W. Computers, Materials & B
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2024.048408

ARTICLE Check for

updates

A Study on the Explainability of Thyroid Cancer Prediction: SHAP Values and
Association-Rule Based Feature Integration Framework

Sujithra Sankar'- and S. Sathyalakshmi’

'Department of Computer Applications, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
?Department of Computer Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
*Corresponding Author: Sujithra Sankar. Email: rp.19772009@student.hindustanuniv.ac.in

Received: 06 December 2023  Accepted: 29 February 2024  Published: 15 May 2024

ABSTRACT

In the era of advanced machine learning techniques, the development of accurate predictive models for complex
medical conditions, such as thyroid cancer, has shown remarkable progress. Accurate predictive models for thyroid
cancer enhance early detection, improve resource allocation, and reduce overtreatment. However, the widespread
adoption of these models in clinical practice demands predictive performance along with interpretability and
transparency. This paper proposes a novel association-rule based feature-integrated machine learning model which
shows better classification and prediction accuracy than present state-of-the-art models. Our study also focuses on
the application of SHapley Additive exPlanations (SHAP) values as a powerful tool for explaining thyroid cancer
prediction models. In the proposed method, the association-rule based feature integration framework identifies
frequently occurring attribute combinations in the dataset. The original dataset is used in training machine learning
models, and further used in generating SHAP values from these models. In the next phase, the dataset is integrated
with the dominant feature sets identified through association-rule based analysis. This new integrated dataset is
used in re-training the machine learning models. The new SHAP values generated from these models help in
validating the contributions of feature sets in predicting malignancy. The conventional machine learning models
lack interpretability, which can hinder their integration into clinical decision-making systems. In this study, the
SHAP values are introduced along with association-rule based feature integration as a comprehensive framework
for understanding the contributions of feature sets in modelling the predictions. The study discusses the importance
of reliable predictive models for early diagnosis of thyroid cancer, and a validation framework of explainability. The
proposed model shows an accuracy of 93.48%. Performance metrics such as precision, recall, F1-score, and the area
under the receiver operating characteristic (AUROC) are also higher than the baseline models. The results of the
proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.
The features {calcification} and {shape} consistently emerged as the top-ranked features associated with thyroid
malignancy, in both association-rule based interestingness metric values and SHAP methods. The paper highlights
the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning
predictions and the interpretability of this prediction which is required for real-world medical applications.
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1 Introduction

In Al-driven modern healthcare, the integration of advanced machine learning techniques has
brought forth a promising era of predictive modeling, offering the potential to revolutionise the
early diagnosis and treatment of complex medical conditions. Thyroid cancer stands as a significant
global health concern, necessitating precise and timely interventions. The estimated number of new
cases of thyroid cancer in 2023 is 43,720, and the estimated number of deaths is 2,120 according
to the American Cancer Society Cancer Statistics Centre [I1]. In these statistics, an astounding
71% are estimated as female patients. While machine learning models have exhibited remarkable
predictive performance in thyroid cancer detection, the complexity and opacity of these models pose
a considerable challenge when it comes to understanding their decision-making processes. This paper
deals with model interpretability in thyroid cancer prediction, with a primary focus on the application
of SHapley Additive exPlanations (SHAP) values as a powerful tool for unraveling the black-box
nature of these models [2]. In the following sections, the clinical significance of thyroid cancer, our
novel contribution of the association-rule based feature integration framework, association-rule based
feature-integrated model, and the potential of SHAP values to provide valuable insights into the
decision-making processes of popular machine learning algorithms are discussed.

1.1 Thyroid Cancer Prediction with Machine Learning Models

The thyroid gland, a butterfly-shaped organ located at the base of the neck, plays a pivotal role
in regulating various essential bodily functions through the secretion of thyroid hormones. These
hormones, primarily thyroxine (T4) and triiodothyronine (T3) are responsible for controlling the
body’s metabolism. They influence the rate at which cells use energy, help regulate body temperature,
maintain heart rate, and influence other critical processes. Thyroid cancer arises when there is
uncontrolled growth and division of abnormal thyroid cells. While most thyroid nodules are benign, the
early detection of malignant thyroid nodules is crucial for effective treatment and improved prognosis.
Hence, the development of accurate and reliable predictive models, often using machine learning
algorithms, has gained prominence in identifying thyroid cancer at an early stage, facilitating timely
intervention, and thus improving patient outcomes. Predictive models empower patients, contribute
to public health planning, and stimulate ongoing research and development in the field of thyroid
cancer. Machine learning predictive models offer diagnostic accuracy aiding healthcare professionals
in making decisions. This paper explores thyroid cancer prediction using machine learning models,
highlighting the significance of the explainable prediction of this disease.

1.2 Machine Learning Models and Explainability

Machine learning models have become indispensable tools in a wide range of applications,
from healthcare to autonomous vehicles and natural language processing. The challenge of model
explainability is an important concern when machine learning systems are deployed, especially in
domains where transparency, accountability, and trust are most valued. SHAP values enhance the
interpretability of machine learning models in the context of thyroid cancer diagnosis and prediction.
Researchers have been actively developing techniques to enhance the interpretability of machine
learning models, enabling users to understand how and why these models arrive at specific predictions
or decisions. Explainability is vital for building trust with end-users, and finding potential biases in
the AI model outputs. Thus, explainability is a very important part of AI models.

Conventional machine learning models, especially complex ones, face several challenges in terms
of interpretability, and this is particularly crucial in the context of clinical decision-making. Some
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challenges and reasons why interpretability matters are: i) the complexity of the models; ii) the
black box nature of the models; iii) the trade-off with accuracy, etc. The interpretability in clinical
decision-making builds trust, aids patient understanding, addresses ethical concerns, ensures clinical
actionability, facilitates regulatory compliance and allows for continuous improvement of machine
learning models in healthcare. Our endeavor in this paper is to help understand the inner workings of
Al algorithms in thyroid cancer prediction, with the help of SHAP values, and how it can be validated
using an association-rule based feature integration framework.

1.3 Novelty: Association-Rule Based Feature Integration Framework

Association rule mining serves as a major functionality in data mining, employing algorithms
such as the Apriori and its variants to uncover patterns and relationships within datasets. In our novel
framework, association rule mining is integrated into disease prediction systems to enhance accurate
and explainable predictions by machine learning models.

This novel association rule mining-rule based feature integration framework incorporates asso-
ciation rule mining algorithms on the database. The association rules mined highlight attributes that
frequently appear in the database along with the label of malignancy or benignancy. Subsequently,
interestingness metrics analysis is conducted on this knowledge base derived through association rule
mining, and dominant features and feature sets are identified. AI models are trained on this original
database, and SHAP values of explainability are also generated with these models. The SHAP values
associated with the features are compared with the association-rule interestingness metric values such
as support, confidence, lift, leverage, and conviction values of these features. Thus, dominant features
identified through both methodologies get mutually validated.

