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ABSTRACT

Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s
disease (AD). Most studies predominantly employ Convolutional Neural Networks (CNNs), which focus solely on
local features, thus encountering difficulties in handling global features. In contrast to natural images, Structural
Magnetic Resonance Imaging (sMRI) images exhibit a higher number of channel dimensions. However, during
the Position Embedding stage of Multi Head Self Attention (MHSA), the coded information related to the channel
dimension is disregarded. To tackle these issues, we propose the RepBoTNet-CESA network, an advanced AD-aided
diagnostic model that is capable of learning local and global features simultaneously. It combines the advantages
of CNN networks in capturing local information and Transformer networks in integrating global information,
reducing computational costs while achieving excellent classification performance. Moreover, it uses the Cubic
Embedding Self Attention (CESA) proposed in this paper to incorporate the channel code information, enhancing
the classification performance within the Transformer structure. Finally, the RepBoTNet-CESA performs well in
various AD-aided diagnosis tasks, with an accuracy of 96.58%, precision of 97.26%, and recall of 96.23% in the
AD/NC task; an accuracy of 92.75%, precision of 92.84%, and recall of 93.18% in the EMCI/NC task; and an
accuracy of 80.97%, precision of 83.86%, and recall of 80.91% in the AD/EMCI/LMCI/NC task. This demonstrates
that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks. Furthermore, our
study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in
enhancing ResNet performance. Besides, the Deeper RepBoTNet-CESA network fails to make further progress in
AD-aided diagnostic tasks.
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1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative brain disease and a common type of dementia
among middle-aged and elderly individuals [1]. It destroys the cells responsible for language and
memory in the brain [2], leading to symptoms such as a decline in daily activities and cognitive
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abilities [3]. The initial symptoms of AD, which include implicit memory impairments, often advance
to symptoms such as amnesia, spatial disorientation, impaired judgment, and abnormal language
abilities over several months or years. Patients with AD often become vegetative and bedridden in
the last few months or years of their lives. This disease has already deprived them of their personality
and dignity [4]. Furthermore, the global incidence of AD is increasing. It is projected that the number
of AD patients worldwide will surpass 100 million by 2050 [5]. More importantly, there is currently
no effective treatment for AD. However, studies have shown that interventions targeting underlying
diseases, psychological factors, and lifestyles can delay or prevent the development of AD symptoms
[6,7]. This situation has also prompted scientists to invest more effort in exploring the pathogenesis of
brain diseases such as AD, developing more accurate and effective diagnosis and treatment systems,
and promoting the further development of brain projects in various countries.

Mild Cognitive Impairment (MCI) is identified as an intermediate state between Normal Control
(NC) and fully developed AD [8]. Although the cognitive decline in patients with MCI is more
pronounced than what is typically expected for their age, the symptoms of MCI are often mild and
do not significantly affect their daily activities [9]. In a three-year multicenter clinical trial of MCI,
researchers noted that MCI patients have a 16% annual risk of progressing to AD [10]. Therefore,
accurate diagnosis of MCI is crucial in preventing the further development of AD symptoms. As
far as we know, there are two different classification methods for the developmental stages of MCI.
On the one hand, MCI can be classified into Early Mild Cognitive Impairment (EMCI) and Late
Mild Cognitive Impairment (LMCI) based on the severity of memory impairment and the stage of
development [11]. On the other hand, MCI can be classified into Stable Mild Cognitive Impairment
(sMCI) and Progressive Mild Cognitive Impairment (pMCI) based on whether it would develop into
AD. In this paper, we selected EMCI and LMCI data for the MCI-related experiments.

The neuronal loss caused by AD can be detected through Structural Magnetic Resonance Imaging
(sMRI). sMRI is characterized by its non-invasive and rich image information, offering opportunities
to study the pathological mechanisms of AD [12]. Since the 1990s, there have been many studies
utilizing sMRI for AD analysis tasks. As a result, sMRI has become a crucial imaging biomarker
for the analysis of AD and its prodromal stages [13].

Convolutional Neural Networks (CNN) are the most popular method in Deep Learning (DL),
and numerous studies have utilized CNN and sMRI images for AD diagnosis. As for the network
model based on Self-Attention (SA), especially the Transformer based on Multi Head Self Attention
(MHSA), has become one of the state-of-the-art (SOTA) methods in Natural Language Processing
(NLP) tasks [14]. In 2021, the Google research team officially introduced the Transformer network
into the field of Computer Vision (CV) and proposed the Visual Transformer (ViT) model. This model
transformed the 2D image problem into a 1D sequence problem and achieved state-of-the-art (SOTA)
results in the ImageNet classification task, demonstrating that the Transformer structure network
is highly effective in the field of Computer Vision [15]. Compared to CNN, the use of Transformer
structures for AD diagnosis tasks is relatively rare due to its advanced nature.

In terms of the CNN part, it is evident that the majority of network models utilized for AD-aided
diagnosis are based on the CNN structure. Conversely, there is a scarcity of research studies that have
employed the Transformer structure for this purpose. Due to the inherent structural characteristics of
CNN, CNN-Based network models are adept at handling local features while encountering challenges
in addressing global features. This network model typically requires the stacking of multiple layers
of CNN to learn certain global features, thereby enhancing the model’s receptive field to improve
classification performance. However, this enhancement comes at the expense of significantly escalating
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computational costs. In addition, there is no absolute conflict between the CNN structure and the
Transformer structure. Previous research has explored the integration of CNN and Transformer
structure for CV tasks, exemplified by the BoTNet model. To tackle these issues, we adopt the BoTNet-
S1 network as a baseline and optimize its structure by using structural reparametrization techniques,
resulting in the RepBoTNet network. This network model integrates the capabilities of CNN structure,
adept at capturing local information, and Transformer structure, skilled at incorporating global
information. By doing so, it reduces prediction time and improves the classification performance of
the network within the CNN part while achieving satisfactory performance metrics.

In the Transformers part, our investigation revealed that the key Multi-Head Self-Attention
(MHSA) mechanism in the Transformer architecture overlooks the positional information along
the channel dimension during the Position Embedding phase. While the absence of position infor-
mation on the channel dimension may have minimal impact on tasks involving natural images, it
can significantly affect the final classification results in medical images that contain rich channel
information, such as sMRI. To address this problem, we propose CESA as a replacement for MHSA in
RepBoTNet networks. CESA integrates positional information along the sMRI channel dimension,
allowing the model to learn the lesions from a stereoscopic perspective in the 3D orientation. We
designate this experimental model as RepBoTNet-CESA. Ultimately, the comparative experiments
conducted between RepBoTNet-CESA and RepBoTNet illustrate the effectiveness of MHSA.

Based on the baseline, modifications were made to the model structure by both the CNN and
Transformer parts. By fusing CNN and Transformer structures, we have developed a novel DL
network for the assisted diagnosis of AD, named RepBoTNet-CESA network. The proposed network
is evaluated by the ADNI public database, and the results demonstrate its effectiveness for AD
diagnosis tasks. The main contributions of this study are as follows:

(1) The performance improvement of MHSA and traditional attention mechanisms on ResNet
were conducted on BoTNet to supplement the original research.

(2) The performance comparison between BoTNet and BoTNet-S1 was conducted to verify the
original experiments of BoTNet.

(3) Based on BoTNet-S1 as the baseline model, we proposed RepBoTNet by utilizing structural
reparameterization techniques to modify its CNN structure and verified the performance
improvement of the network through experiments.

