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ABSTRACT

The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement
of deep learning algorithms, yielding outstanding achievements across diverse domains. Nonetheless, self-attention
mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.
In response, this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network (DSLD),
which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.
Additionally, the model leverages the joint correlation information of labels and data to introduce the computation
of text representation, correcting semantic representation biases in the data, and increasing the accuracy of semantic
representation. Ultimately, the model computes the corresponding classification results by synthesizing these rich
data semantic representations. Experiments on seven benchmark datasets show that our proposed model achieves
competitive results compared to state-of-the-art methods.
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1 Introduction

The Transformer model has introduced a groundbreaking paradigm in deep learning architec-
tures, leading to considerable advancements in a multitude of tasks [1,2]. The core of the Transformer
architecture is the self-attention mechanism, a pivotal innovation in model architecture. This mech-
anism dynamically isolates essential features and substantially enhances model performance across
numerous natural language processing (NLP) domains, thereby becoming an integral component of
contemporary deep learning frameworks [3].

The computational structure of self-attention, as proposed in the Transformer model by Vaswani
et al., merges the benefits of context feature aggregation with the parallel computation of essential
attributes. This enables the dynamic NLP capture of pertinent information within the data, leading to

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.048135
https://www.techscience.com/doi/10.32604/cmc.2024.048135
mailto:shangwenqian@cuc.edu.cn
mailto:yitong@mailbox.gxnu.edu.cn


1940 CMC, 2024, vol.79, no.2

significant improvements across a variety of tasks [4]. However, the models’ computational efficiency
when managing large-scale data dependencies during training remains a challenge. Addressing this,
Dai et al. proposed an innovative approach that merges block recursion with relative positional
encoding to enhance computational performance [5]. To more efficiently extract fundamental semantic
elements from text, Zhou et al. integrated an attention mechanism with a Bidirectional Long Short
Term Memory (Bi-LSTM) network, resulting in a transparent architecture that delineates each word’s
contribution to the model’s inferential outcomes [6].

Despite extensive refinements to the self-attention mechanism within deep learning models by
various researchers, models that depend exclusively on this mechanism frequently fail to adequately
capture the intricate nuances of context present in extensive text corpora. Consequently, this limitation
hampers their efficiency in handling lengthy sequences [7]. Additionally, the word vectors utilized
by self-attention for semantic analysis are typically derived from broad, open datasets. While this
training approach enhances the versatility of word vectors across a range of domains and tasks, it also
inadvertently reduces the precision of semantic representations needed for specialized applications
[8,9]. Such a trade-off between versatility and specificity detrimentally affects the model’s proficiency
in detailed semantic interpretation [8].

To enhance the semantic representation capabilities of the self-attention mechanism and alleviate
issues of semantic inaccuracies caused by single input sources, Wang et al. introduced a label
embedding framework that incorporates label information during the model’s computation process
to improve the computational efficiency of textual semantics [10]. Nonetheless, label information’s
direct contribution to the decision-making phase provides only an indirect influence on the semantic
representation learning process. Liu et al. addressed these limitations by employing deep canonical cor-
relation techniques to couple label and textual semantic information, which enhanced model perfor-
mance but also introduced complexity and computational demands [11]. In response, Liu et al. devised
a model structure for collaborative encoding of texts and labels, which succeeded in capturing their
prominent features and delivering superior text classification results [12]. While these methods have
made progress in the integrated representation of text and labels, they have not fully addressed
the issues stemming from inherent data biases and context sensitivity, nor have they fundamentally
improved the intrinsic shortcomings of the self-attention mechanism in capturing coherent and deep
semantic structures.

Considering previous research and after a thorough analysis of the challenges existing models
face in computing data’s semantic representation, and inspired by the brain’s strategy for processing
textual information—a cognitive shift from global to detailed understanding [13]. To address these
issues, we introduce the DSLD, an advanced deep learning framework. This framework is designed
to synergize context embedding strategies with self-supervised learning processes, thereby effectively
narrowing the gap between detailed focus on specific features and the capture of broad contextual
semantics. The DSLD architecture aims to mitigate data’s inherent biases and increase sensitivity to
contextual variations while enhancing the self-attention mechanism’s ability to comprehend coherent
and hierarchically rich semantic structures.

