image classification represents the final stage in image analysis. In our CAD system, ultrasound
images are used and lesions are classified into normal, benign, or malignant. The Bagging Tree is an
ensemble-based Bootstrap Aggregation algorithm that efficiently optimizes classifier robustness and
accuracy, especially in high-dimensional data with missing values. Missing data values characterised
by incomplete information about the patient or the anomaly being studied is a common issue with
healthcare data analysis problems. Such a situation results from (i) information lost with time, (ii)
missed data entry, (iii) incomplete data provided by patient or (iv) unskilled data annotation. Missing
values result in degrading the prediction accuracy of an AI model. And thus developing AI model
with robustness against missing values are gaining importance nowadays. Tree-based approaches and
penalised regression approaches were found effective in handling high-dimensional data with missing
values. One such approach is the Bagging tree classifier.
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Figure 6: Flowchart depicting the hybrid model algorithm



1890 CMC, 2024, vol.79, no.2

Algorithm 3: Proposed Hybrid Model algorithm
Load the BUS Dataset
Image Pre-processing

1. De-speckling → eSRAD filter, given by Eq. (1)
2. Augmentation of input set

Image Segmentation
3. Define U-NET architecture CNN layers, 2 × 2 max pooling and up sampling
4. Energy function Eq. (11)
5. Activation function (12)
6. Define weights (13)

Feature Selection Algorithm
7. Create initial Random Population → n

8. Evaluate fitness function → classification accuracy =
∑d

i=1 Cii∑m

i=1

∑n

j=1 Cij

9. If solution satisfy exit criteria → Report best solution
Else

10. Selection of features from the feature set
Bagging Tree Classifier

11. Define Bagging Classifier class input parameters say base-classifier and n-estimators, feature
selected

12. Training
13. Initialize base-classifier, n-estimator and define an empty list for storing training results
14. Define fitness function
15. For each i → 0 to n-estimator-1
16. Perform bootstrap sampling
17. Assign Rand(len(X)) ← Range(len(X))
18. Create new subsets (x-sampled, y-sampled) from the selected indices.
19. Create new instance of classifier for next iteration
20. Train using (x-sampled and y-sampled), features selected.
21. Tune hyper-parameters
22. Added trained classifier to list, return trained list

Prediction using ensemble of classifiers
23. For each classifier in list
24. Use trained classifier
25. Predict classes of input data X.
26. Aggregate prediction by majority voting

Return final prediction

5 Experimentation, Results and Analysis
5.1 Experimental Setup

The experiment was conducted on a workstation with an Intel(R) Core(TM) i5 Processor, 8 GB
RAM, Intel Iris Xe Graphics Card, and 512 GB SSD. The proposed novel hybrid model for the
effective classification after segmentation of lesions from the BUSI database suggests the uses of
eSRAD filtering in the pre-processing stage, U-NET-based Segmentation methodology followed by
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feature extraction and feature selection by using GLCM and Genetic Algorithm and classification by
bagging tree algorithm. The effectiveness of the above hybrid model is proven compared to the most
competitive algorithm in each step of image processing. The experiment is carried out using MATLAB
software and the BUSI online dataset.

5.2 Performance Metrics

The efficiency of our proposed model evaluated for various performance metrics is presented in
this section. Image samples were obtained from an online open-source database. We quantitatively
assessed the algorithm’s performance using metrics such as sensitivity, specificity, and accuracy.
Among them, the Bagging Tree classifier demonstrated the highest performance. Error rates are
measured from the false predictions say false positive and false negative values whereas the accuracy
of a prediction is measured from the true positive and true negative results as compared to total
predictions, respectively. Where, True Positive (TP) results when predicted output as well as the actual
value are both true, and True Negative (TN) results when both predicted as well as the actual value are
false. Similarly, False positive (FP) represents a condition when the predicted output is positive while
the actual output is negative, and false negative (FN) results when the prediction is negative when the
actual value is positive. The performance parameters used for evaluation are defined in Table 4 below

Table 4: Performance metrices considered for evaluating the model

Performance parameter Definition and formula

Accuracy (ACC) The amount of correctly predicted outputs among the total
outputs.

