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ABSTRACT

Mobile banking security has witnessed significant R&D attention from both financial institutions and academia.
This is due to the growing number of mobile baking applications and their reachability and usefulness to society.
However, these applications are also attractive prey for cybercriminals, who use a variety of malware to steal
personal banking information. Related literature in mobile banking security requires many permissions that are not
necessary for the application’s intended security functionality. In this context, this paper presents a novel efficient
permission identification approach for securing mobile banking (MoBShield) to detect and prevent malware.
A permission-based dataset is generated for mobile banking malware detection that consists large number of
malicious adware apps and benign apps to use as training datasets. The dataset is generated from 1650 malicious
banking apps of the Canadian Institute of Cybersecurity, University of New Brunswick and benign apps from
Google Play. A machine learning algorithm is used to determine whether a mobile banking application is malicious
based on its permission requests. Further, an eXplainable machine learning (XML) approach is developed to
improve trust by explaining the reasoning behind the algorithm’s behaviour. Performance evaluation tests that
the approach can effectively and practically identify mobile banking malware with high precision and reduced
false positives. Specifically, the adapted artificial neural networks (ANN), convolutional neural networks (CNN)
and XML approaches achieve a higher accuracy of 99.7% and the adapted deep neural networks (DNN) approach
achieves 99.6% accuracy in comparison with the state-of-the-art approaches. These promising results position the
proposed approach as a potential tool for real-world scenarios, offering a robust means of identifying and thwarting
malware in mobile-based banking applications. Consequently, MoBShield has the potential to significantly enhance
the security and trustworthiness of mobile banking platforms, mitigating the risks posed by cyber threats and
ensuring a safer user experience.
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1 Introduction

Mobile banking has witnessed significant popularity in recent years, due to the growing
mobile internet availability [1]. The malware attacks in mobile banking applications have increased
considerably exploiting mobile device constraints. This banking malware can lead to huge financial
losses for mobile users and financial institutions such as banks [2]. To better understand the mobile
banking transaction, Fig. 1 illustrates the process of a secure transaction between a user and a banking
server within the context of a mobile banking application. The diagram highlights the critical stages
of this interaction, including user-initiated transaction requests and the exchange of data with the
banking and cloud servers. Additionally, it showcases the mobile banking application’s Android
Packet (APK) permission files that could be extracted, which govern the access and authorization
levels required for the application to execute various transaction-related operations securely. Fig. |
provides a visual representation of the underlying mechanism for secure mobile banking transactions,
emphasizing the importance of proper permissions and access control in safeguarding financial
transactions.

Banking System :
Banking Cloud Network

B

Rolter

User of Banking Mobile App

Ranking Application
o Services

' Banking Mobile A,F’-}Bk Permission f.|Ies of
Banking Server Bank Transections

Requests

Figure 1: User-banking server interaction and APK permission files in mobile banking

Towards going deep in different types of mobile banking malware-related concerns, trojans are
specific malware pieces that appear to be legitimate applications but contain harmful malicious code
that, when executed, causes severe damage to the device [3]. Trojanised mobile banking applications
can control the browser and steal bank account details such as bank login information [4]. By rooting
the device, the mobile viruses can access sensitive files and memory in an unauthorized manner.
Banking Trojans are also spread through email attachments, drive-by downloads, pirated software,
and corrupted USB drives. Banking Trojans can also be used for theft, identity theft, monitoring
mobile users, and activities, deleting data, and communicating with an attacker’s command-and-
control server.

In order to combat mobile banking malware attacks via trojans, researchers have developed
several methods for identifying malware that mainly targets banking applications. In this regard,
machine learning-based methods, like neural networks, have shown promise in results in determining
malicious code and analyzing permission requests from mobile applications [5]. However, the lack of
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transparency and interpretability of machine learning models are some major concerns, especially
when dealing with critical banking applications [6]. This drawback has led to an interesting shift
towards eXplainable ML (XML) techniques for mobile malware detection [7]. XML provides human-
understandable explanations for the decisions made by ML models. By incorporating XML techniques
into the detection of banking malware in Android apps, the transparency and interpretability of the
malware detection process in banking applications can be improved [&]. This not only improves trust
in the banking system but also allows security analysts to understand and validate the decisions made
by the models. The main reason behind such improvement with the use of XML is that the use of
permissions as a feature in classifying malware behaviour in mobile applications could be generated
automatically, where explainability will play a crucial role.

In this context, this paper presents a neural network-based technique for detecting banking
malware in Android apps. Our method involves analyzing permission requests from an application
and using the data to train a neural network to detect malware. By incorporating XML techniques, the
aim is to provide explanations for the decisions made by our model, thus enhancing the transparency
and interpretability of the detection process. The effectiveness of the proposed method and presented
the results were presented based on a set of Android malware samples. The utilised neural network
algorithms were trained by analyzing Android malware samples and benign applications. The dataset
contains features with 458 permissions, which they extracted as features for our neural networks. To
train the model, deep neural network architectures with many layers of neurons are employed. Our
Convolutional and dense layers are combined to learn complex representations of permission features.
To avoid overfitting and enhance generalization performance, a variety of regularization techniques are
employed. The effectiveness of the proposed method is assessed using a set of common metrics, such
as accuracy, precision, recall, and F1 score. Overall, the proposed approach can be used to improve
mobile banking application security and shield users from financial harm, while providing insights into
the decision-making process of the detection system through the incorporation of XML techniques.
The three main contributions of the paper are as follows:

o A realistic dataset with 458 mobile banking permissions is developed to use in detecting banking
malware on mobile devices.

e We adapted and designed a new model based on convolutional neural networks (CNN), deep
neural networks (DNN), and artificial neural networks (ANN) to detect banking malware.

e We evaluate the performance of the model using relevant metrics, with a critical analysis of
results.