In this paper, we propose the DSLD model, which features two principal components: The
Diffusion Sampling Encoder and the Label-Driven Encoder. The Diffusion Sampling Encoder
incorporates a novel multi-channel diffusion sampling convolutional attention mechanism that tran-
scends conventional attention models. It enhances semantic precision by distributing focus across
various information channels, thus providing a more nuanced representation of data semantics. This
advancement not only expands the model’s semantic comprehension but also improves its flexibility
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in adapting to complex data configurations. The Label-Driven Encoder utilizes a targeted learning
approach, directing text representation with data labels and seamlessly melding label information
into the attention process. This integration grants precise control over label-specific features within
semantic learning, markedly refining the model’s semantic accuracy. Such depth of integration propels
the model beyond mere label identification towards a more profound semantic insight, facilitating a
smooth transition from ambiguous to definitive text understanding. The innovative DSLD model
approach surpasses the constraints inherent in conventional methodologies and extant attention
mechanisms, offering a more nuanced and comprehensive linguistic semantic interpretation for text
classification tasks. Extensive evaluations conducted on seven benchmark datasets substantiate the
efficacy of the DSLD framework.

For this paper, the main contributions are as follows:

1. To heighten the model’s responsiveness to variances in contextual semantics during text com-
putation, we have developed a multi-channel diffusion sampling attention computation framework.
Diverging from conventional self-attention mechanisms, this approach effectively captures a more
nuanced spectrum of semantic representations within texts of differing informational densities. It also
exhibits a stronger capacity for processing extensive semantic dependencies within the text.

2. To reduce the intrinsic bias in data representation induced by open training and improve the
model’s ability to process comprehensive data semantics, we have devised a label-driven attention
computation strategy. This novel approach exploits the correlation between labels and data to enable
input data to assimilate label information, thereby diminishing representational bias. Concurrently,
incorporating label information into the semantic representation learning process of the data bolsters
the accuracy of the model’s semantic calculations.

3. We have designed and implemented the DSLD neural network model, incorporating a diffusion
sampling encoder and label-driven encoder, and demonstrated its superior performance over other
deep learning text classification methods on seven benchmark datasets.

The remainder of the paper is organized as follows: Section 2 provides a literature review of deep
learning models utilizing attention mechanisms and label embedding methods in text classification
tasks. Section 3 offers a comprehensive introduction to the proposed DSLD model. Section 4 presents
the experimental results, comparing the proposed model against various baseline models to assess its
performance. Finally, the paper concludes with a summary.

2 Related Work
2.1 Attention Mechanism

The pursuit of accurate semantic representation in text classification contends with semantic com-
plexity and high-dimensional, sparse text data. Among various approaches, the attention mechanism
has been a critical advancement, enabling deep learning models to concentrate on salient features
during inference, and has gained traction in text classification research.

As depicted in Fig. 1, the attention mechanism functions as an intricate selection process. It
computes attention scores by contrasting a query with corresponding keys, normalizes these scores,
and applies the resultant attention weights to values, producing the final attention output. This method
excels in its targeted processing, dynamically allocating computational focus to information pertinent
to the current neural network task, avoiding the exhaustive processing of all inputs.

Beyond the self-attention structure previously described, the application of soft attention tech-
niques has made significant advances in the calculation of contextual semantics for input sequences
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[14]. The efficacy of these mechanisms is attributed to the formulation of context vectors, which
are computed as a weighted sum of all hidden states within the sequence. Liu et al. furthered the
progress in this domain by introducing a hybrid model that amalgamates multi-stage attention with
Temporal Convolutional Networks (TCN) and Convolutional Neural Networks (CNN). This model
not only elevates computational parallelism by leveraging TCN but also accentuates stage-specific
discriminative features through the strategic integration of attention within various CNN layers, thus
significantly refining model precision [15]. To address the challenges posed by incomplete information
more capably, Chen et al. developed a neural network architecture that synthesizes semantic priors with
profound attention residual groups. The architecture employs these semantic priors to infer missing
information via attention mechanisms [16].

Figure 1: The processing flow of attention mechanism data

Previous research has predominantly centered on improving the precision of semantic information
computation by layering numerous attention levels and amalgamating multiple model structures. In
contrast, our study introduces a model architecture capable of deriving richer semantic information
through a singular attention layer, harnessing a multi-channel diffusion sampling technique. This
method affords the model a comprehensive and detailed semantic grasp of text data.