(4) We proposed Cubic Embedding Self Attention (CESA) and introduced the ReoBoTNet-CESA
network. CESA was compared with the baseline model’s original 2D-Position Embedding Self
Attention through experiments to demonstrate the performance improvement of CESA.

(5) Following the structure of ResNet50, ResNet101, and ResNet152 networks, the initial
ReoBoTNet-CE network with 50 layers was extended to 101 and 152 layers, revealing the
impact of overfitting on network performance.

The remainder of this article is organized as follows: In Section 2, we provide a summary of the
existing work and illustrate the feasibility of AI techniques in aiding the diagnosis of AD. In Section 3,
we outline the construction methods of RepBoTNet-CESA. In Section 4, we present the experimental
results that were obtained. Lastly, Section 5 ends the paper with a conclusion.
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2 Related Works

The RepBoTNet-CESA proposed in this paper involves modifications to both the CNN and
Transformer structures. In the CNN part, we adhere to the design principle of structural reparam-
eterization, as demonstrated in RepVGG, by implementing a Rep3 × 3 convolution block to improve
the performance within the CNN structure. Following the construction principles of BoTNet, we have
incorporated the CNN and Transformer architectures. Besides, we have enhanced the Transformer
part, i.e., the MHSA, by replacing MHSA with the CESA attention mechanism as introduced in
this study. This modification aims to improve the model’s performance within the Transformer
structure. Subsequently, the final RepBoTNet-CESA network is developed following the design
idea of the BoTNet overall network architecture. In this section, we mainly illustrate the feasibility
of AI techniques in assisting the diagnosis of AD, introduce the research background concerning
the structural reparameterization technology of RepVGG, and discuss the research background of
combining MHSA, which is a Transformer block, with CNN structures.

2.1 AD-Aided Diagnosis Using AI Technology Is Feasible

Various AI models have been proposed for the accurate assisted diagnosis of AD. The utilization
of CNN for supporting the assisted diagnosis of AD has become increasingly popular in recent years.
For example, Hu et al. proposed an AD diagnosis method based on a slice voting algorithm. They
utilized various coronal slices and 3D sMRI images to train the model and achieved a classification
accuracy of 93.10% [16]. Gao et al. proposed the Latent Space Representation Network (LSRNet) and
trained the network in two steps. In the first step, an autoencoder was utilized to extract latent high-
level features and internal connections from functional connectivities (FC). In the second step, two
perspective feature parses were used to extract high-level features. Long Short-Term Memory (LSTM)
networks extract spatiotemporal features from a local perspective, while CNNs extract high-level
features from a global perspective. Finally, the spatiotemporal features and global high-level features
are fused for AD diagnosis, achieving a classification accuracy of 95.1% in the AD/NC classification
task [17]. Jie et al. proposed a novel convolutional kernel, the weighted correlation kernel (wc-kernel),
to measure the correlation between brain regions. By learning the weighted factors in a data-driven
way, the wc-kernel can better learn the interaction between different brain regions compared to
the Pearson correlation coefficient (PCC) method. Their wck-CNN extracts local (specific brain
regions), global (whole-brain networks), and temporal features sequentially from the constructed
Functional Connectivity Networks (FCNs) for classification. It achieves an accuracy of 85.3% for
AD/NC, 81.1% for EMCI/NC, and 57.6% for AD/EMCI/LMCI/NC [18]. Inspired by the Oxford Net,
Mehmood et al. proposed a Siamese Convolutional Neural Network (SCNN), which incorporates two
parallel learning layers to extract more important features. They also added an extra convolutional
layer to the network model to effectively learn optimal features from small datasets. By employing the
Monte Carlo method to assess the significance of the classification results under optimal parameters,
the researchers confirmed the effectiveness of their approach [19].

In the ongoing exploration of this field, the Transformer architecture, such as the Vision Trans-
former, has already showcased the efficacy of Transformer networks in tasks related to image
classification [15]. However, compared to CNN, the use of Transformer for AD diagnosis tasks is
relatively rare due to its advanced nature. We found that Roshanzamir et al. utilized transfer learning
(TL) to train a language model based on Transformer with 500 interview data from 269 subjects
in the Pitt corpus. They achieved an accuracy of 88.08% in the AD/NC classification task [20].
Sarraf et al. proposed the Optimized Vision Transformer for AD (OViTAD) model, which uses the
Re-Attention mechanism to regenerate attention maps during training. This approach aims to increase
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the diversity of feature extraction and avoid the attention collapse phenomenon, where attention maps
tend to become too similar in deeper layers. Compared to the regular ViT, OViTAD reduces the number
of trainable parameters and improves the accuracy of AD diagnosis [21].

In fact, there is no absolute conflict between the CNN structure and the Transformer structure.
There are some researchers who have explored the integration of CNN and Transformer structure
for CV tasks, exemplified by the BoTNet model. In this paper, we adopt the BoTNet-S1 network
as a baseline, modifications were made to the model structure by both the CNN and Transformer
parts. Finally, we have developed a novel DL network for the assisted diagnosis of AD, named the
RepBoTNet-CESA network.

The aforementioned study demonstrated the effectiveness of AI techniques such as deep learning,
in aiding diagnostic tasks related to AD. Furthermore, a diverse array of AI technologies is utilized
in other healthcare domains, including the field of COVID-19 diagnosis. Salman et al. used machine
learning and laboratory data to predict COVID-19 patients. They compared three different classifi-
cation methodologies, namely Support Vector Machines (SVM), artificial neural networks (ANN),
and k-Nearest Neighbors (k-NN). The results indicated that SVM achieved the most significant
classification performance [22]. Arif et al. proposed a Lasso-logistic regression model. Based on the
COVID-19 clinical dataset, which enlisted the help of 78 patients from the Azizia main hospital sector,
the Wasit Health Directorate, and the Ministry of Health, their method is generally accurate to 85.9%
[23]. These studies illustrate the feasibility of applying AI technology in other similar medical fields
beyond AD-aided diagnosis. The model we propose in this paper has the potential application in the
field of another disease classification prediction, provided that the corresponding sMRI image data is
accessible.

2.2 Research Background of Structural Reparameterization

Substantial advancements have been achieved in the development of CNN structures in recent
years. The first typical CNN network was LeNet5, which was introduced in 1998 [24]. The initial
CNN network that achieved significant success was AlexNet, leading to a direct reduction of the final
error rate by almost 10% in the 2012 ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
[25]. Since then, CNN networks have experienced rapid development. The inception of AlexNet can be
regarded as a significant milestone in the field of deep learning. VGGNet achieved higher performance
by employing a simpler, deeper, and less parameterized network that utilized smaller 3 × 3 kernels [26].
ResNet introduced the residual structures and batch normalization (BN) into CNN networks, enabling
the creation of very deep CNN networks and multi-branch CNN networks [27]. In contrast to the idea
of increasing the depth of CNN networks in models such as ResNet, the Inception networks focused
on widening CNN networks. The multi-branch and convolutions of various sizes were utilized within
a single layer. Subsequently, 1 × 1 convolutions were applied to reduce dimensionality, leading to a
reduction in network computational complexity and achieving higher performance [28–30]. DenseNet
utilized dense connections that linked all layers to each other, ensuring that the output of each layer
would serve as an additional input to all the previous layers. This approach greatly increased the
network’s computational complexity but also improved its performance [31].