In the next phase, the dominant features identified through association-rule based interestingness
metric analysis are integrated with the original database and this new integrated dataset is used
in re-training the machine learning models. The performance metrics of the models show a good
improvement in accuracy and other metrics. This framework also helps us validate the feature ranking.
By explicitly incorporating these association rules into training models, and by generating new
SHAP explanations with these models, we could gain insights into the model’s reliance on rule-based
relationships. This novel study enhances the validation of SHAP values through the integration of
an association-rule based framework by leveraging additional domain-specific knowledge encoded
in association rules. Our proposed framework contributes to the robustness and reliability of the
interpretation and validation process in the context of thyroid cancer prediction.

2 Related Work

In recent years, the focus has intensified on the interpretability of machine learning models.
Explainable AI (XAI) has emerged as a critical area, to interpret complex models and enhance
their transparency. Significant research has been done on the integration of SHAP values, a method
providing insightful explanations for model predictions, thereby bridging the gap between model
complexity and interpretability.

2.1 Explainability in Clinical Decision Support Systems

In 2016, Ribeiro et al. [3] proposed Local Interpretable Model-Agnostic Explanations (LIME),
an innovative explanation method designed to elucidate predictions from any classifier in a way that
is both understandable and faithful. This is achieved by constructing an interpretable model locally
around the prediction. SHAP, developed by Lundberg et al. [4], is a technique designed for explaining
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individual predictions in machine learning. It relies on Shapley values, which are optimal in the context
of game theory, to provide comprehensive explanations for the contributions of each feature to a
particular prediction.

In 2022, researchers Du et al. [5] developed an interpretable clinical decision support system
(CDSS) using explainable machine learning to identify women at risk who require targeted pregnancy
interventions. The machine learning models were elucidated through SHAP explanations, enhancing
the credibility and acceptability of the system. Various models were devised for diverse use cases
and implemented as a publicly accessible web server for academic purposes. This interpretable CDSS
showcases its potential to aid clinicians in screening and identifying at-risk patients.

In another study conducted in 2023, Naiseh et al. [6] conducted an empirical study to evaluate
four eXplainable artificial intelligence (XAI) classes for their impact on trust calibration. The study
took clinical decision support systems as a case study and the findings are presented as guidelines for
designing XAl interfaces.

In 2022, a study by Panigutti et al. [7] demonstrated XAI applicability to explain a clinical DSS
and designed the prototype of an explanation user interface. They tested the prototype with healthcare
providers collected their feedback, and obtained evidence that explanations increase users’ trust in the
XAl system, and they achieved useful insights on the perceived deficiencies of healthcare professional’s
interaction with the system.

In research conducted in 2022 by Amann et al. [§], the analysis focused on three dimensions:
Technical aspects, human elements, and the specific system role in decision-making. Results indicate
that explainability can enhance the utility of Clinical Decision Support Systems (CDSS), contingent on
factors like technical feasibility, validation levels for explainable algorithms, contextual characteristics,
the assigned role in decision-making, and the primary user group(s).

2.2 Explainability in Thyroid Disease Predictions

In a study conducted by Aljameel [9] in 2022, a model of an explainable artificial neural network
(EANN) was created to differentiate between benign and malignant nodules while uncovering the
predictive factors associated with malignancy. Wang et al. [10] developed a diagnostic model in
artificial intelligence (AI) using a combination of deep learning and ensemble learning methods with
multiple risk features. The Al diagnostic model demonstrated partial interpretability by providing
identified risk features as output.

In a similar study in 2023, Hossain et al. [1 1] identified the top-performing model and the features
exerting the most influence on classification through eXplainable artificial intelligence (XAI). The
diverse algorithmic performances indicate that each algorithm excelled under specific conditions,
whether utilising a subset or the complete set of features. They concluded that most instances have
been classified as hypothyroid based on the features TSH, T3 TT4. They also identified that the FTI
and T3 test values are important for the hyperthyroid class.

In a study in 2022, Arjaria et al. [12] used a widely adopted SHAP method, which was grounded in
coalition game theory, to interpret the outcomes. This study elucidates the system’s behavior on both
local and global scales, demonstrating how machine learning can discern the causality of diseases.
Additionally, it aids healthcare professionals in recommending optimal treatments. The research not
only showcases the outcomes of machine learning algorithms but also provides insights into feature
importance and model explanations.
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Another study in 2022 conducted by Hosain et al. [13] used Explainable Artificial Intelligence
(XAI) architectures LIME and SHAP, to interpret the model’s decision in a comprehensive manner to
address the ‘Black Box’ issue of machine learning. In another study in 2022, Jin et al. [14] introduced
a SHAP-based interpretation of Thy-Wise which enables clinicians to better understand the reasoning
behind the diagnosis, which may facilitate the clinical translation of this model.

In a major research paper in 2023, Nguyen et al. [15] proposed new statistic-based XAI methods,
namely Kernel Density Estimation and Density map, to explain the case of no nodule detected. XAI
methods’ performances are considered under a qualitative and quantitative comparison as feedback
to improve the data quality and the model performance. Finally, we survey to assess doctors’ and
patients’ trust in XAl explanations of the model’s decisions on thyroid nodule images.

2.3 Association Rule Mining in Disease Predictions

Many studies have been conducted on employing association rule mining in feature selection
and classification. Sarno et al. [16] employed expert verification to utilise association rule mining
itemsets for generating both positive and negative association rules. These rules were then applied
for compliance testing on the testing dataset. Ogunde et al. [17] developed novel association rule
mining algorithms tailored for distributed databases to enhance the overall response time of the
distributed association rule mining system. Kaoungku et al. [18] investigated association rule mining
within the context of feature selection. Wang et al. [19] utilized an association rule mining algorithm in
business scenarios. In 2020, Li et al. [20] proposed a thyroid disease knowledge discovery and diagnosis
framework AR-ANN, which integrates association rule mining and artificial neural networks to select
the most frequent features to reduce the dimensions and to diagnose thyroid diseases.

3 Materials and Methods
3.1 Association Rule Mining and Interestingness Metrics Analysis

In the proposed framework, association rule mining algorithms, Apriori, and FPgrowth [21,22
are used to extract interesting association rules from the thyroid cancer dataset. Association rules
generated are sorted with rules on class (malignant and benign) labels. The selected association rules
are considered for the next step. In the next step, interestingness of a rule are computed using Lift,
Leverage, and Conviction. Attributes are ranked according to their interestingness metric values with
malignant as well as benign labels. The attributes that have got higher ranking in the association-rule
based interestingness metric analysis are termed the dominant features/attributes for that label. The
effectiveness of association rule mining relies on the characteristics and composition of the dataset.