2.2 Label Embedding

Label embedding, a technique that incorporates label information into models, has proven
markedly effective across various domains [17–19]. This approach facilitates the enhancement of model
performance by utilizing label information in data inference. Following its successful implementation
in image processing, exploration of label information’s applications in natural language processing
has commenced. Tang et al. broke new ground with semi-supervised learning in a text embedding
model that employs both labeled and unlabeled data, thereby mapping this information within
expansive heterogeneous text networks [20]. In the multi-task learning domain, Zhang et al. leveraged
semantic task correlations to develop a multi-task label embedding model, recasting classification
as a vector matching endeavor and thus fortifying label semantic representations while mitigating
the information loss associated with independent task labels [21]. Nonetheless, earlier investigations
concentrated exclusively on the computational relationships between labels and data, overlooking
the intricate interrelations among labels. To rectify this, Pappas et al. introduced a joint input label
model, enhancing and surmounting the constraints of analogous antecedent models [22]. Despite
this progress, label information has typically been embedded separately from feature computation
in extant research. Furthering this work, Liu et al. crafted a semantic computation framework
integrating label embedding with bidirectional attention to discern the semantic interplay between
granular token text representations and label embeddings, thereby refining the model’s computational
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efficacy [23]. Responding to earlier research that zeroed in on extracting distinct text representations,
Liu et al. envisioned a collaborative attention network that incorporates label embedding, allowing the
model to account for pertinent interrelations between labels and data [12].

Despite the commendable achievements of prior research, it has neglected semantic biases that
arise when input data, trained in open domains, undergo semantic representation computation. To
address this shortcoming and achieve a deeper integration of label information with data semantics,
this study presents an innovative label embedding technique. This method augments the representation
of the original data by determining the combined semantic information of the text and its associated
labels. Subsequently, it fuses this label information with the data’s semantic computations through
meticulous attention-based processes. This strategy results in a precise inclusion of label semantics
into the computations of text representation, thus enhancing the model’s classification precision.

3 Diffusion Sampling Label-Driven Neural Network

In this study, we introduce the DSLD model, which performs comprehensive multi-layered seman-
tic computations of input contexts while integrating label information for joint semantic analysis. The
model’s architecture is depicted in Fig. 2. As the data is fed into the model, it is concurrently processed
by the Diffusion Sampling Encoder and the Label-driven Encoder, performing semantic analyses
across various stratifications and from a holistic to a detailed approach, respectively. Ultimately, the
classification layer amalgamates the computed semantic vectors to ascertain the likelihood that the
input corresponds to each category.

Figure 2: The architectural diagram of the DSLD model
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The model consists of two primary components:

(1) Diffusion Sampling Encoder, which, unlike conventional attention-based methods that directly
process data, employs a multi-channel diffusion sampling method to capture contextual semantic
information more exhaustively by gathering related information matrices across different informa-
tion densities. Following this, convolutional attention synthesizes the matrices to produce semantic
representation vectors using attention mechanisms.

(2) Label-driven Encoder, recognizing that label information is instrumental in semantic compu-
tations and provides a significant direction for semantic representation. This component calibrates
the representation of data by aligning it with the corresponding label information, thus addressing the
semantic biases that may result from the training of data in open domains. Moreover, it incorporates
label information into the semantic computation process via the attention mechanism to bolster
computational precision.

3.1 Diffusion Sampling Encoder

Effective text classification relies on contextual information, which constitutes a crucial semantic
component in textual data. Therefore, this study integrates an attention mechanism to calculate
the features of the input data. In contrast to conventional attention-based methods, this study
employs a multi-channel diffusion sampling approach to capture contextual semantic information
more comprehensively by acquiring relevant information matrices at multiple information densities.
Subsequently, these matrices undergo synthesis through the use of convolutional attention, resulting
in the computation of the semantic representation vector for the input data.

3.1.1 Diffusion Sampling

This paper introduces the diffusion sampling method to enhance semantic information extraction
by sampling the original data and generating datasets with diverse information densities [24]. This
enables the utilization of attention mechanisms for computing semantic information across varied
data densities.