In the 2021 CVPR, RepVGG proposed and adopted an innovative technique for constructing
CNNs known as structural reparameterization. This method aims to enhance the performance of
CNNs by optimizing the network architecture. Structural reparameterization can be defined as a
network construction method that first constructs a series of network structures (usually the same
as the training phase, such as the multi-branch structure), and then equivalently transforms their
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parameters into another set of parameters (usually used in the inference phase, like converting multi-
branch into single-branch). This process results in the transformation of the original structure into
a different set of network structures [32]. Following this design concept, it is possible to make an
original single-branch 3 × 3 convolution into a multi-branch 3 × 3 convolution in the training phase,
where the multi-branch configuration includes a 3 × 3 convolution, a 1 × 1 convolution, and an
Identity branch. In the inference phase, structural reparameterization is employed to equivalently
transform the multi-branch into a single-branch 3 × 3 convolution. The schematic diagram illustrating
this process is shown in Fig. 1. In this manner, the network model can use more complex network
structures and dedicate additional training resources in the training phase to achieve improved
classification outcomes, such as higher accuracy and precision. Subsequently, during the inference
phase, the network model undergoes an equivalent transformation into a smaller network structure
while preserving the obtained classification results (the same accuracy and precision). This approach
conserves computational resources and accelerates inference speed. This design idea also imparts
specific multi-scale convolutional characteristics to the network model. We call this multi-branch 3 × 3
convolution as the Rep3 × 3 convolution. Subsequently, the principle of structural reparameterization
technology will be introduced.

Figure 1: Multi-branch 3 × 3 convolution in the training phase is converted to single-branch 3 × 3
convolution in the inference phase

The training phase incorporates a multi-branch structure, exemplified by ResNet, a renowned
convolutional architecture. ResNet conceptualizes the information flow as y = x + f(x) and employs
residual blocks to capture the mapping f . This multi-branch design allows ResNet to function as
an ensemble of multiple shallow models [33]. The aggregation of multiple shallow models offers
performance advantages over a single model. When each residual block contains two branches, and
there are n residual blocks, the ResNet model can be conceptualized as an ensemble of 2n models.

Following the principle of structural reparameterization, similar to the operation conducted in
ResNet, we have substituted all the 3 × 3 convolutions in the baseline with three-branch 3 × 3
convolutions. The three-branch convolutions consist of parallel 3 × 3 convolution, 1 × 1 convolution,
and Identity branch, as shown in Fig. 1a. The information flow can be mathematically represented as
y = x + g(x) + f(x). If there are n convolution blocks present, the model’s structure can be perceived
as an ensemble of 3n models. If the dimensions of x and f(x) do not align, the identity branch should
be eliminated. This adjustment results in the information flow becoming y = g(x) + f(x), where
g(x) is implemented through a 1 × 1 convolution. In the inference phase, this multi-branch 3 × 3
convolution will be equivalently transformed into a single-branch 3 × 3 convolution, as shown in
Fig. 1b. In addition, ReLU is employed in each branch, as shown in Fig. 1.

The single-branch structure of the inference phase will be elucidated in this section. It will delve
into the principle of structural reparameterization, which outlines the process of transforming a
multi-branch structure into an equivalent single-branch structure, as shown in Fig. 2a. Consequently,
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the multi-branch convolutional structure in Fig. 1a is corresponding to the initial multi-branch
convolutional structure in Fig. 2a. Furthermore, Fig. 2b illustrates the changes of the convolutional
parameters during the structural reparameterization process. For improved visualization outcomes,
we set C2 = C1 = 2, so the 3 × 3 convolution block has four 3 × 3 parameter matrices, and the 1 ×
1 convolution block has four 1 × 1 parameter matrices. For visualization purposes, only the middle
parameter layer with non-zero 1 × 1 and Identity parameters within the 3 × 3 parameter layer is shown
in Fig. 2b.

Figure 2: Principle of structural reparameterization

We use W (3) ∈ RC2 × C1 × 3 × 3 to represent a 3 × 3 convolution block with C1 input channels and
C2 output channels, and use W (1) ∈ RC2 × C1 × 1 × 1 to represent a 1 × 1 convolution block with C1 input
channels and C2 output channels. We utilize μ(3), σ (3), γ (3), and β(3) to denote the mean, standard
deviation, learnable scaling factor, and bias of the BN layer following the 3 × 3 convolution block,
respectively. We utilize μ(1), σ (1), γ (1), and β(1) to denote the mean, standard deviation, learnable scaling
factor, and bias of the BN layer following the 1 × 1 convolution block, respectively. The terms μ(0),
σ (0), γ (0), and β(0) are employed to denote the mean, standard deviation, learnable scaling factor, and
bias of the BN layer on the Identity branch. Meanwhile, let M(1) ∈ RN × C1 × H1 × W1 denote the input and
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M(2) ∈ RN × C2 × H2 × W2 denote the output, with ∗ symbolizing the convolution operator. When C1 = C2,
H1 = H2, W 1 = W 2, we have:

M (2) = bn
(
M (1) ∗ W (3), μ(3), σ (3), γ (3), β(3)

)

+ bn
(
M (1) ∗ W (1), μ(1), σ (1), γ (1), β(1)

)

+ bn
(
M (1), μ(0), σ (0), γ (0), β(0)

)
(1)

It is important to highlight that in cases where the input and output dimensions do not match
(i.e., when using the down-sampling 3D-RepVGG block), the Identity branch should be eliminated,
and only the first two terms of the aforementioned equations remain valid. During the inference stage
of the BN block, for any ∀1 ≤ i ≤ C2, we have:

bn (M, μ, σ , γ , β) : ,i, : , : = (
M : ,i, : , : − μi

) γi

σi

+ βi (2)

After that, each BN block is integrated with the preceding convolution block by transforming
them into convolution blocks with bias vectors. Let {W ′, b′} represent the weights and biases of the
converted convolution block. We have:

W ′
: ,i, : , : = γi

σi

W : ,i, : , : (3)

b′
i = −μiγi

σi

+ βi (4)

Combining Eqs. (2)–(4), we obtain ∀1 ≤ i ≤ C2:

bn (M, μ, σ , γ , β) : ,i, : , : = (M ∗ W ′) : ,i, : , : + b′
i (5)

Given that the Identity branch can be considered as a 1 × 1 convolution block with a weight
matrix represented by a unit matrix, the aforementioned equations are also applicable to the Identity
branch. By regarding the Identity branch as a 1 × 1 convolution block, a 3D-RepVGG block will
consist of one 3 × 3 weight matrix, two 1 × 1 weight matrices, and three bias vectors. The ultimate
bias can be acquired by aggregating the three bias vectors. To ensure consistency in the dimensions
of input and output, zero-padding is implemented on the original 1 × 1 convolution block, creating a
3 × 3 convolution block. This procedure entails the incorporation of three 3 × 3 convolution blocks
that can be subsequently merged. Finally, through the integration of Eq. (5), the three branches of the
3D-RepVGG block are “fused” into a single 3 × 3 convolution block utilizing the aforementioned
operation, referred to as “structural reparameterization.” The particular procedure is illustrated in
Fig. 2.