Accuracy = TP + TN
TP + FP + TN + FN

Sensitivity (SEN) The true positive rate, indicating the number of true positives
among the predicted cases as compared to the actual positive
cases.

Sensitivity = TP
TP + FN

Specificity (SPEC) or Recall The true negative rate, representing the number of true negatives
among the predicted cases as compared to the actual negative
cases.

Recall or Specificity = TN
TN + FP

Precision Precision is the ratio of true positive to the predicted number of
positives. It is calculated based on the positive expected
outcomes.

Precision = TP
TP + FP

F-measure F-measure (harmonic mean of precision and recall), also called
F1 score.

F1 measure = 2 ∗ precision ∗ recall
precision + recall

(Continued)
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Table 4 (continued)

Performance parameter Definition and formula

Jaccard index Jaccard index can quantify the similarities between the predicted
output and the original input data. Jaccard’s Index measures the
degree of overlap between bounding boxes or masks.

Jaccard index = TP
TP + FN + FP

or
Area of Overlap
Area of Union

Dice coefficient Dice Coefficient quantifies the similarity between two masks.

Dice Coefficient = 2TP
sTP + FN + FP

Matthews correlation
coefficient (MCC)

MCC is used in machine learning as a measure of the quality of
binary (two-class) classifications.

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

AUC under ROC Receiver Operating Characteristics ROC is a graphical
performance measure which represents the performance of the
classifier over a range of true positive rate vs. false negative rate.
AUC specifies the area under the ROC curve and this measure
varies between 0 and 1. A classifier with AUC near 1 is an
indication of a good classification accuracy.

5.3 Results and Compartive Analysis

5.3.1 Results Cum Comparison of Active Contour and U-NET-Based Segmentation

The training images were sourced from the augmented image datastore to train the network effec-
tively by providing a slightly different dataset for each epoch of training. The dataset is divided into
testing and training sets in the ratio 70:30. In addition, the name-value pair of (ColorPreProcessing,
gray2rgb) is used to obtain uniform-sized images that contain the same number of channels as the
input of the U-NET layer. The images are then normalized and fed to the neural network.

The U-NET neural network used in the segmentation step is 5 levels deep with each encoding
stage consisting of 2 layers of 2D CNN, one ReLU, and one Max-pooling layer. The first stage of
encoding has 32 neurons and, in each stage, the number of neurons doubles whereas the images are
down-sampled. This network at the bottleneck has 512 neurons and the expanding stage has layers
in which the image is up-sampled and the number of neurons reduced by half in each stage. Finally,
a fully connected layer and softmax layer send the output to the pixel classification layer. The dice
function is used to find the similarity coefficient of the segmentation result from the ground truth.

The Active Contours segmentation without edges [44] is used for comparison of segmentation
performance. Such an active contour method is chosen as they are recommended for images whose
foregrounds and backgrounds are statistically different and homogeneous similar to our source images.
The active contour-based segmentation function implemented is run for a larger number of iterations
to get a good segmentation response. Samples corresponding to 500 and 200 iterations are presented
as examples. The performance parameters say Accuracy, Sensitivity, F-measure, Precision, MCC,
Dice, Jaccard, and Specificity of segmentation are calculated using the function “EvaluateImage
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SegmentationScores” for the two different segmentation steps and it is found that U-NET outper-
formed the traditional active contour-based segmentation. Fig. 7 reveals the comparison of accuracy
achieved in the case of using Active contour and U-NET algorithms for segmentation. Whereas the
image outputs in Figs. 8 and 9 show the input image and the output images corresponding to the
Benign and Malignant classes after being segmented by the Active contour model and Figs. 10a and
10b reveal the segmentation results from the UNET model. Table 5 presents the performance metrics
of the segmentation step.