In a formal manner, for an input sequence s consisting of m word tokens, after being represented
by a word vector encoder with encoding dimension d, a numerical matrix X input ∈ �m×d is obtained.
Subsequently, a sampling matrix M ∈ �m×d, of the same dimensionality, is generated to correspond to
X input. The parameters within the sampling matrix M follow a binomial distribution with parameters
n and p, denoted as M ∼ B(n, p). Here, n being equal to 1 implies that the parameters are sampled
only once, and p represents the probability of parameter sampling. In this case, the expected value
E(M) of the sampling matrix M is equal to p. The sampled numerical matrix X s is obtained by
performing element-wise Hadamard product (denoted as “�”) between the numerical matrix X input

and the sampling matrix M, as shown in Eq. (1).

X s = X input � M (1)

By progressively stacking the sampling matrices, one can obtain the numerical matrix X t
s at the

corresponding iteration step t. The computational procedure is detailed as shown in Eq. (2).

X t
s = X t−1

s � M (2)
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When the initial information density, denoted as S(X input), of the original numerical matrix is set
to 1, the subsequent information density, S(X t

s), across various iteration steps is shown in Eq. (3).

S
(
X t

s

) = S
(
X t−1

s

) ∗ E (M) = 1 ∗ E (M)
t = pt (3)

The introduction of the sampling matrix M enables the generation of numerical matrices with
varying information densities across different iteration steps. To reduce the dependence of linear
diffusion sampling methods on the sampling order, this paper further proposes a multi-channel
sampling calculation method. This method adopts a parallel approach while conducting diffusion
sampling on the data through multiple channels, as shown in Fig. 3. The calculation process of the
sampled value matrix X c

s in each channel is shown in Eq. (4).

Figure 3: Calculation flow of parallel diffusion sampling and multichannel convolutional attention

X c
s = X input � M c (4)

In the formula, M c represents a sampling matrix with varying sampling probabilities in different
channels. The parameters within the sampling matrix follow a binomial distribution with parameters
n and pc, denoted as M c ∼ B (n, pc). Here, when n equals 1, it signifies that the parameters are sampled
only once at random, while pc represents the probability of parameter sampling within channel c. The
calculation process for pc is shown in Eq. (5).

pc = α

(
Cnum − c

C

)
+ β (5)

In this formula, Cnum signifies the total channel count, c indicates the current channel index, while α

and β comprise a set of hyperparameters responsible for governing the channel’s sampling probability
within the interval [0, 1].

Following enhancement, the refined diffusion sampling process guarantees the mutual indepen-
dence of information density computation across channels, eliminating reliance on sequential order.
Assuming the information density of the original numerical matrix, denoted as S

(
X input

)
, equals

1, we calculate the information density of distinct channel-specific numerical matrices, S(X c
s), as
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shown in Eq. (6).

S
(
X c

s

) = S
(
X input

) ∗ E (M c
) = 1 ∗ pc = pc (6)

3.1.2 Multichannel Convolutional Attention

After applying the previously mentioned diffusion sampling method, we can acquire numerical
matrices labeled as X c

s with diverse information densities. Next, once we have these numerical matrices,
we can calculate the semantic information embedded in the data by employing attention mechanisms.
In contrast to the traditional approach of conducting attention computations on raw data, the
utilization of diffusion-sampled data manifests varying information densities, thereby facilitating the
extraction of more comprehensive semantic information.

In conventional attention mechanisms, before computation, input data undergoes three indepen-
dent linear transformations, resulting in new data representations Q ∈ �q×dq , K ∈ �k×dk , and V ∈ �v×dv .
Typically, q = k = v, and dq = dk = dv. The calculation of attention consists of two primary steps.
First, we compute the attention matrix A using Q and K , as shown in Eq. (7). Then, we obtain the
final attention output by matrix-multiplying the attention matrix A with V, as shown in Eq. (8).

A = softmax
(

QKT

√
dk

)
(7)

Attention = AV (8)

In this paper, we propose a multi-channel convolutional attention computation method tailored
for analyzing multi-channel data acquired via diffusion sampling. We utilize this method to calculate
attention matrices, denoted as Ac, for various data channels. Concurrently, it aggregates these channel-
specific attention matrices into a unified attention matrix, denoted as Acount, employing convolutional
techniques. Subsequently, it utilizes the merged attention matrix and input data to compute informa-
tion weighted by attention relationships. The procedure for obtaining attention matrices, denoted as
Ac, across various data channels, is shown in Eqs. (9) to (11).