2.3 Research Background of Combining MHSA with CNN

Convolutional neural networks (CNNs) provide advantages through parameter sharing and
effective incorporation of local information. However, various computer vision tasks, including
object detection, instance segmentation, and the field of AD-aided diagnosis addressed in this study,
necessitate the acquisition of Long-Range Dependencies (LRDs) within features [34]. Acquiring
knowledge in LRDs proves advantageous for a wide range of computer vision applications. For
example, SENet utilizes Squeeze-and-Excitation blocks to learn dependencies within the channel
dimension of features. Experimental results on the ImageNet dataset have shown the effectiveness of
LRDs in the channel dimension for enhancing network performance [35]. Subsequent studies, such as
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CBAM [36], GENet [37], and NLNet [38], provide additional support to this perspective by learning
LRDs on the entire input dataset.

CNN-based models commonly employ the strategy of stacking multiple CNN layers or increasing
the CNN size to learn global features like LRDs, which leads to a notable escalation in model
complexity. To tackle this issue, a more effective strategy involves employing a mechanism dedicated
to learning LRDs and constructing an efficient network model that learns both local and global
features. The Self-Attention (SA) mechanism within the Transformer structure is an efficient learning
mechanism for LRDs. In SA, the input Query, Key, and Value of Attention all originate from the same
input, and Key and Value are paired together in a pairwise manner. The attention mechanism initially
computes the compatibility between the Query and Key pair, utilizing this compatibility as the weight
for each corresponding Value pair. Finally, the output of the SA mechanism is determined by the
weighted sum of the values. The BoTNet architecture incorporates the Multi-Head Self-Attention
(MHSA) mechanism. In MHSA, Query, Key, and Value vectors undergo a transformation by a
trainable linear projection H, projecting them onto a different dimension. Subsequently, multiple
Attention operations are conducted across all projected dimensions to generate diverse outputs.
The final output is derived by integrating all individual outputs. MHSA allows the model to learn
information from distinct representation subspaces across various levels [14].

Srinivas et al. incorporated the MHSA mechanism into the ResNet architecture by introducing
the Bottleneck Transformer Block (BoT block). Specifically, they substituted all 3 × 3 convolutions in
stage 5 of ResNet, which comprises the final three bottleneck blocks, with MHSA. This modification
led to a reduction in the total number of model parameters and an enhancement in model performance.
Experiments conducted on the CoCo dataset for tasks related to instance segmentation and object
detection, along with experiments on the ImageNet dataset for tasks related to image classification,
have demonstrated the effectiveness of BoTNet [39]. BoTNet successfully combines the CNN structure
with the Transformer structure, enabling the model to adeptly acquire both local and global features.
In contrast to instance segmentation and object detection tasks, the input image size for image
classification tasks is typically smaller (e.g., 256 × 256). Hence, the dimensions of the feature map size
for image classification tasks (e.g., 14 × 14 or 7 × 7) are notably smaller compared to those employed
in instance segmentation and object detection tasks (e.g., 64 × 64 or 32 × 32). To address this concern,
downsampling was eliminated in stage 5 of BoTNet, the stride of the MHSA layer was set to 1, and
the feature map size in stage 5 was increased, leading to enhancements in classification performance,
and ultimately resulting in an increase in the final classification accuracy. This design is referred to as
BoTNet-S1 (S1 denotes the operation in the final stage). The structural distinctions among ResNet-50,
BoTNet-50, and BoTNet-S1-50 are shown in Table 1. It is noteworthy that this paper utilizes BoTNet-
S1-50 as the baseline model.

Table 1: Structural differences between ResNet-50, BoTNet-50 and BoTNet-S1-50, where S1 means
no downsampling in stage c5. BoTNet-S1-50 is the baseline model

Stage ResNet-50 BoTNet-50 BoTNet-S1-50

c1 7 × 7, 64, stride = 2 7 × 7, 64, stride = 2 7 × 7, 64, stride = 2
c2 3 × 3 max pool, stride = 2 3 × 3 max pool, stride = 2 3 × 3 max pool, stride = 2⎛

⎝
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎞
⎠ × 3

⎛
⎝

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎞
⎠ × 3

⎛
⎝

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎞
⎠ × 3

(Continued)
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Table 1 (continued)

Stage ResNet-50 BoTNet-50 BoTNet-S1-50

c3

⎛
⎝

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎞
⎠ × 4

⎛
⎝

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎞
⎠ × 4

⎛
⎝

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎞
⎠ × 4

c4

⎛
⎝

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎞
⎠ × 6

⎛
⎝

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎞
⎠ × 6

⎛
⎝

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎞
⎠ × 6

c5

⎛
⎝

1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎞
⎠ × 3

⎛
⎝

1 × 1, 512
MHSA, 512
1 × 1, 2048

⎞
⎠ × 3

⎛
⎝

1 × 1, 512
MHSA-S1, 512
1 × 1, 2048

⎞
⎠ × 3

3 Method
3.1 Cubic Embedding Self Attention

In contrast to natural images, sMRI images exhibit a higher number of channel dimensions. For
instance, the sMRI images involved in this study possess a channel size of 137. Hence, during the
Position Embedding stage of Transformer-related models, we establish learnable variables Rh and
Rw for the Height and Width dimensions, respectively, in addition to a learnable variable Rc for
the Channel dimension. In this manner, our model incorporates not only the data pertaining to
the Height and Width dimensions of the image but also integrates the information related to the
Channel dimension of the image. When our model learns lesions for AD-aided diagnosis, it goes
beyond merely identifying lesions solely based on the two-dimensional orientation of the sMRI image.
This approach would compartmentalize lesion information along the Channel dimension, so the
model learns the lesions from a three-dimensional standpoint, incorporating the three-dimensional
information of the sMRI image. This method aligns more in line with real-life scenarios. We call this
embedding method MHSA with Cubic Embedding Self Attention (CESA), as illustrated in Fig. 3.
The operation denoted as Content-Cubic-Embedding, highlighted in red, signifies the CE (Cubic
Embedding) operation executed on the data. Here, Rc, Rh, and Rw represent the learnable embedding
variables set on the Channel, Height, and Width dimensions, respectively. Furthermore, it is evident
that the data dimensions of both the Input and Output are consistent, with each being represented as
H × W × d.

3.2 RepBoTNet-CESA

We used BoTNet-S1-50 as the baseline model, as previously indicated. It is important to note that
the network proposed in this study aligns with BoTNet-S1-50 as it does not engage in downsampling
in stage 5. Initially, all 3 × 3 convolutions in the baseline were substituted with multi-branch 3 ×
3 convolutions during the training period. This multi-branch consists of 3 × 3 convolutions, 1 × 1
convolutions, and Identity branches. During the inference phase, structural reparameterization was
employed to equivalently transform it into a single-branch 3 × 3 convolution, and this network is
denoted as RepBoTNet. Subsequently, CESA was employed instead of MHSA-S1 in stage 5 of the
RepBoTNet network, leading to the introduction of the RepBoTNet-CESA network. The structural
distinctions among these three networks are shown in Table 2. The workflow illustrating the utilization
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of the RepBoTNet-CESA network for AD-aided diagnosis is presented in Fig. 4. The overall process
is to feed the preprocessed data into the trained RepBoTNet-CESA model to get the corresponding
label classification results.