Let D be the dataset, then support count is computed as the occurrences of a specific itemset (e.g.,
{A, B}) in the dataset, as given in Eq. (1). If the frequency surpasses or equals the minimum support
(min_support), the item is termed a frequent k-itemset, where k represents the number of items in the
itemset or set of attributes. Confidence of an itemset {A} implied on {B}, is the co-occurrence frequency
of {A} and {B} in transactions solely containing the itemset {A}, as shown in Eq. (2). The rule based
interestingness metrics of confidence, lift, leverage, and conviction are applied to each association
rule to identify strongly associated attributes to select relevant and interesting association rules. Lift
measures the ratio of the observed co-occurrence of items to the expected co-occurrence, if the items
were independent as shown in Eq. (3). A lift value greater than 1 indicates a positive association,
suggesting that the occurrence of one item increases the likelihood of the occurrence of the other.
Eq. (4) quantifies the significance of lift in the identification of relevant association rules.
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For the rule A = B:
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Leverage measures the difference between observed and expected co-occurrence as shown in
Eq. (5).

Leverage = Support (A U B) — Support (A) x Support (B) &)

A leverage of 0 suggests independence, while positive values indicate a tendency for items A and

B to co-occur more frequently than expected. Conviction assesses the dependency of item A on the
absence of item B and is given by Eq. (6).
Support (A) x Support (—B)

Conviction = 6
onviction Support (A N —B) ©

A conviction value of 1 implies independence, with higher values indicating stronger dependence
between items A and B.

3.2 Explainability with SHAP

SHapley Additive exPlanations (SHAP) is a powerful method for model interpretability, offering a
comprehensive understanding of feature contributions. By leveraging concepts from cooperative game
theory [2], SHAP values allocate the overall model prediction to individual features. Each feature
is assigned a SHAP value, representing its impact on the model’s output. These values facilitate an
interpretation of how each predictor contributes to specific predictions, promoting transparency and
trust in complex models.

The Shapley value of feature i is calculated in the given Eq. (7):
. LUSHTINI =18 -=D! .
¢i(f) =D S < N\{i) War [ (SUih —f ()] @)

where, N is the total number of features,

S denotes any subset of features that excludes the i-th feature,
|S| is the magnitude of that particular subset, and
f, () symbolizes the predictive function employed by the model.

IS|! represents the count of possible arrangements of feature values that precede the i™ feature
value. Similarly, (]N|—|S|—1)! represents the count of possible arrangements of feature values that
follow the i feature value. The term in the equation that involves the difference is indicative of the
incremental contribution resulting from the inclusion of the i feature value to the set S. This formula
represents the average marginal contribution of feature i across all possible combinations of features
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in the model. Each term in the summation corresponds to a specific subset S of features, and the
calculation involves the value of the model prediction for the union of S and i minus the value for S.

The

coefficients in the formula ensure a fair distribution of the overall prediction value among the

features.

3.3

Our Proposed Algorithm for Association-Rule Based Feature-Integrated Model and SHAP Values
Generation

Input:

D: Dataset of thyroid cancer.

f: Preprocessing function for converting text data to numerical features.

M: Machine learning model trained on processed data.

R: Set of association rules mined from D with minimum support o and confidence y.
¢: Function that encodes each rule in R as a binary feature vector.

H: Matrix where each row represents a tuple in the dataset, and each column represents a rule-

based feature. It is a matrix that encodes the application of association rules to each tuple.

(d).

o (r)

y (1)

Lift

h.(d): A function that determines whether a specific association rule (r) applies to a given tuple

Output:

S: Matrix of SHAP values for all features, including association rule features.
w: Vector of weights for each feature based on SHAP values.

Steps:

Step 1: Preprocessing

Convert categorical data in D into binary form using the preprocessing function f.
Create a feature matrix (X) and a label vector (y) from D.

Step 2: Interestingness Metric Calculation and Association Rule Encoding
Calculate support (o), confidence (), and Lift for each association rule in R.
Support of a rule r:

_[deD|hr@d|=1)

a | D |

Confidence of a rule r:
_{deD|hr@d)=18&y@d) =1}
B {d € D | hr (d) = 1}]

Lift of a rule r:
r
n="1
B

o
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For each rule r in R, and each tuple d in D:

hr (d) = [1, If r apg)lies to d,
0, otherwise
Encode rule as binary feature using function ¢.
Create a matrix (H) where rows represent tuples, and columns represent rule-based features.
Step 3: Feature Space Expansion

Combine the original feature matrix (X) with the rule-based feature matrix (H) to create an
expanded feature matrix (X').

X' =[X, H].

Step 4: Model Training

Train the machine learning model M on the expanded feature matrix (X') and label vector (y).
Step 5: SHAP Calculation

For each tuple d:

S¢ =SHAP (M, X'y, d)

For SHAP value calculation, refer Section 3.2 Eq. (7).

Store SHAP values in matrix S.

Step 6: Feature Ranking

Calculate average SHAP value for each feature j across all tuples:
1
Wj = ﬁ* sum (sdi, j) (8)

for all tuples d in D and i = 1,..., N where N is the number of tuples.

Assign weights to features based on the calculated SHAP values. Features with high SHAP values
and large weights are identified as key contributors to accurate diagnosis.

Fig. 1 shows the complete workflow of our proposed framework. In phase 1: Thyroid cancer
dataset pre-processing and feature extraction; phase 2: association rule interestingness metric analysis;
phase 3: Machine learning models trained on the original dataset; phase 4: Predictions generation
by baseline models; phase 5: Explainer object creation from baseline model; phase 6: Explainability
in terms of SHAP values of features; phase 7: Generation of association-rule based metric values;
integration of rule-based features with dataset and re-training of models; the SHAP values generation
for the re-trained model. Feature ranking validation is carried out by comparing association-rule based
interestingness metric ranks and SHAP values. The following Sections 3.4 till 3.11 elaborate on each
phase of the workflow of our proposed framework.

3.4 Dataset Characteristics

To initiate the process, the first step involves the procurement of relevant training, testing and
prediction datasets. The thyroid_clean clinical dataset containing thyroid cancer data is used in this
study. The original dataset contains data on 1232 nodules from 724 patients. There are 18 attributes
and 1 label in the original dataset.



CMC, 2024, vol.79, no.2 3119

The thyroid_clean.csv open-access dataset used in this study is available online [23]. In this dataset,
413 (33.5%) are benign nodule tuples and 819 (66.48%) are malignant nodule data. Table 1 shows the
attributes and the label of the dataset which are included in this study.

The dataset is used in generating association rules and then used in training to generate SHAP
values. The dataset is subdivided horizontally and the same operations are performed on each subset
to yield results for cross-validations. A prediction dataset is also prepared from the original thyroid
cancer dataset which is not used in training or testing.