It is also important to mention that the primary motivation of this work is to tackle the increasing
threat of malware attacks in mobile banking applications, specifically focusing on trojans that pose
a significant risk to user and financial institution security. Besides, the proposed use of XML has
motivated the enhancement in transparency and interpretability in mobile banking security.

The rest of this paper is organized as follows. Section 2 provides a critical review of related
work in banking applications malware detection. Section 3 presents the details of the proposed
framework MoBShield including the developed dataset, data generation approach, pre-processing of
dataset, and feature reduction. Section 4 discusses the performance evaluation including metrics and
experimental result analysis. Finally, Section 5 concludes the paper and highlights potential future
research directions.
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2 Related Works

It is important to highlight the need for an approach that combines effective malware detection
with XML in the context of mobile banking applications. While previous research has focused on
using machine learning techniques, such as neural networks, for detecting banking malware, the lack
of transparency and interpretability has been a significant limitation.

Several studies have emphasized the importance of incorporating XML techniques to enhance the
transparency and interpretability of Al systems in various domains. In [9], authors have proposed a
framework for explaining the predictions of any classifier, addressing the question of “Why Should I
Trust You?” Their work highlights the significance of providing explanations for the decisions made
by Al models. In the context of XML, Barredo Arrieta et al. [10] conducted a comprehensive survey
on Explainable Artificial Intelligence (XML), outlining concepts, taxonomies, opportunities, and
challenges towards responsible Al. Their study emphasizes the need for transparent and interpretable
Al models to build trust and facilitate decision-making. In another attempt, the authors in [I1]
have surveyed eXplainable Artificial Intelligence Al (XAI) and XML, delving into techniques and
methods for peeking inside the black box of AI models. They discussed various approaches, such as
rule-based methods, and model-agnostic methods that provide interpretability and transparency in
Al systems. On the other hand, Miller, T. in [12] has explored the insights from the social sciences
on the explanation of artificial intelligence. Their work highlights the interdisciplinary nature of
XML, drawing from fields like cognitive science and psychology to understand how humans perceive
and interact with explanations generated by Al models. By incorporating XML techniques into the
detection process, we address the limitations of transparency and interpretability in previous research
on banking malware detection. These references support the need for transparent and interpretable
Al models, particularly in sensitive domains such as mobile banking, where the security and privacy
of users’ financial information are paramount.

Users frequently use mobile banking applications to manage their finances, but they are also
susceptible to attacks from malware such as banking trojans. Numerous investigations have been made
into the security risks connected with mobile banking applications, as well as methods for identifying
and reducing these risks. A framework for the detection of Android Banking Trojans (ABT) was put
forth by [13]. The framework analyses the characteristics of network traffic produced by the Trojans
and identifies its patterns using machine learning algorithms. Similarly, the authors in [14] looked
into the use of machine learning methods to identify network communication traffic from banking
malware. The decision tree and random forest algorithms were successful in identifying the malware
traffic after they compared various classification algorithms. References [15,16] conducted a study to
identify patterns in the behaviours of banking malware. Keylogging and network communication with
command-and-control servers were identified as common behaviours after an analysis of the traits of
different banking malware types.

The early ZeusS trojan and the more recent Zitmo malware were both studied for trends in banking
malware. In [17], the authors have compared the security of user data in native and cross-platform
Android mobile banking applications. They compared the security attributes of a number of well-
known mobile banking apps, and they discovered that cross-platform apps were more prone to attacks
than native ones. Similarly, Chen et al. [18] empirically evaluated the security risks of international
Android banking apps and discovered that numerous apps had issues with SSL pinning, insufficient
encryption, and unsafe data storage. The repackaging attack on Android banking applications was
examined by [19], who also suggested countermeasures to stop such attacks. They discovered that
hackers could alter banking applications’ source code to steal user data and put forth strategies for



CMC, 2024, vol.79, no.2 2127

preventing and countering these attacks. Additionally, Koala et al. [20] examined the security flaws
in Android-based mobile banking and payment applications used in African nations and suggested
solutions.

Authors in [21] have researched Android banking application attacks and suggested defences
against them. They examined the characteristics of various attack types, including keylogging and
phishing, and they suggested techniques for identifying and counteracting them. The Man-in-the-
Middle vulnerability in mobile banking applications for Android devices was also investigated by [22],
who also suggested methods for identifying and addressing this vulnerability. The formal method for
the detection of banking Trojans in Android was lastly put forth by [23,24]. To find the trojans in
the applications’ source code, their method combines static and dynamic analysis. Similarly, authors
in [25] proposed formal methods for analysing and detecting Android banking malware. To find
weaknesses and potential threats in the applications’ code, their techniques employ model checking
and symbolic execution. To evaluate vulnerabilities and conduct penetration tests on Android and
i0S mobile banking apps, Abusharekh et al. [26] proposed APTAI, a threat model and security of
mobile banking applications (SMB) in [27]. Their attack tree-based model, which aims to identify and
reduce the security risks connected to mobile banking applications, was developed by the researchers.

To summarise the main research gaps with the current state of the arts along with the potential
contribution of the proposed work, below are the main points to highlight:

e Despite extensive research on mobile banking security, critical gaps persist in integrating
effective malware detection with eXplainable Machine Learning (XML).

e Previous studies focused on less transparent machine learning techniques, highlighting the need
for transparency, especially in sensitive domains like mobile banking.

e The research aims to address these gaps by incorporating XML techniques, bridging traditional
machine learning approaches with the demand for transparent Al models in safeguarding users’
financial information.

e The developed dataset enhances the research’s robustness, facilitating effective training and
evaluation of the proposed malware detection approach.