Figure 3: Structure of cubic embedding self attention

Table 2: Structural differences between BoTNet-S1-50 (baseline), RepBoTNet and RepBoTNet-CESA

Stage ResNet-50 RepBoTNet RepBoTNet-CESA

c1 7 × 7, 64, stride = 2 7 × 7, 64, stride = 2 7 × 7, 64, stride = 2
c2 3 × 3 max pool, stride = 2 3 × 3 max pool, stride = 2 3 × 3 max pool, stride = 2⎛

⎜⎝
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎞
⎟⎠ × 3

⎛
⎜⎝

1 × 1, 64
Rep3 × 3, 64
1 × 1, 256

⎞
⎟⎠ × 3

⎛
⎜⎝

1 × 1, 64
Rep3 × 3, 64
1 × 1, 256

⎞
⎟⎠ × 3

c3

⎛
⎜⎝

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎞
⎟⎠ × 4

⎛
⎜⎝

1 × 1, 128
Rep3 × 3, 128
1 × 1, 512

⎞
⎟⎠ × 4

⎛
⎜⎝

1 × 1, 128
Rep3 × 3, 128
1 × 1, 512

⎞
⎟⎠ × 4

c4

⎛
⎜⎝

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎞
⎟⎠ × 6

⎛
⎜⎝

1 × 1, 256
Rep3 × 3, 256
1 × 1, 1024

⎞
⎟⎠ × 6

⎛
⎜⎝

1 × 1, 256
Rep3 × 3, 256
1 × 1, 1024

⎞
⎟⎠ × 6

c5

⎛
⎜⎝

1 × 1, 512
MHSA-S1, 512
1 × 1, 2048

⎞
⎟⎠ × 3

⎛
⎜⎝

1 × 1, 512
MHSA-S1, 512
1 × 1, 2048

⎞
⎟⎠ × 3

⎛
⎜⎝

1 × 1, 512
CESA, 512
1 × 1, 2048

⎞
⎟⎠ × 3
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Figure 4: Flowchart of AD-aided diagnostic tasks using ReoBoTNet-CESA

3.3 Performance Evaluation

To evaluate the efficacy of various networks, a series of DL performance evaluation metrics were
computed, encompassing accuracy, precision, recall, and F1 score. The definitions are shown in the
table below, where TP represents the count of correctly predicted true positive subjects, FP represents
the count of incorrectly predicted false positive subjects, TN represents the count of correctly predicted
true negative subjects, and FN represents the count of incorrectly predicted false negative subjects.
Furthermore, a confusion matrix was employed to visually represent the detailed inference outcomes
of the classification task and examine the accurate partition probability across various label categories.
Moreover, the evaluation metrics used in this study encompass the Receiver Operating Characteristic
(ROC) curve and the Area Under Curve (AUC) of the ROC curve. These metrics offer a comprehensive
evaluation of the True Positive Rate (TPR) and False Positive Rate (FPR) of the network. The
calculation procedures for each experimental metric are shown in Table 3.

Table 3: The different assessment metrics used in this paper

Quantitative measurements Definition

Accuracy
TP + TN

TP + FP + TN + FN

Specificity
TP

TP + FP

Recall
TP

TP + FN

F1 score
2TP

FP + 2TP + FN

4 Experiment

In this paper, we proposed the RepBoTNet-CESA network designed to support the task of AD-
aided diagnosis. Firstly, preprocessing was conducted on the raw input data, primarily employing
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the CAT12 preprocessing operation to extract the respective gray matter images from the raw sMRI
image data while removing the skull. Subsequently, the RepBoTNet-CESA network was developed,
comprising 4 stages of CNN and 1 stage of CESA (Cubic Embedding Self Attention). This architecture
enabled the concurrent extraction of local and global features from the input data, facilitating the
derivation of output probabilities for individual labels. Finally, the performance metrics of the overall
model were computed to detect the network’s effectiveness. In addition, we have illustrated that the
enhancement in performance achieved through the utilization of MHSA on ResNet surpasses that
of certain conventional attention mechanisms. Our study also expanded the experimental scope to
include BoTNet.

To achieve AD-aided diagnosis, a series of five major steps were undertaken, encompassing data
collection (S1), data preprocessing (S2), dataset partitioning (S3), training deep models (S4), and result
evaluation (S5), as shown in Fig. 5.

Figure 5: Training and evaluation procedures for the AD-aided diagnostic models in this paper

Data collection S1: Obtain medical imaging data from the ADNI dataset to facilitate the execution
of experiments focused on AD classification.

Data preprocessing S2: For raw AD brain neuroimages to address data variability, such as
differences in brain sizes. This process aims to obtain standardized neuroimaging data and mitigate
the impact of data variability on subsequent experiments. For instance, following preprocessing
with SPM12, the original sMRI data yielded standard images of gray matter, white matter, and
cerebrospinal fluid within the brain.

Dataset division S3: In this paper, the 5-fold cross-validation technique is used to partition the
dataset into training, validation, and test datasets in a ratio of 3:1:1. The training dataset is utilized
for training the classifier/model and to adjust specific weight parameters in the classifiers/models that
are trainable. The test dataset is employed to assess the ultimate performance of the classifiers/models
and to derive various final evaluation metrics, which are non-reusable.

Training deep models S4: After obtaining the training dataset and validation dataset. The training
dataset is then utilized to train the deep learning model. After the completion of each training
round, the validation dataset is employed to assess the improvement over the previous round. The
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optimal model parameters at that stage are then stored for subsequent evaluation of the experimental
outcomes.

Result evaluation S5: The test set data derived from the dataset partition is fed into the optimal
model for result assessment, leading to the calculation of the final performance evaluation metric for
this AD classification model.

During the training process of the model, the epoch was set to 40, the batch size to 4, and the
initial learning rate to 1e-4. The training utilized the cross-entropy loss function, employed the SGD
optimizer with a momentum of 0.9 and weight decay of 1e-4, and adopted the StepLR learning rate
adjustment method, where the learning rate was adjusted every 10 epochs and 0.1 times the original.

4.1 Input Data Acquisition and Data Pre-Processing

The input data for this study comprised sMRI image data obtained from the ADNI dataset.
It included 98 scans from 30 AD subjects, 100 scans from 24 EMCI subjects, 105 scans from 25
LMCI subjects, and 107 scans from 26 NC subjects, totaling 433 scans from 105 subjects. The
dataset was balanced, with approximately equal numbers of AD, EMCI, LMCI, and NC data.
The fundamental details of the subject data are presented in Table 4. It is important to highlight that
the data we downloaded from the ADNI public dataset was initially in DICOM format, necessitating
conversion to NII format through the utilization of SPM12. The raw sMRI data images following
these conversions are shown in Fig. 6a.

Table 4: Basic information on the subject data used in this paper

Category Number of scans collected Age Gender (M/F)

AD 98 75.43 ± 6.48 16/14
EMCI 100 71.38 ± 7.03 10/14
LMCI 105 73.27 ± 6.25 13/12
NC 130 76.72 ± 5.34 11/15
Total 433 74.20 ± 6.28 50/55

In this study, the CAT12 tool was primarily utilized for the standard sMRI image preprocessing
procedure. Firstly, we used SPM12 to convert the DICOM format into NII format, leading to the
NII format sMRI image files in various nested folders. Subsequently, the Nibabel package was
utilized to develop a Python script for the purpose of reading and storing NII format sMRI image
files within a unified directory. This approach facilitated the consolidation of sMRI scan data for
numerous subjects into a singular location. Next, we employed a preexisting MATLAB script for
automatic AC-PC Line origin correction (https://Github.com/lrq3000/auto_acpc_reorient) to develop
a MATLAB script that executed AC-PC origin correction on the sMRI images within the designated
folder, encompassing all sMRI images. Then, the “Segment” operation in CAT12 was employed to
segment the gray matter image of the subjects from the sMRI image. This segmented image served
as the input data for our model, as shown in Fig. 6b. The “Segment” operation in CAT12 integrates
image registration, segmentation, and smoothing in the preprocessing stage, streamlining the process
of generating gray matter images from the sMRI images of the subjects. CAT12 also produces a
quality report for the “Segment” operation, presenting various quality indices related to image and
preprocessing, processing time, volumes of gray matter, white matter, and cerebrospinal fluid, along
with other indices of preprocessing operation results. We ensured that the Image Quality Rating (IQR)

https://Github.com/lrq3000/auto_acpc_reorient
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of the average score for the quality report was equal to or higher than 70%. As shown in Fig. 7, the
quality report includes details regarding the composition of blood vessels, gray matter, white matter,
and cerebrospinal fluid in both the original and segmented images.