Qc = Linearc
(
X c

mask

)
(9)

K c = LinearK
(
X c

mask

)
(10)

Ac = softmax
(

QcK cT

√
dk

)
(11)

In the formula, Qc ∈ �q×dq represents the new representation of the data obtained by computing the
numerical matrix X c

s sampled from channel c through the corresponding linear layer Linearc, where
c denotes the channel index. Similarly, K c ∈ �k×dk represents the new data representation obtained
by computing the numerical matrix X c

s sampled from channel c through the linear layer LinearK . It
is important to note that the linear layer LinearK is shared across different data channels. Here, dk

denotes the data dimensionality of K c. In this context, Qc ∈ �q×dq , K c ∈ �k×dk , and V ∈ �v×dv all have
the same dimensions, where q = k = v = m, and dq = dk = dv = d.
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The attention matrix Ac ∈ �m×d After that, a comprehensive attention matrix Acount ∈ �m×d. The
calculation process is shown in Eq. (12).

Acount
i,j = σ

(∑C

c

∑KW

w

∑KH

h
Ai+w,j+h,c · Fw,h,c + b

)
(12)

In the formula, i and j denote the positional coordinates of parameters within the matrix, σ(·)
represents the activation function, C signifies the number of channels, KW represents the width of the
convolutional kernel, KH represents the height of the convolutional kernel, F ∈ �KW ×KH ×C denotes the
convolutional kernel, and b denotes the bias term corresponding to the convolutional kernel.

The comprehensive attention matrix, denoted as Acount, obtained through convolutional oper-
ations, and the representation of the original data processed through a linear layer, as shown in
Eq. (13), are combined to compute the output of multi-channel convolutional attention, denoted as
AttentionCC

(
X input

)
, as shown in Eq. (14).

V = LinearV
(
X input

)
(13)

AttentionCC

(
X input

) = AcountV (14)

As previously elucidated, the diffusion sampling encoder leverages the diffusion sampling tech-
nique for gathering textual data with diverse information densities. It subsequently conducts a thor-
ough computation of semantic information using a multi-channel convolutional attention mechanism.

3.2 Label-Driven Encoder

This study endeavors to correct semantic bias in data representation and effectively incorporate
label information into semantic computation by proposing a label-driven encoding methodology.
Initially, the approach encodes the label information, following which an attention mechanism
computes attention scores to assess the relevance of the input text to each label. Subsequently, these
scores are harnessed through attention-based methods to facilitate the feature extraction process for
the input text, culminating in the production of a representative vector for the text.

To encode meaningful correlations between labels and input data, this study introduces an
attention mechanism for computing the relevance between context within the text and the associated
labels. For a given input word sequence s ∈ �m and a sequence of task labels Y ∈ �L, they are initially
mapped into word embedding sequences X input ∈ �m×d and label embedding sequences Y embed ∈ �L×dY ,
respectively. Subsequently, a trainable weight matrix WX ∈ �d×dY is utilized to compute a scoring
matrix XScore ∈ �m×dY representing the relevance between the data and labels, as shown in Eq. (15).
Based on the scoring matrix XScore and the label embedding sequence Y embed, the attention matrix
AXY ∈ �m×L is computed, reflecting the attention between data and labels, as shown in Eq. (16).

XScore = softmax
(
X inputWX

)
(15)

AXY = XScoreY
T
embed (16)

During the attention computation for data, inputs undergo an initial linear transformation to be
represented in a new vector space, expressed as QX ∈ �m×dq and VX ∈ �m×dv . This facilitates the learning
of nonlinear semantic information. Concurrently, the numerical matrix AXY , which calculates the joint
relevance with labeled data, undergoes a similar transformation and is represented as KA ∈ �m×dk ,
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enabling the computation of joint relevance’s semantic representation within this new vector space.
In the course of attention computation, the transformed QX and KA—corresponding to the relevance
matrix—are subject to matrix multiplication to establish attention relations among tokens, influenced
by label information. Following normalization via the softmax function, this product is then combined
with VX to yield a new numerical representation of the data, reflecting the attention disparities among
tokens. The entirety of this procedure is delineated in Eqs. (17)–(20).