Table 1 provides a comprehensive comparison of related works, highlighting their types, detection
methods, detection targets, features, and limitations.

Table 1: Comparative analysis of the related works

Reference Type Detection method Detection target  Features Limitations
[18] Hybrid Comparative User data security Comparative Limited to
analysis study of user data analysing

security in native  security
and measures in
cross-platform mobile
Android mobile  banking
banking applications
applications only
Utilising XML

(Continued)
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Table 1 (continued)

Reference Type Detection method Detection target  Features Limitations
[19] Dynamic Dynamic analysis  Android banking Analysed Limited to
malware behaviour of only 5 malware
Android banking samples. Lack
malware on of XML
emulated Android utilisation
devices
[20] Hybrid Static and dynamic Android banking Analysed 20 Did not
analysis applications popular Android analyse
banking malware
applications. samples
Utilising XML
[21] Static Machine learning  Mobile banking  Used machine Limited
malware learning to detect dataset used
malware on for training
Android devices  and testing.
Lack of XML
utilisation
22] Hybrid Static and dynamic Mobile banking  Analysed 10 Did not
analysis applications popular mobile  analyse
banking malware
applications samples. Lack
of XML
utilization
[23] Hybrid Static and dynamic Android banking Analysed a large Did not
analysis malware dataset of include an
malicious APK  analysis of
files benign apps.
Lack of XML
utilisation
[24] Dynamic =~ Dynamic analysis Android banking Analysed Limited to
trojans behaviour of only 14
banking trojans  samples. Lack
on Android of XML
devices utilisation
[25] Dynamic Dynamic analysis Android banking Analysed Limited to
malware behaviour of only 6 malware
Android banking samples. Lack
malware on of XML

emulated Android
devices

utilisation

(Continued)
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Table 1 (continued)

Reference Type Detection method Detection target  Features Limitations
[26] Dynamic Dynamic analysis  Android banking Analysed Limited to
malware behaviour of only 10
Android banking malware
malware samples. Lack
of XML
utilisation
[27] Dynamic Dynamic analysis  Android banking Analysed Limited to
malware behaviour of only 10
Android banking malware
malware on samples. Lack
emulated Android of XML
devices utilization
[28] Hybrid Comparative Mobile banking  Vulnerability Limited to
analysis and payment analysis in mobile analysing
applications banking and security
payment measures in
applications on ~ mobile
Android in banking

African countries. applications
Utilising XML only

3 MoBShield: A Novel Permission-Based XML Approach for Securing Mobile Banking
3.1 Dataset Development

We present a new dataset to identify and detect banking malware based on Android apps’
permissions in the Android platform. As a result, we created a dataset with 3300 entries based on
Android banking malware. To do this, we downloaded 1650 infected Android banking from third-
party websites and 1650 benign apps of which 116 are legitimate banking apps and 1534 are from
different categories from Google Play. To examine all apk files and extract app permissions, we used
VirusTotal online scanner. In addition, we classified the apk files using over 70 trusted anti-malware
detection engines. The dataset includes several banking malware families, some of which mainly are
BankBot, Bankun, FakeBank, Marcher, SandRoid, SMSspy, SpitMo, Tebak, Wroba, Zitmo, Fakeinst,
Misosms, Svpeng, Gepew, SMSkey, AVpass and WannaLocker. The list of Android banking malware
families and the number of samples are listed in Table 2. We put all the information in a file to make
the dataset usable in CSV file format, which is simple to open and process. The dataset contains 459
columns of which 458 are specific permissions and the label which is the last column. The initial row
of the dataset describes column titles, and the remaining rows contain features from 3300 banking
malware and benign applications. All values are in binary format, which means they are either ‘0’ or
‘1’. When an app requires permission, the value in the corresponding dataset entry is ‘1°, and when
an app does not require permission, the value is ‘0’. Based on the VirusTotal report, an Android app
recognised as malware by most antimalware companies is possibly risky. The respective value in the
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label column is set to ‘1’, indicating banking malware. Table 3 showcases a representative subset of the

dataset.
Table 2: Banking malware families

Banking malware families Year of discovery Number of samples

BankBot 2017 160

Bankun 2014 47

FakeBank 2013 193

Marcher 2013 177

SMSspy 2012 76

SpitMo 2019 190

SVpeng 2013 58

Tebak 2013 63

Wannalocker 2016 7

Wroba 2021 269

Zitmo 2010 142

AVpass 2011 11

Fakeapp 2008 11

Fakeinst 2014 70

Gepew 2019 40

Misosms 2012 50

SMSkey 2000 43

Other families From 2000 to 2021 45

Table 3: A sample of the developed banking malware dataset
INTERNET ACCESS_COARSE_ ACCESS_FINE_ GET_TASKS CHANE_WIFI
LOCATION LOCATION _STATE

1 1 1 0 1
1 0 1 0 0
1 1 1 0 0
1 1 1 0 0
1 0 1 0 0

Banking Trojans represent a major cybersecurity threat, designed to steal financial information
from infected devices. These malicious programs target online banking credentials, credit card data,
and other sensitive information that can lead to financial fraud and identity theft. Banking Trojans are
typically spread through phishing campaigns and drive-by downloads. Once installed, they monitor
host device activity and siphon data to attackers. The following bullet list which is listed in Table 2
describes some of the most prevalent banking Trojan malware variants that infiltrate systems and

stealthily steal financial data:
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e BankBot: Trojan. Bankbot is a Trojan malware that is designed to steal sensitive financial data
such as online banking credentials, credit card numbers, and other personal information.