Phase 8

PHASE 2 [ puases ) PHASES ) [ gurproposed
Association Training of ML \ralldatiz and Association-Rule
Testing of ML
Premcesﬂnx c«mr::lmnn Models with M':els Based Feature-
...... lysis \ Dataset y Integrated Model
Thyroid Cancer - l - : .:[ = -} ~
Clnical dataset Generationof |1 [ Creationof 1] o Dt
<% | | Association Rule- | | | Creation of SHAP
Rules 1_ based Feature- : Explainer Object of
§ )1 \integrateddataset ) | ML Models
| : | i |
A A } PHASE 6
Comeltion |1 [EEERESEERNE | | siAPvolee SHAP Explainabl
nable
Analysisof |1} identification and i "
Association Rules | | Feature Ranking ! S
L i 1 Features
J i . 1
| Phase 7: Feature Ranking :
L Validation Framework | T ==
Decision PIot s Sy 108

Force Plot  Dependance Plot

Figure 1: Our proposed association-rule based feature integration framework with SHAP explainabil-
ity validation

Table 1: The attributes of the thyroid cancer dataset

Attributes Attribute types Attribute description

Age Continuous numeric integers The Age of the Patient

Gender Binary symmetric 0: Male, 1: Female

Site Numeric The Nodule Location, 0: Right, 1: Left,
2: Isthmus

Echo Pattern Binary symmetric Thyroid Echogenicity, 0: Even, 1:
Uneven

Multifocality Binary symmetric If Multiple Nodules Exist in One
Location, 0: No, 1: Yes

Size Numeric decimal values The Nodule Size in Cm

Shape Binary symmetric The Nodule Shape, 0: Regular, 1:
Irregular

(Continued)
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Table 1 (continued)

Attributes Attribute types Attribute description

Margin Binary symmetric The Clarity of Nodule Margin, 0:
Clear; 1: Unclear

Calcification Binary symmetric The Nodule Calcification, 0: Absent, 1:
Present

Echo Strength Numeric integer The Nodule Echogenicity, 0: None, 1:

Isoechoic, 2: Medium-Echogenic, 3:
Hyperechogenic, 4: Hypoechogenic

Blood Flow Binary symmetric The Nodule Blood Flow, 0: Normal, 1:
Enriched

Composition Numeric integer The Nodule Composition, 0: Cystic, 1:
Mixed, 2: Solid

Multilateral Binary symmetric If Nodules Occur in More Than One
Location, 0: No, 1: Yes

Mal Binary symmetric The Nodule Malignancy, 0: Benign, 1:
Malignant

3.5 Phase 1: Data Preprocessing

The data pre-processing of the dataset is initially undertaken before the training of the machine
learning model. Several steps are taken to clean, transform, and prepare the data for analysis or
modeling. The original number of attributes was 18. After the preprocessing steps, it is changed to
29 binary symmetrical attributes and a single label.

The data pre-processing steps undertaken for the dataset are given below.

3.5.1 Data Cleaning

Missing values are handled by imputing or removing missing data. Outliers are identified and
addressed.

3.5.2 Normalisation or Standardisation

Numerical features are scaled to a standard range to ensure that they contribute equally to
the analysis. Categorical variables are converted into numerical values using techniques like one-
hot encoding. For example, composition, echogenicity, margins, etc., are attributes with categorical
multiple-domain values. Each domain value of the attribute is converted into a symmetric binary value
column.

3.5.3 Feature Engineering

New relevant features are created from existing ones that might enhance the model’s performance.
For example, the attribute age in the dataset having continuous numerical values is binned concerning
the value range. Thus, we created new categorical domain values such as young, middle-aged, old, and
elderly. Further, this attribute is converted to multiple columns of symmetric binary values. Similarly,
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the size of the nodule is another attribute that was feature-engineered to create bucketed values and
eventually symmetric binary values as per the advice received from the domain experts.

The size of the nodule in cm is a very relevant attribute in thyroid cancer prediction. The original
domain values of decimal are initially converted to integer buckets ranging from 0 to 5 as follows:

0.0-0.5 cm — Bucket 0
0.6-0.9 cm — Bucket 1
1.0-1.4 cm — Bucket 2
1.5-2.4 cm — Bucket 3
2.5-3.9 cm — Bucket 4
4.0—> 4 cm — Bucket 5

Finally, these values are converted to 6 new binary symmetric columns.

3.5.4 Dealing with Imbalanced Classes

Since there is an imbalance in the distribution of benign and malignant classes, oversampling
techniques such as duplicating instances from the minority class using techniques like Synthetic
Minority Over-sampling Technique (SMOTE) are employed. Benign class labels are a minority in
the dataset. So SMOTE technique is used to make a balanced dataset.

3.6 Phase 2: Association-Rule Interestingness Metric Analysis

3.6.1 Generation of Association Rules

The original dataset is used to generate relevant association rules with the Apriori algorithm or FP
Growth algorithm. The relevant association rules for benign as well as malignant labels are generated.

3.6.2 Interestingness Metric Analysis of Association Rules

In this step, association rules for benign and malignant labels are identified and ranked with met-
rics such as Confidence, Lift, and Conviction. Further, metrics of associated attributes are calculated
to filter only high-ranking and relevant attributes with only the malignant label as consequent. See
Section 3.1 for more details.

3.7 Phase 3: Training of Machine Learning Models

During this phase, the dataset is divided into training, validation, and testing sets for model
training. Popular machine learning models such as Random Forest (RF), eXtreme Gradient Boosting
(XGB), Decision Tree, Support Vector Machine (SVM), k-Nearest Neighbours (KNN), etc., are
trained using the original dataset to learn patterns and relationships within the dataset.

3.8 Phase 4: Testing and Validation of Machine Learning Models

After successful training, the trained models are validated on the validation dataset and make
predictions on the test dataset. Metrics like accuracy, precision, specificity, sensitivity, and F1-score
are calculated to evaluate the model performance. Decision Tree Classifier has achieved a good 93.0%
accuracy with the baseline model. Decision Tree also showed good performance concerning other
performance metrics such as precision, sensitivity, specificity as well as F1-score.
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3.9 Phase 5: Creation of Explainer Objects of Machine Learning Models

Explainer objects are created to shed light on the inner workings of machine learning models.
The SHAP explainer objects are created using the trained machine learning models of Decision Tree,
Random Forest, XGB, etc.

3.10 Phase 6: SHAP Value Calculation of Features

The SHAP values are extracted from the explainer objects. It gives a clear understanding of the
contribution of each feature to individual predictions. The SHAP explainer plots such as summary
plots, force plots, and waterfall plots are generated with the extracted SHAP values. See Section 3.2
for more details.

3.11 Phase 7: Feature Ranking and Validation Framework

By validating feature ranking derived from association rule mining with SHAP values, we are
essentially trying to do a mutual assessment of the feature ranking obtained through two different
methods. The feature ranking obtained by association rule-interestingness metric analysis validates
the importance of dominant features found through SHAP values. The steps of this validation process
are given below.