QX = Linear
(
X input

)
(17)

VX = Linear
(
X input

)
(18)

KA = Linear (AXY) (19)

AttentionXY

(
X input

) = softmax
(

QX KT
A√

dk

)
VX (20)

Within the model’s classification layer, the semantic features discerned by both the diffusion
sampling encoder and the label-driven encoder are consolidated and articulated via a linear layer,
which facilitates the computation of the predicted outcome, denoted as ypred. Subsequently, the loss
function is determined utilizing the cross-entropy technique, as delineated in Eq. (21). In Algorithm
1, we describe the process of the algorithm in the form of pseudocode.

Loss = −
∑L

i
yi · log

(
yi

pred

)
(21)

Algorithm 1: The calculation process of DSLD.
Input: Dataset S = {(X i, yi)}|N|

i=1;
Output: Label vector ypreb of the test instance;
1: for i = 0 → iterationnumdo

// Diffusion Sampling Encoder
2: Obtain X i

s according to Eq. (4);
3: Ac ← ∑C

i Score (LinearQ (X i
s), LinearK (X i

s))

4: Acount ← Conv2D (Ac)

5: AttentionCC ← Acount ∗ LinearV (X i)

// Label-Driven Encoder
6: Y embed ← Embeding (Y)

7: AXY ← Softmax(X input ∗ WX) ∗ YT
embed

8: Obtain QX , VX , KA according to Eqs. (17)–(19);
9: AttentionXY ← Attention_layer(QX , VX , KA)

// Classification Layer
10: ypreb ← Score (LinearQ (AttentionCC + ttentionXY))

11: end for
12: Loss ← −∑L

i yi · log
(
yi

pred

)
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4 Experimental Results and Analysis
4.1 Dataset

To assess the effectiveness of the model, this study conducted experiments on seven publicly
available datasets, namely, AG News, Yelp Full Review, Yelp Polarity Review, Amazon Full Review,
Amazon Polarity Review, DBPedia, and Yahoo! Answers. A detailed description of these datasets is
provided in Table 1.

Table 1: Count the number of samples in the training set and test set in each data set, and the length
of the longest sample in the data set

Dataset Classes Training Test Longest length Task

AG news [25] 4 120 k 7.6 k 135 Topic
Yelp polarity [26] 2 560 k 38 k 1104 Sentiment
Yelp full [26] 5 650 k 50 k 1175 Sentiment
Amazon polarity [27] 2 3600 k 400 k 522 Sentiment
Amazon full [27] 5 3000 k 650 k 520 Sentiment
Yahoo! Answers [26] 10 1400 k 60 k 3998 Topic
DBPedia [28] 14 560 k 70 k 1302 Ontology

4.2 Baseline

In this experiment, a total of five deep learning models that achieved the best results in the task
were set as the baseline model.

Transformer [4]: This model features an encoder-decoder architecture and stands out as the
pioneering fully attention-based model. Its key strength lies in its efficient parallelization of semantic
information computation within textual context.

LBCNN [29]: LBCNN, a label-based convolutional neural network, can capture the importance
of individual words in text sequences based on labels. Additionally, it identifies the most influential
semantic features within word vectors.

LEAM [30]: This model introduces an attention framework to measure the compatibility between
text sequences and labels, thereby facilitating the assessment of embedding compatibility.

WWEM [31]: WWEM incorporates term weighting schemes and n-gram methods, enabling
the model to consider both word importance and word order information during the learning of
text semantics. This results in the generation of information-rich representations for sentences or
documents.

CNLE [12]: CNLE encodes both text and labels into joint representations, fostering interaction
between them. This approach enables the model to consider pertinent aspects of both text and labels.

Gated CNNs [32]: The model integrates a gating mechanism into the CNN architecture, which
serves to facilitate the efficient transfer of information from preceding layers to the ones that follow.

CWC [33]: The model applies capsule networks to relationship modeling between word embed-
dings and introduces a novel routing algorithm based on k-means clustering theory to fully explore
the relationships among word embeddings.
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SLCNN [34]: SLCNN represents documents as three-dimensional tensors within the network,
allowing for the comprehensive utilization of positional information in text sentences. This enables
the extraction of additional features by analyzing neighboring sentences.