e Bankun: Trojan. Bankun is a Trojan malware that steals sensitive financial information from
infected devices. It typically infects devices via phishing emails, drive-by downloads, or other
social engineering methods.

e Fakebank: Trojan. Fakebank is a Trojan malware that impersonates legitimate banking applica-
tions or websites to steal financial information from infected devices. It typically infects devices
via phishing emails or other social engineering techniques, after which it installs itself.

e Marcher: Trojan. Marcher is a type of Android Trojan malware that steals financial information
from infected devices. The malware typically infects devices via phishing emails or SMS
messages, or it masquerades as a legitimate application.

o SMSSpy: Trojan. SMSSpy is a Trojan malware that monitors and steals SMS messages from
mobile devices infected with it. The malware typically in-stalls itself after being downloaded via
malicious apps or phishing emails.

e Spitmo: This Trojan malware steals two-factor authentication (2FA) codes from infected mobile
devices. It usually spreads through phishing emails or SMS messages, or by masquerading as a
legitimate app.

e SVpeng: This Android Trojan malware steals sensitive information from in-fected mobile
devices. Devices are usually infected through malicious apps or phishing emails.

e Tebak: The Trojan. Tebak virus is a type of malware that steals sensitive data from infected
computers. It is also known as the “Windows Tebak Trojan.”

e Wannalocker: The Trojan. Wannalocker ransomware, also known as Wan-naLocker, is a type
of Android ransomware. In most cases, it is spread by malicious apps or phishing emails.

e Wroba: Trojan. Wroba is an Android Trojan that steals sensitive information from infected
mobile devices. Phishing emails and malicious apps are com-mon ways for it to spread.

e Zitmo: Mobile malware called Zitmo, or Zeus in the Mobile, is a type of malware that infects
mobile devices. The malware intercepts SMS messages containing one-time passwords (OTPs)
or other authentication codes sent by banks to customers to steal banking information.

e AVpass: The Trojan AVpass is a type of malware designed to avoid detection by antivirus
software through various obfuscation techniques. Most commonly it is spread using malicious
email attachments or software downloaded from infected websites.

e Fakeapp: It is an example of malware that imitates legitimate apps in an at-tempt to trick users
into installing them. Typically, malware is distributed through bogus app stores or phishing
emails containing links to download it.

e Fakeinst: The Trojan.Fakelnst malware, also called Fakelnst, pretends to be legitimate software
installers to trick users into installing it. Typically, malware spreads through malicious websites
or spam emails containing download links.

e Gepew: Gepew is Trojan malware that steals sensitive data from infected computers. Typically,
it infiltrates a computer via a malicious email attachment or software download from a
compromised website.

e Misosms: Misosms are a type of Trojan horse.MisoSMS is a type of malware that infects
Android devices and sends unauthorised text messages to premium-rate phone numbers without
the user’s knowledge or consent.

e SMSkey: SMSkey is a Trojan.SMSKey is a type of malware that infects Android devices and
steals sensitive data such as login credentials and financial information. Trojan.SMSKey, once
installed on an Android device, may employ a variety of methods to steal sensitive information.
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3.2 Dataset Generation

The proposed method is divided into stages, and Fig. 2 demonstrates an overview of our proposed
schematic representation of the methodology architecture. Furthermore, our proposed methodology
is detailed below. The process of creating a dataset of malicious banking apps is an important step
in training machine learning models to detect and prevent malware. Let us examine each of the four
stages of this process in greater detail.

Banking Malware Dataset Development Chart

Data Development Phase

Data Collection from
Mobile Banking App

- \ Banking App: Banking App:
)

Feature Feature Selection
Extraction Permissions Data Store

Function

Data Labelling

Upload Extracted APK Files

™

Function

Z] VirusTotal

Figure 2: Schematic representation of the methodology for constructing the advanced banking
Malware dataset

3.2.1 Data Collection

This stage involves collecting a large number of malicious adware apps and benign apps to use as a
training dataset. In this particular case, we collected 1650 malicious banking apps from the Canadian
Institute of Cybersecurity, University of New Brunswick and 1650 benign apps from Google Play.
Using a large dataset is important because it allows the machine learning model to learn from various
examples and make more accurate predictions. The emphasis on a large dataset is crucial as it provides
diverse examples for the machine learning model, enabling it to learn more effectively and make more
accurate predictions. This diversity is essential for training a robust model capable of recognising the
nuances between malicious and benign applications in the context of mobile banking security.

3.2.2 Feature Extraction

Once the apps have been collected, the next step is to extract features that can be used to train
the machine learning model. This stage collects static features without executing the code. Static
features include things like the app’s name, version, and permissions requested. In this research, we
used the VirusTotal online scanner to extract permissions by uploading an apk file to the website and
adding every permission to their dataset. This involved uploading the apk files to the scanner, which
systematically compiled a dataset by incorporating every permission associated with the apps. This
method ensures a thorough extraction of relevant features crucial for training the machine learning
model effectively.

3.2.3 Feature Selection

After the features have been extracted, the next step is to select the most relevant features to use
for training the machine learning model. This is important because irrelevant and redundant features
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can degrade the quality and accuracy of the model, and higher-dimensional datasets require more
storage space and computation time. In this study, we chose relevant features such as permissions and
activities that are important in detecting malicious Android apps. Permissions are especially important
because they protect users’ privacy and sensitive data, and apps must request permission to access these
features.

3.2.4 Data Labelling

Labelling each app as malicious or benign completes the dataset. This is significant because it
enables the machine learning model to study both kinds of apps and learn from them in order to
produce more precise predictions. In this study, we manually categorised the apps by reviewing each
one and classifying them as malicious or benign based on their behaviour.