3.11.1 Dominant Feature Identification and Feature Ranking

The SHAP values of machine learning models are obtained from phase 6. The features with
top SHAP values are selected from this phase. The association rule-interestingness metric analysis
generates the association-rule based ranks for features, as shown in phase 2. The top-ranked features
generated through the association-rule based analysis are also selected. To create a robust feature
ranking, weights are assigned to both SHAP and association rule interestingness metric rankings.
Dominant features are identified and ranked using both methods.

3.11.2 Creation of Association-Rule Based Feature-Integrated Dataset

This is a crucial step in our framework. In this step, high-ranking or dominant features which are
identified through association-rule interestingness metric analysis and validated through the SHAP
values, are integrated into the original dataset. This integration process ensures that features deemed
important by both methods contribute synergistically to the overall predictive power of the model.
Cross-validation is implemented to ensure robustness in results. The dataset is split horizontally into
multiple subsets. Association rule mining and subsequent interestingness metric analysis is applied to
these subsets. Cross-validation involves using association rules as additional features within SHAP
explanations.

Only the rules with high support and confidence values are selected for this step, indicating
statistically significant relationships between features. Each rule is represented as a binary feature.
For a given data instance, the feature value is 1 if the rule applies to the instance, and 0 otherwise.
Machine learning models are re-trained on this dataset, with the newly integrated features representing
association rules. SHAP values for all features, including the association rule features are generated
with these models and analysed. These values indicate how much each rule contributes to the model’s
predictions for individual instances. The magnitude and sign of the SHAP values are analysed to
understand the direction and strength of the rule’s influence on the model’s decision-making. The
effect of the presence or absence of specific rules on the model’s predictions for individual cases is
analysed.
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3.12 Phase 8: Our Proposed Association-Rule Based Feature-Integrated Model

Phases 3, 4, 5, 6, and 7 are repeated to obtain the highest prediction accuracy. Various combina-
tions of association rule feature sets are used in integrating into the dataset. Then the machine learning
model is re-trained on this dataset. The model is again validated and tested. The SHAP values are
generated using this new integrated model. The feature weights are compared. The dataset can be
integrated with newly found relevant feature sets. These steps are repeated until there is no change in
relevant feature sets and model prediction accuracy. Thus, the final prediction is obtained. This is our
proposed association-rule based feature-integrated model. The final prediction is obtained through
this model.

3.13 Domain Expert Input

Input from domain experts is employed to validate the importance of features identified by both
methods. Domain knowledge provides valuable context and helps interpret discrepancies. As per the
radiologists, endocrinologists, and oncologists consulted, the Thyroid Imaging Reporting and Data
System (TI-RADS) score [24] is a standard followed in assessing the malignancy of thyroid nodules. TI-
RADS employs five ultrasound features of thyroid nodules: Composition, echogenicity, shape, margin,
and punctate echogenic foci (calcification attribute in the thyroid dataset). Each feature is assigned a
score, and the total points determine the TI-RADS level, with corresponding recommendations. A
TI-RADS level of 2 is not suspicious, and 3 is mildly suspicious. A score of 4-6 is TI-RADS level
4 and is moderately suspicious. A score of 7 points or more is TI-RADS level 5, which indicates a
highly suspicious or malignant nodule. Nodules under 5 mm generally do not require follow-up, even
if categorised as TI-RADS 5, as their likelihood of becoming clinically significant malignancies is
very low. Thus, the five ultrasound features mentioned above play a major role in determining the
malignancy of a thyroid nodule.

4 Results

Association rules mined from the thyroid cancer dataset give valuable insights into the attributes
and their relationships. Table 2 shows the relevant association rules of various feature sets with
malignancy as the consequent, and various interestingness metrics of attribute sets such as support,
confidence, lift, leverage, and conviction. The attribute sets with only the top metric values are
tabulated, which shows the dominant features in the original dataset.

Table 2: Association rules and interestingness metric values for attributes in the original dataset

Antecedents Consequents Support  Confidence Lift Leverage  Conviction
{‘shape’} {‘mal’} 0.1878 0.9055 1.3610 0.0498 3.5422
{‘calcification’} {‘mal’} 0.3502 0.8773 1.3186 0.0846 2.7278
{‘blood_flow’} {‘mal’} 0.3184 0.8764 1.3173 0.0767 2.7080
{‘calcification’, {‘mal’} 0.1127 0.9583 1.4404 0.0344 8.0327
‘shape’}

{‘calcification’, {‘mal’} 0.1078 0.9429 1.4172 0.0317 5.8571
‘size_3’}

(Continued)
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Table 2 (continued)

Antecedents Consequents Support Confidence Lift Leverage  Conviction
{‘blood_flow’, {‘mal’} 0.1388 0.9392 1.4117 0.0405 5.5072
‘shape’}

{‘blood_flow’, {‘mal’} 0.1967 0.9341 1.4040 0.0566 5.0795
‘calcification’}

{‘shape’, ‘site_0’} {‘mal’} 0.1020 0.9259 1.3917 0.0287 4.5184
{‘calcification’, {‘mal’} 0.1780 0.9198 1.3826 0.0492 4.1749
‘site_0’}

{‘blood_flow’, {‘mal’} 0.1004 0.9179 1.3797 0.0276 4.0772
‘size_3’}

{‘blood_flow’, {‘mal’} 0.1527 0.9167 1.3778 0.0419 4.0163
‘site_1"}

{‘shape’, {‘mal’} 0.1845 0.9150 1.3753 0.0503 3.9366

‘composition_2’}

4.1 Making Sense of Association Rules and Interestingness Metric Values
The first association rule from the above table, Table 2 can be written as
Rule: {‘shape’} = {‘mal’}
The terms and values of association rules are interpreted with the first rule are as follows:
Antecedents are the items that are present or known (e.g.: ‘shape’ in the first rule).

Consequents are the items that are predicted to occur based on the presence of antecedents (e.g.,
‘mal’ for malignancy).

Support is the proportion of transactions that contain both the antecedent and consequent. It is
0.188, meaning both ‘shape’ and ‘mal’ appear together in about 18.8% of the transactions.

Confidence measures how often the rule is true. In this case, the rule shape — mal is true about
90.6% of the time.

The interestingness metric values of the framework are as follows:

Lift measures how much more likely the consequent is, given the antecedent, compared to its
likelihood without the antecedent. A lift of 1 means no association; a lift greater than 1 indicates a
positive association. A value of 1.361 suggests a positive association.

Leverage measures the difference between the observed frequency of antecedent and consequent
occurring together and the frequency expected if they were independent. A value of 0.050 indicates a
positive impact.

Conviction is a measure of how much the consequent relies on the antecedent. A higher conviction
value means the consequent is highly dependent on the antecedent. A value of 3.542, suggests a strong
dependence of ‘mal’ on ‘shape’.
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4.2 Making Sense of SHAP Values

Since the feature values of our dataset are binary, explaining the impact of each feature on the
model’s prediction using SHAP values becomes more straightforward. In our experiments, we have
used binary labels, malignancy (1) and benignancy (0).