Figure 6: The sMRI image data used in this paper

Figure 7: The quality report of the CAT12 segmentation operation provides information on the
distribution of blood vessels, gray matter, white matter, and cerebrospinal fluid in the original and
segmented images. The correct partitioning of the gray matter portion necessary for the experiment is
demonstrated
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Following preprocessing, the dimensions of the input gray matter image data were 137 × 113 ×
113, which were determined to be incompatible with becoming the direct input into the RepBoTNet-
CESA. Based on our experimental findings, it has been determined that the network architecture
incorporating MHSA imposes particular constraints on the width and height dimensions of the input
data. The original input data utilized in this paper had dimensions of 113 in width and height, which
were not evenly divisible by the number of heads (set to 4) in the MHSA structure. Consequently,
this mismatch prevented the MHSA from uniformly distributing the input data, thereby hindering its
direct integration into the MHSA-involved structure. Hence, we maintained the channel dimension
of the original input data and applied zero-padding to the width and height dimensions to extend
them to 128. Consequently, the ultimate dimensions of the sMRI gray matter image input data were
137 × 128 × 128. It is important to highlight that the MHSA should ensure an equitable distribution
of data by assigning distinct weights to the query, key, and value matrices. Moreover, the number of
heads determines the partitioning of the data into multiple segments. In the majority of source code,
the query, key, and value are typically divided directly through the use of the Reshape function. This
is attributed to the equivalence of the final results obtained from these two methods, and opting for
Reshape in basic division helps circumvent intricate weight calculations. In the following experiments,
a 5-fold cross-validation approach was employed to divide the datasets into training and testing sets.
Additionally, 25% of the data from the training set was chosen to form the validation set, resulting in
a ratio of 3:1:1 for the training set, validation set, and test set, respectively. The final index results were
calculated as the average of the 5-fold cross-validation.

4.2 MHSA Outperforms Traditional Attention for ResNet Performance

Prior studies have demonstrated the superior performance of utilizing MHSA in BoTNet com-
pared to ResNet. However, there is a research gap exists in evaluating the performance improvement
of MHSA in comparison to conventional attention mechanisms like SE and CBAM. The utilization
of MHSA is different from traditional attention mechanisms. In the BoTNet series network, the
CNN layer is substituted with the MHSA layer, with conventional attention mechanisms frequently
incorporated subsequent to the CNN layer. In this study, we added the conventional attention
layer following the 3 × 3 convolution layer in stage 5 of ResNet50. Subsequently, we evaluated the
performance of ResNet50, ResNet50 with SE attention mechanism, ResNet50 with CBAM attention
mechanism, BoTNet50, and BoTNet-S1 on the auxiliary AD classification task using data from AD
patients obtained in the previous section. The results are shown in Table 5. The table illustrates that
attention mechanisms have the potential to significantly enhance the model’s performance in the
auxiliary diagnosis of AD using the dataset employed in this study. Compared with the ResNet50
model, the utilization of the SE attention mechanism resulted in enhancements in accuracy by 4.88%,
precision by 6.46%, recall by 0.81%, and F1 score by 4.57%. Similarly, the implementation of the
CBAM attention mechanism led to improvements in accuracy by 7.32%, precision by 6.98%, recall by
4.58%, and F1 score by 6.93%. The utilization of conventional attention mechanisms led to a slight
increase in the model parameters; however, it significantly enhanced the classification performance of
the ResNet50 network in AD/NC auxiliary diagnosis tasks. Utilizing BoTNet50, which replaces the
convolutional layer in ResNet50 with the MHSA layer, led to a reduction in the model parameters and
an enhancement in accuracy by 8.29%, precision by 8.45%, recall by 4.58%, and F1 score by 7.81%.
This improvement surpasses the performance of conventional attention mechanisms in enhancing the
ResNet50 network. BoTNet50-S1, a modified version of BoTNet50 that eliminates downsampling in
stage 5, retains an equivalent number of model parameters as BoTNet50 while enhancing accuracy
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by 1.96%, precision by 1.05%, recall by 2.77%, and F1 score by 1.95%. Therefore, BoTNet50-S1 was
selected as the baseline network for the ensuing experiments.

Table 5: MHSA vs. traditional attention on AD/NC tasks

Net Params Acc Pre Rec F1

ResNet50 23.94 83.41 83.26 87.97 84.25
ResNet50 + SE 24.03 88.29 89.72 88.78 88.82
ResNet50 + CBAM 24.13 90.73 90.24 92.55 91.18
ResNet50 + NonLocal 25.51 89.02 90.24 88.09 89.14
ResNet50 + GlobalContext 24.33 90.24 90.84 90.47 90.45
BoTNet50 19.22 91.70 91.71 92.55 92.03
BoTNet50-S1 19.22 93.66 92.76 95.32 94.01

4.3 RepBoTNet-CESA Achieves Excellent Results on Various AD-Aided Diagnostic Tasks

To evaluate the performance of RepBoTNet-CESA on AD-aided diagnostic tasks, based on input
data with dimensions of 137 × 128 × 128, the RepBoTNet-CESA model was applied to perform
auxiliary diagnosis tasks for AD/NC, EMCI/NC, and AD/EMCI/LMCI/NC. Ablation experiments
were also carried out. The performance comparison of each model in the AD/NC task is shown in
Table 6. In comparison to the baseline, the RepBoTNet model, utilizing the structural reparame-
terization technique, demonstrated enhancements in accuracy by 1.95%, precision by 2.57%, recall
by 0.66%, and F1 score by 1.57%. This improvement was achieved while marginally increasing the
number of parameters during the training and inference phases. These results suggest that structural
reparameterization contributes positively to the overall performance of the model. The introduction
of structural reparameterization and CESA in RepBoTNet-CESA led to enhancements in accuracy by
0.97%, precision by 1.93%, recall by 0.25%, and F1 score by 1.11% compared to RepBoTNet. Notably,
these improvements were achieved while keeping the model parameters unchanged, indicating that
CESA contributes positively to the model’s performance. Table 7 shows the variance in inference speed
among Baseline, RepBoTNet, and RepBoTNet-CESA models. The results suggest that structural
reparameterization significantly enhances the model’s inference speed, while the incorporation of
CESA structure in structural reparameterization slightly elevates the model’s inference time.