In general, gathering a large number of apps, extracting pertinent features, choosing the most
crucial features, and classifying each app as malicious or benign are the steps involved in creating a
dataset of banking malware. In order to ensure the security of mobile devices and safeguard users’
sensitive data, this dataset can then be used to train machine learning models to identify and stop
malware.

3.3 Preprocessing of Dataset

Preprocessing entails converting raw data into a format appropriate for analysis or modelling.
It is a critical step in data analysis and machine learning. Preprocessing is the process of preparing
data in order to increase the effectiveness and precision of the machine learning algorithms and data
analysis techniques that will be applied. Preprocessing typically entails a number of steps, such as, Data
cleaning which entails locating and dealing with incorrect or missing data, getting rid of duplicates,
and handling outliers or inconsistencies, and data transformation which entails transforming the data
into a format that is appropriate for analysis, such as feature scaling, standardisation, normalisation
of the data, or converting categorical variables to numerical values. Preprocessing is a crucial step in
the workflow for data analysis and machine learning because it has a big impact on how accurate and
effective the algorithms are. Better outcomes and more precise predictions can be obtained by making
sure the data is in the right format, has been correctly cleaned and transformed, and only contains the
pertinent features.

3.3.1 Missing Value Check

Missing values are a common issue in datasets, and they can occur for a number of reasons,
including data entry mistakes or problems with data collection. Conducting a missing value check
is the first step in handling missing values. Finding the null or missing values in the dataset is required
for this. In this instance, all of the NAN data in each column of the dataset were identified by the
author using the Python NumPy library. Choosing whether to replace or delete the missing values
comes next after they have been located. The average value of the column can be used to fill in the
missing values, which is a common strategy. This preserves the overall distribution of the data and
reduces the impact of missing values on the analysis. In some cases, completely removing rows with
missing values may be appropriate. If there are too many missing values or if they appear in critical
variables, this strategy may be required. Handling missing values is a critical step in data cleaning and
preparation in general. By correctly identifying and handling missing values, analysts can ensure the
accuracy and dependability of their analyses.
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3.3.2 Data Type Conversion

Data type conversion is the process of changing the format of data, such as converting a string to
a number or a date to a timestamp. It is critical to use the correct data types when conducting data
analysis in order to avoid errors and produce realistic results. Mathematical operations on the data
may be impossible, for example, if a numerical column is mistakenly identified as a string column.
To perform data type conversion, the author used the Pandas library, a well-known Python data
manipulation library. Pandas’ ‘as type’ function can be used to convert a column to a specific data
type. Pandas also include additional functions for converting data types. By performing data type
conversion, we can ensure that the dataset is in the correct format for analysis and that errors and
inconsistencies are kept to a minimum. Data type conversion, which is an important step in data
cleaning and preparation, can have a significant impact on the accuracy and dependability of data
analysis.

3.4 Feature Reduction

Feature reduction is a technique used in machine learning and data analysis that involves reducing
the number of features or variables in a dataset while keeping the most important and relevant
data. When datasets have a lot of features or variables, which happens frequently, the dimensionality
problem can appear. This may cause overfitting, slower computation times, and poorer predictive
performance. By identifying the most informative features and eliminating the redundant or irrelevant
ones, feature reduction techniques seek to resolve these problems. Techniques for reducing the number
of features can increase the precision and effectiveness of machine learning algorithms, especially
when there are a lot of features. These methods can lessen overfitting, increase generalisation, and
improve the interpretability of models by only choosing the most crucial features. The code that is being
offered removes columns from the dataset according to a predetermined standard. In this instance, the
criterion is that a column is dropped if the mean value of the data points in that column that are equal
to 0 is greater than or equal to 0.75.

This criterion is based on the idea that a column may not provide useful information for the
analysis and may even be redundant if a significant portion of its values are zero. By eliminating these
columns, the code streamlines the dataset, lowers the problem’s dimensionality, and may even enhance
model performance and computational effectiveness. Out of the original 458 features, 438 columns
have been removed by the code in this case, greatly reducing the dimensionality of the dataset and
the most important 20 kept which are described in Table 4. This reduction can help to increase the
precision and effectiveness of the machine learning algorithms while also making the analysis and
modelling tasks more manageable. The criteria for dropping columns may change depending on the
particular dataset and the issue being addressed, it is important to note. In light of the unique demands
of the analysis, it is crucial to carefully assess the effects of dropping columns and to select the proper
criteria for feature selection or reduction.

This indicates that the original 438 features had a high percentage of zeros and were therefore
deemed redundant and less important, whereas the remaining 20 features were thought to be more
significant and useful for the analysis. It is crucial to remember that choosing 0.75 as the threshold
for dropping columns was somewhat arbitrary and could change depending on the specific dataset
and analysis. A different threshold point might be preferable in certain situations. It is important to
carefully consider how feature reduction might affect the analysis’s precision and understandability.
In some cases, removing excessive amounts of features could result in the loss of important data and
harm the results.
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Table 4: The most important permissions after feature reduction

Permission Description
INTERNET Allows applications to open network sockets
GET_TASKS This constant was deprecated in API level 21. No longer

CHANGE_WIFI_STATE
WRITE_EXTERNAL_STORAGE
READ_PHONE_STATE

SYSTEM_ALERT_WINDOW

CALL_PHONE

READ_CONTACTS
READ_SMS

RECEIVE_SMS

WRITE_SMS

SEND_SMS
ACCESS_NETWORK_STATE
ACECESS_WIFI_STATE

RECEIVE_BOOT_COMPLETED
VIBRATE

WAKE_LOCK

RECEIVE

WRITE_SETTINGS

enforced
Allows applications to change Wi-Fi connectivity state
Allows an application to write to external storage