The sign and magnitude of the SHAP values for each feature indicate the impact of the presence
or absence of that feature on the model’s prediction for malignancy or benignancy. If the SHAP value
for a feature is positive, it indicates that the presence or an increase in that feature is associated with
a higher prediction of malignancy (1). If the SHAP value for a feature is negative, it means that the
absence or a decrease in that feature is associated with a higher prediction of benignancy (0). In our
SHAP plots, the SHAP value for the calcification feature is strongly negative, it suggests that the
absence or lower presence of calcification is associated with a higher likelihood of benignancy (0). The
sign of the SHAP values provides information about the direction of the impact (positive or negative),
and the magnitude indicates the strength of that impact.

4.3 Experimental Setup

To experiment with and evaluate our proposed framework, we employed a dataset named
thyroid_clean. This dataset is available at the Zenodo repository [23], for research activities.

The thyroid cancer dataset is first preprocessed using various data pre-processing steps mentioned
in Sections 3.5. Thus, the dataset is prepared as a completely binary encoded dataset to apply
association rule mining. After the association rule-interestingness metric analysis, dominant attributes
concerning malignant labels are identified.

A total of 16828 association rules are generated by the application of frequent item set mining
algorithms on the thyroid cancer dataset. The label of the dataset is malignant/benign. To reduce the
huge number of rules to relevant and interesting ones, first, the association rules are filtered with the
consequent fixed as malignant. Thus, 210 rules are shortlisted as interesting rules. From the remaining
rules, only those rules with threshold values of confidence >0.7 and lift value >1.3 are retained. Thus,
interestingness metric values are used in the selection of association rules. Single-value antecedents
are also included to proceed further. Thus 25 strong association rules are selected after interestingness
metric analysis.

The dataset is used in the training, validation, and testing of various machine learning models such
as SVM, XGB, KNN, DT, and RF. The model prediction accuracy for Decision Tree is found to be
the highest with more than 90%. Decision tree SHAP values are analysed throughout our experiment.
The models are used in creating SHAP explainer objects. SHAP values of features are generated with
the explainer objects. To validate the SHAP values, we compare the features discovered through SHAP
values with the features identified through the association-rule based framework. For this comparison
study between values obtained through two different methodologies, we have used various plots to
visually represent both values.

Furthermore, the thyroid cancer dataset is integrated with association rule-based feature sets and
horizontally divided into multiple subsets. Association rule-based metric values and SHAP values are
generated with each subset and compared using feature ranking analysis. The association-rule based
feature-integrated models are created by training various machine learning models on association-rule-
integrated dataset. These models show improved prediction accuracy. Decision Tree model achieved
93.48% accuracy when trained on association-rule-integrated dataset.
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We computed various performance metrics for each model, including accuracy, area under the
receiver operating characteristic (AUROC), sensitivity, specificity, and precision. Accuracy reflects
the ratio of correct predictions to the total nodules in the dataset. The AUROC assesses the
overall diagnostic capability of a binary predictive model across different discrimination thresholds.
Sensitivity signifies the proportion of correctly identified malignant nodules, while specificity denotes
the proportion of accurately predicted benign nodules. Precision is the ratio of true malignant nodules
among those predicted as malignant. These metrics collectively offer a comprehensive overview of the
diagnostic effectiveness of the predictive models.

4.4 Experiment Environment

The proposed framework is developed using Python version 3.10 in Google Colab. For
association-rule based feature integration framework, various Python libraries including pandas,
numpy, scikit-learn, seaborn, matplotlib, etc., are used. Google Colab Pro with mlxtend library as well
as Weka [25,26] are employed in the experiments. Mlxtend library [27] was designed and shared by
Sebastian Raschka and it is a very popular association rule mining library used with Python.

For SHAP value calculations, python shap libraries are used. All experiments are carried out in
Google Colab Pro with V100 GPU and high RAM.

4.5 Feature Ranking and Validation Framework

In association-rule based feature integration framework, the maximum number of iterations,
support, confidence, and lift are respectively set to a threshold of 1000, 0.5, 0.7, and 1.3. The most
dominant attributes with significance to the malignant label are found to be calcification, shape,
margin, gender, blood flow, size, and site using the original dataset. The top association rules with
corresponding interestingness metrics for the complete dataset are presented in a suitable bar diagram
as shown in Fig. 2.

Dominant Feature Sets with Association-Rule Based Interestingness Metrics
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Figure 2: Bar chart of association rules-Based Interestingness Metrics values with label malignant as
consequent generated for the original dataset

Shapley values offer a powerful tool for interpreting the impact of different attributes on thyroid
cancer model predictions. By attributing a share of the prediction to each attribute, SHAP values
highlight the significance of individual features in determining the outcome [28]. The average SHAP
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values of all features, generated by the model developed in the complete dataset, are presented in a
suitable bar diagram as shown in Fig. 3. The SHAP explainability plots show that shape, calcification,
blood flow, and margin are the major contributing attributes to model prediction.

In the initial phase of the experiment, the dominant features associated with malignancy
are identified using an association-rule based framework applied to the original thyroid cancer
dataset. The feature sets identified are: {calcification}, {shape}, {blood_flow}, {calcification, shape},
{calcification, size_3}, {blood_flow, shape}, {blood_flow, calcification}, {shape, site_0}, {calcification,
site_0}, {blood_flow, size_3}. These features show high confidence and lift values. Refer to Table 2.
Average SHAP values of features generated from various ML models trained on the same thyroid
cancer dataset are compared with these association-rule based feature sets.

Average SHAP Values for Features
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Figure 3: Bar chart of average SHAP values for malignant prediction for original dataset

The SHAP values of features generated with the original dataset can be found in Fig. 3. The
features associated with the highest SHAP values are found to be {calcification}, {shape}, {size_0},
{site_2}, and {site_0}. They are found to have a positive impact on malignancy prediction. The
features {Multifocality, {Multilateral}, {margin}, {blood_flow}, and {size_1} shows negative impact
on malignancy prediction. It means that the absence or decrease in those features is associated with a
higher likelihood of prediction of benignancy. This can also be interpreted as the presence or increase
in this feature might be associated with malignancy. Thus, features obtained through association rule
interestingness metric analysis play major roles in the prediction of a malignant case according to
SHAP values. FFig. 4 shows various SHAP plots with significant attributes with malignancy prediction
with the original thyroid cancer dataset.