Table 6: The comparison of performance between RepBoTNetCESA and its ablation models on
the AD/NC task is outlined below. The parameter measurements are in millions, with 19.70/19.22
indicating that the model had 19.70 million parameters during the training phase and 19.22 million
parameters during the inference phase

Net Params Acc Pre Rec F1

Baseline 19.22 93.66 92.76 95.32 94.01
RepBoTNet 19.70/19.22 95.61 95.33 95.98 95.58
RepBoTNet-CESA 19.70/19.22 96.58 97.26 96.23 96.69
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Table 7: The comparison of inference speed between RepBoTNet-CESA and its ablation models
is presented below. The inference time is measured in milliseconds, and the notation 33.99/29.33
indicates that the inference time is 33.99 milliseconds if the model does not undergo structural
reparameterization; otherwise, it is 29.33 milliseconds

Net Inference time

Baseline 28.86
RepBoTNet50 33.99/29.33
RepBoTNet50-CESA 34.17/29.35

Fig. 8 shows the training loss curves derived from RepBoTNet-CESA in the AD/NC task. The
figure illustrates that the training loss of RepBoTNet-CESA consistently decreases over 40 epochs,
suggesting the effective learning of the training dataset by our model. Fig. 9 shows the validation loss
curves derived from RepBoTNet-CESA in the AD/NC task. The figure illustrates that the validation
loss of RepBoTNet-CESA rapidly converges within 15 epochs. Fig. 10 illustrates the confusion matri-
ces derived from RepBoTNet-CESA in the AD/NC task, demonstrating the classification outcomes
of the model. During the 5-fold cross-validation, the model consistently achieved a probability of
correctly identifying AD and NC of over 90%. This indicates that our RepBoTNet-CESA model
has effectively acquired image features that enable accurate differentiation between AD and NC.
Fig. 11 shows the ROC curves and AUC values generated by RepBoTNet-CESA in the AD/NC task,
providing additional evidence of the model’s exceptional classification accuracy in the AD/NC task.
The images presented above are derived from fold 0 in a 5-fold cross-validation. It is important to note
that the results across all five folds exhibit a similar pattern.

Figure 8: During the AD/NC task, the RepBoTNet-CESA model generated the training set loss curve
for each fold of the cross-validation. Over the course of 40 epochs, the loss consistently decreased,
suggesting that the neural network successfully acquired knowledge from the training dataset. The
case of fold 0 is presented here, and the remaining folds exhibit similarities to fold 0
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Figure 9: During the AD/NC task, the RepBoTNet-CESA model generated the validation set loss
curve for each fold in the cross-validation process. The network rapidly achieved convergence on the
validation set data after almost 15 epochs. The case of fold 0 is presented here, and the remaining folds
exhibit similarities to fold 0

Figure 10: During the AD/NC task, the RepBoTNet-CESA model generated confusion matrix results
for each fold of the cross-validation. On the test dataset, the neural network demonstrated effective
prediction capabilities for samples classified as AD and NC. The case of fold 0 is presented here, and
the remaining folds exhibit similarities to fold 0

The RepBoTNet-CESA also demonstrates strong performance in tasks involving EMCI/NC and
AD/EMCI/LMCI/NC. Fig. 12 illustrates the confusion matrices obtained by RepBoTNet-CESA for
each fold of the AD/EMCI/LMCI/NC task, demonstrating the classification outcomes of the model.
The results of the 5-fold cross-validation experiment demonstrate that the model has acquired image
features capable of effectively distinguishing between AD, EMCI, LMCI, and NC. Fig. 13 shows the
ROC curves and AUC values obtained by RepBoTNet-CESA in every fold of the AD/EMCI/LM-
CI/NC task, providing additional evidence of the model’s classification efficacy in this particular
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task. Table 7 shows the comparison of the inference speeds between RepBoTNet-CESA and its
ablation models. The implementation of structural reparameterization has the potential to significantly
decrease the inference time of the network model. The application of structural reparameterization on
RepBoTNet resulted in a reduction of the inference time by 4.66 milliseconds, representing 13.75% of
the original inference time. Similarly, the utilization of structural reparameterization on RepBoTNet-
CESA led to a decrease in the inference time by 4.82 milliseconds, which accounted for 14.11% of the
original inference time.

Figure 11: During the AD/NC task, the RepBoTNet-CESA model generated ROC curves and
calculated the AUC values for each fold of the cross-validation process. In the 5-fold cross-validation
experiment, the network demonstrated outstanding classification performance consistently across all
folds. The case of fold 0 is presented here, and the remaining folds exhibit similarities to fold 0

Figure 12: During the AD/EMCI/LMCI/NC task, the RepBoTNet-CESA model generated confusion
matrix results for each fold of the cross-validation. On the test dataset, the neural network successfully
predicted samples corresponding to AD, EMCI, LMCI, and NC groups. The case of fold 0 is presented
here, and the remaining folds exhibit similarities to fold 0
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Figure 13: For the task involving AD/EMCI/LMCI/NC, the RepBoTNet-CESA model generated
ROC curves and AUC area results for each fold during cross-validation. In the 5-fold cross-validation
experiment, the network demonstrated outstanding classification performance across all folds. The
case of fold 0 is presented here, and the remaining folds exhibit similarities to fold 0

Table 8: Comparison of accuracy results of different methods for AD-aided diagnostic tasks

Papers AD/NC EMCI/NC AD/EMCI/LMCI/NC

Miltiadous et al. [40] 83.28 – –
Lyu et al. [41] 95.30 – –
Hu et al. [16] 93.10 – –
Ning et al. [42] 83.90 – –
Shikalgar et al. [43] 92.50 – –
Marzban et al. [44] 95.50 – –
Shen et al. [45] 86.60 – –
Roshanzamir et al. [20] 88.08 – –
Zhang et al. [46] 88.00 88.10 –
Jiao et al. [47] – 91.13 –
Li et al. [48] – 79.31 –
Song et al. [49] – 85.50 –
Yu et al. [50] – 85.42 –
Rallabandi et al. [51] – – 74.00
Ruiz et al. [52] – – 83.33
Jie et al. [18] 85.30 81.10 57.60
Gao et al. [17] 95.10 84.60 57.30
Our method 96.58 92.75 80.97
Note: “–” means that the method did not perform the corresponding AD classification experiment.
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As shown in Table 8, the RepBoTNet-CESA model we propose demonstrates superior accuracy
compared to alternative methods, suggesting its enhanced performance in the AD diagnostic task.
This phenomenon can be ascribed to three primary factors: (1) In contrast to conventional machine
learning methods, the “depth” characteristic of CNN networks enhances the network’s non-linear
modeling capacity, leading to superior performance on intricate tasks. Consequently, RepBoTNet-
CESA demonstrates superior performance in the AD diagnostic task when compared to approaches
utilizing conventional machine learning classifiers such as RF or SVM. In comparison to Ning et al.’s
approach employing the RF classifier, our model demonstrates a 3.48% enhancement in accuracy for
the AD/NC task. In contrast to Zhang et al.’s method utilizing RF and LR classifiers, our model
exhibits an 8.58% accuracy for the AD/NC task and a 4.65% enhancement for the EMCI/NC task.
When compared to Li et al.’s technique employing the SVM classifier, our model shows a 13.44%
accuracy for the EMCI/NC task. (2) In contrast to models that solely rely on Transformer networks
for learning global features, our model incorporates a CNN structure to capture specific local features.
Consequently, RepBoTNet-CESA demonstrates superior performance in the AD diagnostic task
compared to approaches solely utilizing the Transformer network architecture. Compared with Ning
et al.’s approach, which employs traditional Transformer networks like T-BERT and S-BERT for
feature extraction, our model demonstrates a 12.68% enhancement in accuracy for the AD/NC task.
(3) Different from models that solely rely on CNN networks for acquiring local features, our model
incorporates a Transformer structure to capture specific global features. Therefore, RepBoTNet-
CESA demonstrates superior performance in the AD diagnostic task compared to approaches solely
utilizing the CNN network architecture. On the AD/NC task, our final accuracy is 13.3% higher
than Miltiadous et al., 1.28% higher than Lyu et al.,3.48% higher than Hu et al., 4.08% higher
than Shikalgar et al., 1.08% higher than Marzban et al., and 9.98% higher than Shen et al. For
the EMCI/NC task, our final accuracy surpasses Jiao et al. by 1.62%, Song et al. by 7.25%, and
Yu et al. by 7.33%. In the AD/EMCI/LMCI/NC task, our final accuracy exceeds Rallabandi et al. by
6.97%. Compared with Jie et al., our model demonstrates superior performance by 11.28%, 11.65%,
and 23.37% on the three AD diagnostic tasks, respectively. Similarly, when compared to the research
by Gao et al., our model exhibits better results by 1.48%, 8.15%, and 23.67% in the three AD
diagnostic tasks, respectively. The performance metrics presented illustrate the effectiveness of our
proposed RepBoTNet-CESA in addressing diverse AD diagnostic tasks, with particular emphasis on
the AD/EMCI/LMCI/NC four-classification task.