Allows read-only access to phone state, including the phone
number of the device, current cellular network information,
the status of any ongoing calls, and a list of any Phone
Accounts registered on the device

Allows an app to create windows using the type of
TYPE_APPLICATION_OVERLAY, shown on top of all
other apps

Allows an application to initiate a phone call without going
through the Dialer user interface for the user to confirm the
call

Allows an application to read the user’s contacts data
Allows an application to read SMS messages

Allows an application to receive SMS messages

Allows an application to write SMS messages

Allows an application to send SMS messages

Allows applications to access information about networks

Allows applications to access information about Wi-Fi
networks

Allows an application to receive the
ACTION_BOOT_COMPLETED that is broadcast after
thesystem finishes booting

Allows access to the vibrator

Allows using PowerManager WakeLocks to keep processor
from sleeping or screen from dimming

Allows an app to receive certain types of messages or
broadcasts sent by the system or other apps on the device

Allows an application to read or write the system settings

Neural network algorithms, such as ANN, CNN, and DNN, are artificial neural networks
commonly used in machine learning and deep learning. These neural network algorithms have various
architectural, functional, and design features. For instance, while DNNs are more general-purpose
and can be used for a variety of tasks, CNNs are created specifically for image recognition tasks. The
simplest type of neural network is an ANN, which can be used for straightforward tasks but lacks the
flexibility and power of more intricate architectures like CNNs and DNNs. Overall, neural network
algorithms have become increasingly popular in recent years due to their ability to learn complex



2136 CMC, 2024, vol.79, no.2

patterns and relationships in data and their performance on a wide range of tasks. Fig. 3 illustrates the
architectural framework of the proposed methodology used in this paper, spanning the entire process.

Methodology Architecture
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Figure 3: Architectural framework for the proposed methodology

4 Performance Evaluation

We developed tuned neural network models with Python and the Scikit-learn, Keras, and
TensorFlow libraries. We used the Python programming language to train and validate our neural
network classifier on our banking malware dataset. For array operations and reading data from files,
the NumPy and Pandas libraries are used. The simulation is divided into the following stages: Defining
the network’s parameters, such as node numbers and learning rate; reading the dataset; training the
neural network; and finally validating the neural network with the remaining dataset. the process of
developing tuned neural network models using various Python libraries such as Scikit-learn, Keras,
and TensorFlow, specifically for the purpose of classifying banking malware.

The simulation of the neural network development process is divided into several stages.
1) Defining Network Parameters: In this stage, the parameters of the neural network are defined.
This includes determining the number of nodes (or neurons) in each layer of the network and setting
the learning rate, which controls how quickly the model adapts to the training data. 2) Reading
the Dataset: The banking malware dataset is read into memory using the functionalities provided
by the Python libraries. This step prepares the data for subsequent processing and training. 3) Training
the Neural Network: The neural network model is trained using the prepared dataset. The model learns
from the input data, adjusts its internal weights, and updates its predictions based on the provided
training examples. This process continues until the model reaches a satisfactory level of performance.
4) Validating the Neural Network: Once the training is completed, the neural network’s performance
is evaluated using the remaining dataset that was not used during training. This validation step helps
assess the generalization ability of the model, ensuring it can accurately classify new, unseen data.
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Note that all the detailed simulation setup can be found in the shared source code in GitHub of the
proposed method its link is given in the footnote under the abstract section.

We used 10-fold stratified cross-validation to evaluate neural network models’ ability to generalise
on the reduced-feature dataset. This involved randomly dividing the dataset into 10 subsets and
subjecting it to five cycles of training and testing. In each cycle, one subset was excluded from the
training process and used for testing. The performance metrics of the classifier were collected for each
cycle, and if the variance between these metrics was high, it indicated that the classifier was over-fitted
and did not generalise well. However, if the variance was low, the mean values of the performance
metrics were considered reliable.

4.1 Experimental Metrics

We used the Python programming language and a number of libraries, including sci-kit-learn,
Keras, and TensorFlow, in our experiments. We used a variety of metrics, including Accuracy,
Precision, Recall, and F1, to assess the effectiveness of our method. Egs. (1)—(4) define these metrics,
respectively. To give you a better understanding of these metrics, let’s dive into their definitions. True
Positives, abbreviated as TP, refers to the number of positive samples that a binary machine learning
classifier correctly identified as positive. It is calculated by dividing the total number of test instances
with a true value of 1 by the number of test instances for which both the true and predicted values are
equal to 1 (positive).

False Positives, on the other hand, are instances where a negative sample is incorrectly predicted
by a binary machine learning classifier as positive. FP is calculated by dividing the total number of test
instances with true values of 0 by the number of test instances with true values of 0 and 1, respectively.
The number of negative samples that the binary classifier correctly identified as negative is known as
True Negatives (TN). It is calculated by counting the test instances that had both a true value of 0
and a predicted value of 0, and then dividing that number by the total number of test instances that
had a true value of 0. Positive samples that are mistakenly labelled as negative are known as False
Negatives (FN). The test instances with a true value of 1 and a predicted value of 0 are counted, and
the difference between these counts is divided by the total number of test instances with a true value
of 1. This yields the value of FN.

Eq. (1)’s equation for accuracy gives a general idea of the model’s performance. It is calculated by
dividing the total product (TP + TN) by the total product (TP + TN + FP + FN).
TP+ TN
Accuracy = + (1)

TP+ FP+ FN+ TN

Precision, defined in Eq. (2), describes the proportion of predicted positive samples (Banking
malware, in this case) that are actually positive. It is calculated by dividing TP by the sum of TP and
FP.