In the next phase, the dataset is integrated with dominant feature sets generated through
association-rule metric analysis. The feature sets {calcification, shape}, {calcification, size_3},
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{blood_flow, shape}, {blood_flow, calcification}, {shape, site_0}, {calcification, site_0}, and {blood_
flow, size_3} are integrated as new attributes to the original dataset. The original dataset has 29 features
and the integrated dataset is increased to 36 features. This new rule-based feature set integrated dataset
is used to train new models with SVM, RF, DT, KNN, and XGB algorithms.
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Figure 4: (a) SHAP waterfall plot for malignancy, (b) SHAP Summary plot for malignancy

This new rule-based feature set integrated dataset is further divided horizontally to create multiple
data subsets. These data subsets are used to generate association rules. The rule-based interestingness
metrics are applied to the rules and the top rules are filtered. The corresponding SHAP values are
again generated with the machine learning model trained with the new data subsets. These association
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rules and SHAP values are again compared and multilevel validation of the feature ranking is
thus conducted through our experiments. These high-ranking association rule features can be again
integrated into the dataset and this process can be iterated to get the most impactful and dominant
features in the malignancy prediction. In our experiments, we conducted a 2-level validation.

For validation, to visually corroborate both methodologies, bar charts of SHAP values and
association-rule based interestingness metric values are generated with the data subsets. They highlight
dominant attributes with high association-rule based metric values and high SHAP values (Refer to
Fig. 5). Thus, the importance of these attributes in predicting malignancy is validated.
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Figure 5: (Continued)
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SHAP Values : Data Subset 2
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Figure 5: (a) Association-Rule Based Interestingness Metrics for data subset 1. (b) SHAP values
generated for malignant prediction for the data subset 1, with integrated association rules feature sets.
(c) Association-Rule Based Interestingness Metrics for data subset 2. (d) SHAP values generated for
malignant prediction for the data subset 2, with integrated association rules feature sets

The attributes that ranked high in association-rule based interestingness metric analysis in the
second level validation in data subset 1 are found to be {calcification, size_3, margin, compostition_2},
{calcification, margin, size_3}, {echo_strength_4, calcification, size_3}, etc. The corresponding SHAP
values of the features generated for ML models trained on this data subset 1 show the following
features as having high SHAP values which impacted malignancy prediction: {calcification, shape},
{echo_strength_4, calcification, size_3}, {calcification, size_3, margin}. This provides evidence in favor
of a genuine association between the rankings given by the two methods. So, the rules are found to
align with the SHAP values, and it reinforces the confidence in the identified associations between
malignancy and the dominant features. Thus, the predictions made by the machine learning model
can be explained in terms of the dominant features identified. The prediction process can be termed
as transparent.

Domain experts are consulted for their expert opinion and the features of importance in their
opinion match with the features selected as dominant features through our association-rule based
interestingness metric study. According to domain experts, features such as micro calcification
(calcification = 1), irregular shape (shape = 1), hypoechogenic (echostrength = 4), female gender
(gender =1), solid composition (composition = 2), nodule size of 1.5-2.4 cm (size = 3), and unclear
margins (margin = 1) are the characteristics of malignant nodules. From these features, calcification,
hypoechogenic, and solid nodules of size bigger than 2.5 cm are the most important of all features
for the diagnosis of thyroid malignancy. This corroborates with our findings. The web resources [24]
also support these relevant features which are found to be major symptoms of thyroid cancer by our
framework.

Fig. 4a shows SHAP explainer plots with thyroid cancer models trained on original dataset.
Fig. 4a shows SHAP waterfall plot and each bar represent the contribution of a specific feature to the
final prediction shift. Fig. 4b shows SHAP summary plot for malignancy where the Y-axis indicates
the feature names in order of importance from top to bottom, and X-axis represents the SHAP values.
The colour of each point on the graph with red indicates high values and blue indicates low values.
Each point represents a row of data from the original dataset.
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Fig. 5 shows the comparison of association rules interestingness metrics values with the label
malignant as consequent generated for the horizontally divided dataset and its corresponding SHAP
values generated for malignant prediction. Fig. 5a shows association rules based interestingness
metrics for data subset 1; Fig. 5b shows SHAP values for the data subset 1; Fig. 5c displays association
rules based interestingness metrics for data subset 2; Fig. 5d shows SHAP values for the data subset
2. SHAP values shows the relative importance of individual features, including those derived from
association rules, providing a clear picture of feature contributions. Analysing the SHAP values
revealed potential interactions between individual features and rule-based patterns, and provided
valuable insights into the model’s behavior.

The performance of our proposed rule-base feature set integrated models showed better accuracy
as well as slight improvements in other performance metrics such as Precision, Recall, F1-score, and
AUC compared to the original baseline models generated with the original dataset. The comparisons
are shown in Figs. 6a—6d. The Area Under the Receiver Operating Characteristic curve (AUROC) is
a performance metric commonly used in binary classification problems to evaluate the discrimination
ability of a model across different classification thresholds and provides a graphical representation
of the trade-off between sensitivity and specificity at different classification thresholds. A higher
AUROC indicates the proposed model’s robustness, demonstrating reduced sensitivity to variations
and improved discrimination between positive and negative classes.

Comaparison of Accuracy of the Models
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Receiver Operating Characteristic (ROC) Curves for Multiple Models
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Figure 6: (a) Accuracy comparison of baseline ML models trained on original dataset and ML models
trained on association-rule based feature-integrated dataset. (b) Performance metrics comparison of
baseline models with rule-based feature-integrated models. (¢) Area Under the ROC curve for ML
models trained on original baseline dataset. (d) Area Under the ROC curve for ML models trained on

association-rule based feature-integrated dataset

5 Discussion

In the initial phase, our study used a limited set of association rules based on their importance
and relevance to thyroid malignancy. SHAP values are visualised for association rules in conjunction
with other regular features for improved understanding. In the next phase, association-rule based
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features are integrated into the dataset, and machine learning models are created with the new rule-
based feature-integrated dataset. SHAP values are generated again for the new integrated dataset with
feature combinations. Higher SHAP values are shown for the top features and feature sets with higher
association-rule based interestingness metric values. The machine learning models trained on the new
integrated dataset also showed overall improvement in all performance metrics, as shown in various
Figs. 6a—6d. The Decision Tree model trained on association-rule based feature-integrated dataset
showed the highest accuracy of 93.48%.

5.1 Comparison with Similar Models

To evaluate and compare the proposed model with other similar works, studies that worked on
thyroid cancer and other thyroid datasets are selected. In a significant study in 2022, Xi et al. [29],
employed gradient boosting machine (GBM), logistic regression, linear discriminant analysis (LDA),
support vector machine (SVM) with radial or linear kernel, and Random Forest to build six machine
learning models for predicting nodule malignancy. They performed ten-fold cross-validation to ensure
an unbiased assessment of prediction accuracy. Among the various models, Random Forest (RF)
emerged with the highest prediction accuracy (0.7931) and AUROC (0.8541) for distinguishing
between benign and malignant nodules. The GBM model demonstrated superior sensitivity (0.8750)
compared to the others.