4.3 Experimental Settings

In the model’s experimental configuration, we set the learning rate to 0.0001, employed a batch size
of 128, and utilized a hidden size of 300. We applied a dropout rate of 0.5 during training, which was
conducted for 30 epochs. The dimensions of both word embeddings and label embeddings were fixed
at 300. For all convolutional neural networks (CNNs) incorporated into the model, we uniformly set
the kernel sizes to 3. Model optimization was carried out using the AdamW optimizer. Additionally,
all experiments were performed on an NVIDIA GTX 4090 GPU platform equipped with 24 GB of
memory.

4.4 Result and Analysis

Table 2 demonstrates the superior predictive performance of the DSLD model proposed in this
paper across all seven benchmark datasets in our experiments. In comparison to the previous optimal
model CNLE, the DSLD model exhibited accuracy improvements of 0.16% on the AG News dataset,
0.12% on the Yelp P. dataset, 0.04% on the Yelp F. dataset, and 0.13% on the Amz. P. dataset. Moreover,
the DSLD model achieved an accuracy improvement of 0.13% on the Amz. F. dataset. Additionally,
the DSLD model outperformed the LEAM model by 0.05% on the Yah. A. dataset and surpassed the
LBCNN model by 0.47% on the DBP. dataset. Notably, the DSLD model demonstrated the largest
uplift of 0.47% on the Yah. A. dataset, thereby yielding the highest performance improvement among
all seven datasets. Across the remaining datasets, the DSLD model consistently displayed accuracy
enhancements ranging from 0.1% to 0.5%. These findings collectively establish the proficiency of the
DSLD model in accurately classifying text for a variety of text classification tasks, including topic
categorization and sentiment analysis.

Table 2: Classification experiment results of each model in seven benchmark datasets

Model AG news (%) Yelp P. (%) Yelp F. (%) Amz. P. (%) Amz. F. (%) Yah. A. (%) DBP. (%)

Transformer 88.81 96.13 65.34 90.40 54.64 68.89 96.61
LEAM 92.45 95.31 64.09 – – 77.42 99.02
WWEM 93.20 94.50 61.35 – – 73.50 98.73
CNLE 94.00 97.13 68.15 96.23 64.18 75.78 99.17
LBCNN 92.90 95.82 64.38 – – 74.89 99.21
Gated CNNs 90.73 93.75 61.42 – – – 98.51
CWC 92.39 96.48 65.85 94.96 60.95 73.85 98.72
SLCNN 91.26 96.01 64.46 93.91 58.11 – 98.76
DSLD (Ours) 94.16 97.25 68.19 96.36 64.23 77.89 99.33

As shown in Fig. 4, the DSLD model exhibits the highest accuracy improvement on the Yah. A.
dataset. The rationale behind this enhancement lies in the relatively longer average length of sample
data in the Yah. A. dataset compared to other datasets. This observation suggests that the model
possesses proficiency in capturing semantic information from extended textual contexts.
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Figure 4: Improvement effect of DSLD model in different benchmark datasets

As shown in Fig. 5a, the DSLD model exhibits the highest improvement on the AG News
dataset compared to other models that incorporate label information into text semantic computation.
This observation suggests that, in contrast to merely introducing label information into the model’s
computation process, the diffusion sampling encoder can provide the model with a richer set of
polysemous information for learning textual semantic representations. Furthermore, as shown in
Fig. 5b, compared with the four models using convolutional methods, the DSLD model achieves an
accuracy boost. This phenomenon underscores the capacity of label-driven encoders to compensate
for certain latent semantic information that may be absent in the original text.
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Figure 5: (a) Comparison of accuracy of models using label information in different benchmark
datasets, (b) Comparison of the accuracy of the model using convolution method in different
benchmark datasets

4.5 Ablation Experiment

To assess the efficacy of individual components within the model and their impact on prediction
outcomes, this paper conducted ablation experiments. Ablation experiments entail removing specific
model components while preserving the overall model structure. Subsequently, the accuracy, precision,
recall, and F1 score of the modified model were compared to those of the DSLD model. A more
significant decline in performance indicates the greater importance of the removed component to the
DSLD model. Below, we introduce each modified model used in the ablation experiments:

Unlabeled-Driven Encoder: This model exclusively learns text features using the diffusion sampling
encoder, serving to evaluate the label-driven encoder’s effectiveness.
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No Diffusion Sampling Encoder: This model solely relies on the label-driven encoder for text
feature learning, allowing an assessment of the diffusion sampling encoder’s effectiveness.