. TP
Precision = ——— (2)
TP+ FP

Recall, as expressed in Eq. (3), represents the percentage of correctly classified positive samples
(banking malware) out of the total number of positive samples. It is calculated by dividing TP by the
sum of TP and FN.

TP
Recall = ——— (3)
TP+ FN
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To consider both precision and recall, we also utilize the F1 score, which is a number between
0 and 1 and represents the harmonic mean of precision and recall. Eq. (4) demonstrates how the F1
score is calculated, where precision and recall are multiplied by 2 and divided by their sum.

2 % Precision % Recall
Fl =

4

Precision 4+ Recall @

By utilising these evaluation metrics, we can comprehensively assess the performance of our
approach and gain insights into the effectiveness of our binary M L-based classifiers.

4.2 Experimental Results

This section describes the experiments and compares the proposed method to other well-known
classifiers as well as the most relevant previous research in this field. All experiments were carried out
on a 64-bit Microsoft Windows 11 Professional operating system with hardware including an Intel(R)
Core (TM) 15-8365U @ 1.60 GHz 1.90 GHz CPU, 16.00 GB RAM, and an Intel UHD Graphics
620 GPU.

4.2.1 Neural Network Models

Neural networks are a type of machine learning algorithm that is inspired by the structure and
function of the human brain. They consist of interconnected nodes, or “neurons,” that process and
transmit information. When given a large amount of data, neural networks can learn to recognize
patterns and relationships in the data and use that knowledge to make predictions or classifications.
Using a deep-learning neural network is an effective strategy for detecting banking malware. Malware
is challenging to detect using conventional techniques because it can manifest in a wide variety of
ways and evolve quickly. The system can learn to recognise patterns and features indicative of banking
malware using a neural network trained on a large dataset of examples of malware and non-malware
behaviour, even if those patterns are complex and challenging to describe manually. Because of their
adaptability, neural networks are well suited for difficult tasks like malware detection because they can
handle a wide range of input data types and structures. It is important to keep in mind, though, that
neural networks can also be prone to overfitting or underfitting the training set. As a result, careful
tuning and model validation are necessary to guarantee the model’s accuracy and generalisability.
Experimental results with neural networks models is presented in Table 5.

Table 5: Experimental results with neural network models

Accuracy % (Std) Precision % (Std) Recall % (Std) F1 % (Std)

ANN  99.77 (+/—0.08%)  99.25 (+/—0.36%)  99.51 (+/—0.19%)  99.38 (+/—0.16%)
DNN  99.60 (+/—0.05%)  99.49 (+/—0.24%)  99.08 (+/—0.27%)  99.28 (+/—0.13%)
CNN  99.77 (4/—0.05%)  98.84 (+/—0.39%)  99.20 (+/—0.16%)  99.02 (+/—0.21%)

Artificial Neural Networks (ANN )

With an input layer, one or more hidden layers, and an output layer, ANNs are the most
fundamental type of neural network. Numerous neurons are present in each layer and are linked by
weights. Numerous tasks, such as classification, regression, and pattern recognition, can be performed
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using ANNs. One input layer, two dense layers, and one output layer make up the model’s total of four
layers.

1. Input layer: This layer is not explicitly defined in the code, but it is created implicitly when the
first Dense layer with input_dim = 458 is added. It represents the data’s input shape.

2. Dense layer (256 units): The model is used to add this layer.add(Dense(256, input_dim = 458,
activation = ‘relu’). It consists of 256 units and employs the ReLU activation function.

3. Dropout layer: This layer is added with the help of the model.add(Dropout(0.3)). It is added
after the first dense layer to prevent overfitting during training by randomly setting a fraction
of input units to 0.

4. Dense layer (128 units): The model is used to add this layer.add(Dense(128, activation = ‘relu’).
It has 128 units and is activated by the ReLU function.

5. Dropout layer: The model is used to add another dropout layer.add(Dropout(0.3)). It is added
after the second dense layer to prevent overfitting even more.

6. Dense layer (1 unit): The model is used to add this layer. (Dense(1, activation = ‘sigmoid’)).
It has a single unit and employs the sigmoid activation function. It provides the model’s final
output, which represents the probability of the input falling into the positive class.

Deep Neural Network (DNN)

DNNs are neural networks that typically have more than three layers. In complex processing-
intensive tasks like speech recognition, natural language processing, and computer vision, DNNs are
frequently used. The given model consists of a total of 7 layers, so, there are three hidden layers (two
specified explicitly and one additional hidden layer) and one output layer, making a total of four dense
layers. Additionally, there are three dropout layers added after each hidden layer and the extra dropout
layer after the additional hidden layer.

Convolutional Neural Network (CNN)

CNNs are a type of neural network that is commonly used in image recognition and computer
vision tasks. They use a series of convolutional layers to detect and extract features from the input
data, before passing the features through one or more fully connected layers to produce the output.

4.2.2 Machine Learning (ML) Models

It is essential to emphasise the need for a technique that not only effectively detects banking
malware but also provides explanations for its decisions. By combining a neural network-based
approach with XML techniques, we tackle the challenge of transparency and interpretability in
malware detection for Android apps. Our method analyses permission requests from an application,
a commonly used indicator of application behaviour, to train a neural network for detecting malware.
However, instead of solely relying on the neural network’s output, we incorporate XML techniques to
generate explanations for the classification decisions. This provides security analysts with insights into
why an application is classified as either benign or malicious, enabling them to validate and understand
the model’s decisions.

By highlighting the importance of XML in the proposed method, we ensure that our approach
not only achieves high accuracy in detecting banking malware but also enhances transparency and
interpretability. This is crucial for building trust in the detection system and enabling effective
collaboration between security analysts and the AI model. Overall, the need for an approach that
combines effective malware detection with XML is emphasized in both the related works and proposed
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method sections. By addressing this need, our method contributes to improving the security of mobile
banking applications and protecting users from financial harm while providing valuable insights into
the decision-making process of the detection system.