In a study in 2022, Chaganti et al. [30] adopted forward feature selection, backward feature
elimination, bidirectional feature elimination, and machine learning-based feature selection using
extra tree classifiers. The dataset is obtained from the UCI thyroid disecase datasets. Their models
performed significantly better as they achieved a score of 0.99 in terms of all evaluation parameters.
Results indicate that extra tree classifier-based selected features tend to provide the highest accuracy
of 0.99 when used with the RF model.

In a research work conducted in 2021 by Aversano et al. [31], the aim was to predict the treatment
trend for patients suffering from hypothyroidism. The dataset was built with patient information being
treated in a hospital in Naples. In this study, different machine learning algorithms are used. The
performance of the Extra-Tree Classifier accuracy showed was 84%.

Jha et al. [32] conducted a substantial study in 2022 using a real-life dataset focused on thyroid
disease. Their experiments were carried out in a distributed environment. The proposed two-stage
approach yielded a remarkable maximum accuracy of 99.95%. The study highlighted the effective
utilisation of dimension reduction and data augmentation for achieving elevated accuracy in disease
prediction.

In this significant research conducted by Hossain et al. [11], researchers used different machine-
learning algorithms to predict hypothyroidism and hyperthyroidism. They identified the most signif-
icant features, which can be used to detect thyroid diseases by feature selection methods. Random
Forest (RF) provided the best accuracy of 91.42%, precision of 92%, recall of 92%, and F1-score of
92%. They also validated the model as well as the features which influenced classification the most,
by explainable Al methods.

Table 3 shows the comparison between our proposed model and other similar state-of-the-art
models that used various thyroid datasets. The proposed association-rule based feature-integrated
framework identified dominant features. The proposed model integrated those feature sets in the
dataset which contributed to the optimal performance of the model in predicting specific classes.
Subsequently, eXplainable Artificial Intelligence (XAI) is used to validate the crucial feature sets in
our dataset. The study findings exhibit a good level of comparability with previous research in this
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domain. The proposed thyroid cancer predictive model displays excellent performance compared to
other similar models.

Table 3: Accuracy comparison table of models which use thyroid dataset

Reference Performance metrics Classifier/Model
[29] Accuracy: 79.3% GBM, SVM, RF
AUROC : 85.41%
[30] 99% Extra tree classifier /RF
[31] 84% Extra-Tree Classifier
[32] 98.70% Dimension reduction and data
augmentation/Decision Tree
(1] Accuracy: 91.42%, RF model/XAI validation

Precision: 92%,
Recall: 92%
F1-score: 92%.

Our Proposed Association-Rule Based ~ Accuracy: 93.48% Decision Tree/Rule-Based
Feature Integrated Model Precision: 94%, Integrated model/XAI Feature
Recall: 96% validation

F1-score: 95%.
AUROC: 93%

5.2 Limitations

5.2.1 Increased Feature Space

The integration of additional features into the thyroid cancer dataset, aimed at enhancing pre-
dictive capabilities, results in an expanded feature space. The augmented feature space contributes to
increased computational complexity during model training and prediction. The inclusion of additional
features leads to a higher dimensionality and affects the efficiency of machine learning algorithms like
k-nearest neighbors, and support vector machines.

5.2.2 Dataset Limitations

The findings and conclusions are drawn from a single dataset in our study, and so they might
have limited generalisability to broader populations or diverse settings. Since a single dataset is used,
the study’s findings should be interpreted within the context of the specific dataset. The dataset also
exhibits a class distribution imbalance, with the benign class labels representing a minority. These
limitations affect the robustness of the model and the reliability of the study’s conclusions.

6 Conclusion and Future Work

The integration of association-rule based feature-integrated framework for machine learning
models and SHAP values validation has proven to be a powerful framework for understanding feature
relationships and their impact on thyroid cancer model classification and predictions. The validation
process has provided insights into the consistency and reliability of feature rankings obtained through
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two distinct methodologies: Association-rule based feature-integrated framework, and SHAP values
generation.

Through the proposed study, the features which came out as top-ranked features of thyroid
malignancy are microcalcification (attribute name: Calcification), irregular shape (attribute name:
Shape), hypoechogenic (attribute name: Echostrength_4), female gender (attribute name: Gender =
1), solid composition (attribute name: Composition_ 2), nodule size of 1.5-2.4 cm (attribute name:
Size_3), and unclear margins (attribute name: Margin = 1). Among all features, {calcification},
and {shape} came out consistently as the highest-ranked causes of thyroid malignancy among all
features using all data subsets, and with association-rule based interestingness metric values, as well
as SHAP methods. Experts in the field are consulted to obtain their valuable insights, and their
expert opinion aligns with the features identified as predominant by our studies. The domain experts
emphasized that calcification, irregular shape, hypoechogenicity, and solid nodules larger than 2.5 cm
are particularly crucial for diagnosing thyroid malignancy. This observation reinforces the significance
of these identified features, affirming their status as major symptoms associated with thyroid cancer,
within the framework we have developed.

The proposed rule-based feature-integrated machine learning models performed better than
baseline models trained on the original dataset. The decision tree model outperformed all the other ML
models with 93.48% accuracy, 94% precision, 96% Recall (Sensitivity), and 95% F1-score. The AUROC
curve showed an impressive 93% for the Decision tree model. The proposed model is refined through an
iterative validation process where the dataset is constantly improved with a feature integration process
to achieve optimal performance. The proposed model shows better performance in comparison to
state-of-the-art thyroid prediction models as shown in Table 3.

There are several avenues for further exploration and refinement of the proposed framework.
An important challenge is the feature space expansion. Dimensionality reduction techniques can be
employed to manage the increased feature space.

In our research, a single dataset is used in conducting all the studies. Future research can explore
diverse datasets to confirm and strengthen the observed patterns. Various known dominant features
in the thyroid cancer dataset can be selectively used to study the interdependence of features. Models
trained on select features can be used in generating SHAP values, and feature-specific prediction
explanations can be elucidated. In our study, malignancy is the major label that is considered in SHAP
value generation. The benign label also needs to be studied deeply to have a comprehensive analysis
of the explainability of the model prediction. The LIME explainability techniques can be employed in
interpreting thyroid cancer predictions. The comparative study of the explainability results of SHAP
and LIME is also another avenue for future research.

Our proposed framework enhances the interpretability and transparency of the SHAP values by
linking them to interpretable association rules. This aids in building trust among stakeholders, as the
model’s predictions are not only explained in terms of feature importance but also validated against
known domain-specific patterns. Through our novel approach, the power of both association rule
mining and SHAP values is leveraged to gain a comprehensive understanding of the model’s behavior
and the underlying relationships within the thyroid cancer dataset. Thus, feature rankings of both
methodologies are validated.

The proposed framework has the flexibility to be applied in developing clinical decision support
systems and real-world applications across diverse industries.
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