Test Image 1 Test Image 2
U-NET 98 98.5
Ac�ve contour 86 87
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Figure 7: Graphical representation between U-NET and active contour

Figure 8: Active contour-based segmentation on Benign

Figure 9: Active contour-based segmentation on Malignant



1894 CMC, 2024, vol.79, no.2

 (a) The segmented output of benign  (b) The segmented output of malignant 

Figure 10: (a) The segmented output of benign. (b) The segmented output of malignant

Table 5: Evaluation metrics depicting the performance of segmentation techniques

Evaluation metrics
(%)

Image-1 Image-2

Active contour model U-NET model Active contour model U-NET model

Accuracy 86 98 87 98.5
Sensitivity 75 98 81 97
Specificity 87 98 89 98
F-measure 87 99 86 98
Precision 86 91 84 95
MCC 79 94 86 94
DC 89 97 89 98
Jaccard index 89 98 91 97

5.3.2 Comparison of Classification Accuracy by Different Machine Learning Classifiers

A Multi-scale wavelet transform with a window size of 5, window spacing of 5, and a sampling
frequency of 50 is used to extract the features of the image dataset say Energy, Variance, Standard
Deviation, and Waveform Length. A Grey Level Co-occurrence matric is created for the images
as GLCM is a direct indication of the horizontal proximity of the pixels and thus could better
reveal the correlation between the pixels in an image. As a classification of the lesions mainly
depends on the texture of the image, the texture features of the image say contrast—a measure of
the variance, correlation—probability of occurrence, energy—the sum of the square of each element,
homogeneity—the closeness of each element is extracted from the properties of GLCM matrix.

Feature selection by Leave one-out cross-validation and genetic algorithm is done followed by
a classification task to determine the best feature selection algorithm and classifier for the hybrid
model. LOOCV feature selection uses the mean squared error values as the determining factor to
select a feature and the different classifiers are run to determine the classification accuracy. Genetic
algorithm is an evolutionary algorithm though initially developed to obtain optimized solutions, that
are found effective in selecting the best features for classification tasks. The selection operator finds
the best fitting features whereas the mutation and cross-over operators diversify the search space. The
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classification accuracy is considered as the fitness function to determine the features to be selected
for classification. Classification of the images by three classifiers random forest, neural network, and
bagging tree is carried out to determine the best classifier.

The performance of the classifier for different combinations of feature extraction, feature selec-
tion, and classification resulted in running 12 different combinations of experiments, and the corre-
sponding performances are measured by parameters say Accuracy, sensitivity, specificity, and ROC.
Accuracy, sensitivity, and specificity are measures based on confusion matrices whereas ROC is
measured from the ROC curves. Receiver Operating Characteristics ROC is a graphical performance
measure which represents the performance of the classifier over a range of true positive rate vs.
false negative rate. A good classifier will have a ROC above 95% and the area under the ROC
curve will be nearing 1, i.e., with an AUC value nearing 1. The ROC curves for the 12 different
experiments are depicted in Figs. 11a to 11l. The performance of the classification task is represented
graphically in Fig. 12 and Table 6 provides the observed values of performance parameters for
different combinations of feature extraction algorithms, feature selection algorithms, and classifiers. It
highlights the varying performance across different scenarios, emphasizing the Bagging Tree classifier’s
superiority in several cases.

(d)                                                  (e)                                                    (f) 

Random Forest                               Neural Network                           Bagging Tree 

(a)                                             (b)                                             (c) 

Figure 11: (Continued)
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(g)                                                    (h)                                                   (i) 

(j)                                                   (k)                                                    (l) 

Figure 11: (a–c) ROC curves obtained when wavelet transformed feature extraction and LOOCV-based
feature selection are used for classification. (d–f) ROC curves obtained when wavelet transformed
feature extraction and Genetic Algorithm based feature selection is used (g–i) ROC curves obtained
when GLCM based feature extraction and LOOCV based feature selection (j–l) ROC curves obtained
when GLCM based feature extraction and Genetic Algorithm based feature selection
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Figure 12: Accuracy of the classifiers
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Table 6: Observed values of performance parameters on different classifiers

Feature
extraction

Feature
selection

Classifier Accuracy Sensitivity Specificity AUC of
ROC

Wavelet LOOCV Random forest 88.4 94.18 91.27 0.95
Bagging trees 98.81 94.10 96.12 0.99
Neural network 85.4 83.59 85.16 0.97

Genetic
algorithm

Random forest 90.5 93.28 88.90 0.97
Bagging trees 99.3 98.98 97.10 0.98
Neural network 71.4 84.31 87.90 0.96

GLCM LOOCV Random forest 72.2 66.11 88.71 0.84
Bagging trees 99.7 99.00 99.00 0.98
Neural network 71.6 69.29 84.02 0.84

Genetic
algorithm

Random forest 84.5 81.49 94.86 0.94
Bagging trees 99.9 99.50 99.50 0.97
Neural network 95.9 95.29 88.50 0.95

The comparison of various performance parameters from Table 6 reveals that the classification
by the Bagging Tree algorithm consistently outperforms Random Forest and Neural Network when
features were extracted and selected using GLCM and GA.