Table 3 presents the findings of the ablation study, from which it is discernible that model
accuracy is reduced by 1.69% after the removal of the label-driven encoder from the DSLD model.
This reduction underscores the essential contribution of label information to the model’s semantic
processing. A more pronounced decline in accuracy, amounting to 2.45%, ensues upon the excision
of the diffusion sampling encoder, highlighting the pivotal role that the diffusion sampling method’s
semantic information plays in task outcome computations. These variances further reveal that the
semantic information derived through label involvement does not fully coincide with that procured
from the original data by the diffusion sampling encoder, indicating their potential for synergistic
integration.

Table 3: Ablation experiment results

Model Accuracy (%) Precision (%) Recall (%) F-score (%)

OnlyDSEncoder 92.47 92 92 92
OnlyLDEncoder 91.71 92 92 92
DSLD 94.16 94 94 94

4.6 Validation of Model Architecture

In the DSLD model architecture, as depicted in Fig. 1, the diffusion sampling encoder and the
label-driven encoder work concurrently to acquire semantic text representations. The output layer
integrates features learned by both encoders. To optimize the performance of the diffusion sampling
encoder and the label-driven encoder, this study investigates alternative model architectures. In the
following sections, we introduce sequential and cross-model architectures and present experimental
results in Table 4.

Table 4: Experimental results of model architecture

Model Accuracy (%) Precision (%) Recall (%) F-score (%)

DSEncoder-LDencoder 92.87 93 93 93
LDencoder-DSEncoder 92.32 92 92 92
Crossover model 92.79 93 93 93
DSLD 94.16 94 94 94

In sequential models, the input data undergoes an initial encoding through the first encoder, where
the output of the first encoder serves as input for the second encoder. This process facilitates the
acquisition of more profound semantic information. The structure of the sequential model, as shown
in Fig. 6. In cross-modal models, the label-driven encoder learns label-text-related features that actively
participate in the computation process of the diffusion sampling encoder. The cross-model structure
is shown in Fig. 7.
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Figure 6: Sequential model architecture diagram

Figure 7: Cross-model architecture diagram

Table 4 demonstrates that the DSLD model achieves the highest model architecture performance.
An analysis of this outcome reveals that in the sequential model structure when the diffusion
sampling encoder serves as the preceding layer encoder, the semantic relationships learned by the
subsequent label-driven encoder between text and labels cannot be effectively applied to compensate
for the semantic information encoded by the preceding layer encoder. Conversely, when the diffusion
sampling encoder functions as the subsequent layer encoder, it takes as input not the original data but
the semantic information represented after processing by the preceding layer encoder. The encoded
data, while more complex than the original input data, no longer reflects the same contextual
relationships found in the original data. As a result, this affects the model’s computational outcomes.
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In the cross-model structure, the label-driven encoder learns semantic features that are relatively
less diverse compared to the semantic information acquired by the diffusion sampling encoder.
Consequently, using the label-driven encoder as compensatory information to guide the diffusion
sampling encoder’s computations proves less effective than harnessing the richer semantic information
obtained through multi-channel sampling by the diffusion sampling encoder. Thus, both the label-
driven encoder and the diffusion sampling encoder independently acquire semantic representations of
input data, resulting in enhanced feature fusion at the classification layer.

5 Conclusion

In this study, we present the DSLD model which capitalizes on a multi-channel diffusion sampling
technique alongside attention mechanisms to discern intricate semantic information in data. The
model incorporates the synergistic relevance of labels and data to enhance the precision of semantic
representations generated by attentional processes. The DSLD model can capture long-distance
semantic dependency information in data while reducing the semantic bias caused by general word
vector representation and improving computational accuracy. The efficacy of the DSLD model has
been corroborated through trials on benchmark datasets for seven distinct text classification tasks.
While current applications of the DSLD model center on text classification, future work will more
thoroughly examine the roles of attention methods in semantic analysis. We anticipate extending this
model’s utility to more comprehensive tasks in sequential data analysis.
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