4.4 Deeper RepBoTNet-CESA Network Fails to Go Further in AD-Aided Diagnostic Tasks

Apart from ResNet50, the ResNet series also includes deeper networks such as ResNet101 and
ResNet152. Following the extension idea of the ResNet framework, to determine whether a deeper
network could achieve better AD-aided diagnosis, we expanded the original 50-layer RepBoTNet-
CESA model to 101 layers and 152 layers, identified as RepBoTNet101-CESA and RepBoTNet152-
CESA, respectively. As illustrated in Table 9, the experiments conducted on the AD/NC task utilizing
our input data indicated that the deeper RepBoTNet-CESA networks did not exhibit superior
performance compared to the 50-layer RepBoTNet-CESA. This observation suggests the presence
of overfitting, consequently resulting in diminished classification performance of the model.



CMC, 2024, vol.79, no.2 2901

Table 9: The performance evaluation of RepBoTNet-CESA and deeper networks on the AD/NC task
is presented below. The table includes the comparison of the number of parameters in millions. For
instance, the notation 19.70/19.22 indicates that the model had 19.70 million parameters during the
training phase and 19.22 million parameters during the inference phase

Net Params Acc Pre Rec F1

RepBoTNet-CESA 19.70/19.22 96.58 97.26 96.23 96.69
RepBoTNet101-CESA 39.81/38.21 92.13 92.72 92.59 92.59
RepBoTNet152-CESA 56.38/53.85 86.83 89.10 85.97 87.18

5 Conclusion

The increasing age of the population will lead to a heightened burden on society due to AD. Accu-
rate identification of AD and its prodromal stages, i.e., EMCI and LMCI, is essential for initiating early
treatment and delaying disease progression. The utilization of medical image-based aided diagnosis is
a crucial approach for the early identification of AD.Based on the sMRI images, this paper proposes
the RepBoTNet-CESA network model for AD-aided diagnosis tasks. This network combines the
benefits of CNN structures in capturing local information and Transformer structures in integrating
global information. The structural reparameterization technique is employed to imbue the network
with multi-scale CNN characteristics. This enhancement leads to improved classification performance
on CNN, decreased computational complexity of the network, and accelerated inference speed. The
CESA incorporates a three-dimensional perspective when analyzing data and integrates the positional
information of the Channel dimension into the Transformer model. This enhancement has been shown
to improve the network’s classification performance on the Transformer. The experiments conducted
on AD-aided diagnosis using sMRI data from the ADNI dataset demonstrate the effectiveness of the
proposed method.

In this study, an initial comparative experiment is carried out concerning BoTNet to ascertain
the superior impact of MHSA on network performance in comparison to conventional attention
mechanisms. Comparison experiments have been conducted between BoTNet and BoTNet-S1 for
AD-aided diagnosis to confirm the efficacy of BoTNet-S1 in facilitating AD-aided diagnosis. This
validation serves as the basis for subsequent experiments. Utilizing BoTNet-S1 as a baseline, Rep-
BoTNet is proposed to showcase the effectiveness of Rep3 × 3 in enhancing model performance
within the realm of CNN aspects. Following this, the paper introduces the CESA method, which
is then utilized to develop the RepBoTNet-CESA network model. The efficacy of the model is
illustrated through a comparative analysis of results in the AD-aided diagnosis task. The results of
the corresponding ablation experiments conducted illustrate the effectiveness of CESA in enhancing
the model performance of the Transformer part. A further experiment was conducted to compare the
performance of deeper RepBoTNet-CESA models, revealing that increasing the depth of RepBoTNet-
CESA did not lead to improved outcomes.

The RepBoTNet-CESA is a deep learning model with a generalized architecture. The potential
application of this method extends to the classification and prediction of various diseases, provided
that the relevant sMRI image data is obtainable. As shown in Table 8, RepBoTNet-CESA conducted
experiments on AD/NC, EMCI/NC, and AD/EMCI/LMCI/NC tasks for AD-aided diagnosis. The
range of AD-aided diagnosis tasks utilized is notably broader compared to the majority of relevant
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studies. Ultimately, the accuracy of the respective experiments is superior overall. This point further
demonstrates the universality and validity of RepBoTNet-CESA. In the subsequent stages of develop-
ing AD-aided diagnosis platforms, RepBoTNet-CESA can serve as a highly competitive deep learning
model for integration into relevant AD-aided diagnosis platforms.

While the RepBoTNet-CESA network model proposed in this study demonstrates effectiveness
in the task of AD-aided diagnosis, it is important to acknowledge several limitations. (1) Beyond
structural MRI (sMRI), there exist various other types of brain imaging data, such as functional MRI
(fMRI) and positron emission tomography (PET). This study solely focused on AD-aided diagnosis
research utilizing unimodal sMRI. With the ongoing advancements in brain imaging processing
technology, the utilization of multimodal brain medical imaging data for AD-aided diagnosis has been
proven to outperform the unimodal approach. The repBoTNet-CESA model does not incorporate
multimodal deep learning techniques. (2) The sMRI data utilized as input in this study is comparatively
less comprehensive and fewer in number than in other computer vision research domains employing
deep learning techniques. (3) The issue of interpretability remains prevalent in deep learning research,
presenting a complex problem that is challenging to solve. Presently, deep learning models are still
regarded as black boxes, and the scientific community encounters challenges in comprehending the
underlying principles governing model inference. This deficiency in comprehension results in a lack of
confidence in the predictive ability of DL models, a sentiment that is similarly evident in the realm of
AD-aided diagnosis.

In future research endeavors, RepBoTNet-CESA can serve as a foundational framework for
subsequent related studies. Firstly, the proposed RepBoTNet-CESA can be adapted and utilized
with multimodal input data to enhance the diagnostic performance. Subsequently, sMRI data from
additional experimental centers can be gathered to enhance the input data scale of the model. In
addition, semi-supervised methods, such as generative adversarial networks (GANs), can be utilized
to supplement the available experimental data and improve the experimental outcomes.
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