5.3.3 Comparison of the Proposed Model with Models Existing in the Literature

To evaluate the performance of our proposed method, we have conducted a comparative study
with different research papers and existing techniques. Some of these papers employed similar
techniques but with different algorithms [21,23,45,46], while others explored ensemble methods
with distinct datasets [29] and [47]. Table 7, provided below, showcases our proposed method’s
performance in comparison to other studies. The proposed method consistently outperforms existing
work, achieving superior accuracy levels. This comparison highlights that the proposed approach,
which combines U-NET, Genetic Algorithm, and Bagging Trees, achieved the highest accuracy of
99.9% which surpasses the performance of other techniques and underscores the effectiveness of our
methodology.

Table 7: Comparative study with existing methods

Work Method Accuracy

Proposed method eSRAD, U-NET, Genetic algorithm, Bagging tree 99.9%
Chithrakkannan et al. [2] GLCM 96%
Byra et al. [3] Selective Kernel U-NET 97.9%
Tarighat [23] U-NET 91%
Naveed [39] Random forest 98%
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The proposed model could achieve the highest accuracy of 99.9% due to its inherent tailored
image processing stages. The pre-processing and the subsequent image-processing stages are carefully
curated after comparing the most effective algorithms in each stage. The highlighting features that
pawed way for achieving this high result include (i) eSRAD filtering: Ultrasound images are corrupted
by speckle noise and hence effective speckle reduction is carried out by an enhanced Speckle Reducing
Anisotropic Diffusion filter with diffusion coefficients tailored by an instantaneous coefficient of
variance, ICOV and the output PSNR reveals the effectiveness of the eSRAD filtering (ii) 5-level deep
U-NET based segmentation that could segment the lesions which are proven from the accuracy of the
results achieved and (iii) ensemble-based bagging tree classifier that utilizes an ensemble of different
classifiers to predict the classifier with the highest probable prediction accuracy. Thus, the trained
hybrid model could make predictions with the highest accuracy.

6 Conclusion and Future Scope

The research heralds a ground-breaking methodology for breast ultrasound image classification,
presenting innovative approaches and demonstrating remarkable achievements. The hybrid model,
comprising Enhanced SRAD for speckle noise reduction, U-NET-based segmentation, Genetic
Algorithm-driven feature selection, and classification employing Bagging Trees, stands as a testament
to meticulous development through rigorous comparisons, with the overarching aim to enhance the
accuracy and efficiency of ultrasound image classification. The culmination of these efforts resulted
in an astounding 99.9% accuracy rate in classifying breast lesions into normal, malignant, or benign
tissues. The significance of our research lies in its potential to revolutionize breast cancer diagnosis,
promising increased accuracy and efficiency in clinical settings.

The main highlights of our work revolve around Enhanced SRAD’s noise reduction capabilities,
the precision of U-NET-based Segmentation, the efficacy of Genetic Algorithm-driven Feature
Selection, and the robustness of Bagging Trees Classification. However, our study is not without
limitations. Expanding the dataset to encompass a broader and more diverse range of ultrasound
images presents a critical avenue for further validation of the robustness and generalizability of
our methodology. A more extensive dataset can fortify the model’s capabilities to adapt to varied
scenarios and patient demographics, enhancing its real-world applicability and reliability. Moreover,
while our methodology has showcased impressive accuracy, continual refinement and optimization
remain imperative. Efforts to reduce computational overhead while maintaining or even enhancing
accuracy will pave the way for more seamless integration into clinical practice.

In the near future, we plan to perform collaborations with medical institutions for real-time
validation and integration of the proposed methodology into clinical workflows that can propel its
adoption and ensure its utility in aiding healthcare professionals. And, in addition, there is a plan to
test and validate the proposed hybrid methodology on more advanced datasets.
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