To obtain the features for each application, the VirusTotal scanner was utilised. The VirusTotal
scanner is a widely used online service that analyses files for potential malware by scanning them with
multiple antivirus engines and providing additional insights, including the permissions requested by
the application. The VirusTotal scanner was employed to analyse APK files, which are the installation
files used by Android applications. By submitting the APK files to the VirusTotal scanner, the service
performed a comprehensive analysis and extracted the permissions associated with each application.
These permissions are valuable features for Android banking malware detection because they act as
crucial indicators of an application’s behaviour and security requirements. The classification model was
built and evaluated by the study’s code using the PyCaret library, Table 6 lists the configuration settings
used in our experiment. By automating several steps, including data preprocessing, model selection,
hyperparameter tuning, model interpretation, and deployment, the PyCaret library streamlines the
machine-learning pipeline. The setup function was used to initialise the PyCaret environment after
PyCaret and its necessary dependencies had been installed. This function included incorporating the
permissions extracted by the VirusTotal scanner as part of the data preprocessing steps required to get
the dataset ready for modelling. The permission-based features that the VirusTotal scanner extracted
from the labelled instances of mobile applications served as the main set of input features in the dataset
used for modelling. The target variable was specified as the ‘label’ column, which shows whether or not
an application is categorised as banking malware. The compare_models function was used to compare
the performance of different machine learning models in detecting Android banking malware. This
function evaluated and ranked various models automatically based on a default evaluation metric,
taking into account the dataset’s specific characteristics, including the permissions extracted by the
VirusTotal scanner. Following the model comparison, the selected model’s hyperparameters were fine-
tuned using the tune_model function. The goal of this step was to optimise the model’s configuration
so that it could effectively leverage the permission-based features extracted by the VirusTotal scanner
to detect Android banking malware.

Table 6: PyCaret settings configuration

Description Value
1 Target Label
2 Target type Binary
3 Original data shape (3300, 459)
4 Transformed data shape (3300, 459)
5 Transformed train set shape (2310, 459)
6 Transformed test set shape (990, 459)
7 Numeric features 458
8 Rows with missing values 0.0%
9 Preprocess True
10 Imputation type Simple
11 Numeric imputation Mean
12 Categorical imputation Mode
13 Fold generator StratifiedK Fold

(Continued)
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Table 6 (continued)

Description Value
14 Fold number 10
15 CPU jobs —1
16 Use GPU False

4.2.3 Model Interpretability and Explanation

In addition to evaluating the performance metrics of our model, we also leverage XML techniques
to provide interpretations and explanations for the model’s predictions. This enhances transparency
and trust in the detection system. Fig. 4 shows the ROC curve for our tuned Random Forest model,
illustrating its ability to distinguish between malware and benign apps with a high AUC score of
0.9971. The confusion matrix in Fig. 5 provides the breakdown of true positives, true negatives, false
positives and false negatives. We can observe a high degree of accuracy, with only 6 false positives and
4 false negatives out of 990 test samples. The classification report in Fig. 6 presents precision, recall
and F1 score for each class. We achieve strong results for both malware and benign app detection.
Fig. 7 displays calibration plots assessing how well the predicted probabilities correlate with the actual
fraction of positives. The close alignment to the diagonal in both plots indicates good calibration.
The feature importance chart in Fig. § ranks the top 20 most influential features for classification.
We see permissions related to access to sensitive resources like SMS, contacts, storage, etc., have high
importance. Fig. 9 shows a SHAP summary plot highlighting features that pushed the model’s output
from the base value (the average model output over the dataset) to the actual output for a sample.
Red indicates features that increased the probability of malware, while blue represents features that
decreased the probability. The position on the x-axis indicates the impact of the feature. We can see that
certain dangerous permissions like READ_SMS and SEND_SMS pushed the sample to be classified
as malware. Table 5 tabulates the experimental results of the performance metrics for ANN, DNN,
and CNN accordingly.
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Figure 4: Tuned model ROC curve
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Figure 5: Tuned model confusion matrix
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Figure 6: Tuned model classification report
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Figure 7: Tuned model calibration plots
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In Table 7, the results of fitting 10 folds for each of the 10 candidates in terms of accuracy, recall,
precision, and F1 score are presented. Table 8 reports the outcomes of various standard machine
learning classifiers, including accuracy, AUC, recall, precision, and F1 score.

4.2.4 Comparison Results with Related Works

Table 9 shows the obtained results from the proposed neural networks and tuned ML models
using the proposed dataset. On the other hand, Table 10 provides a comprehensive comparison of the
classification performance of the proposed neural network models and the tuned ML model with
results from recent related works. The comparison is based on key evaluation metrics commonly
used in classification tasks: Accuracy, Precision, Recall, and F1 score. In comparison with ABT,
the proposed method achieved high performance across all metrics, indicating a robust classification
system. In comparison with APTAi and SMB, compared to ABT, this study demonstrates slightly
lower accuracy and precision but still maintains reasonable performance in terms of recall and F1
score, though the proposed method in this paper has outperformed both methods.



CMC, 2024, vol.79, no.2 2145
Table 7: Fitting 10 folds for each 10 candidates

Fold Accuracy Recall Precision F1

0 0.9784 0.9565 1.0000 0.9778

1 0.9913 0.9826 1.0000 0.9912

2 0.9481 0.9304 0.9640 0.9469

3 0.9870 0.9739 1.0000 0.9868

4 0.9870 0.9826 0.9912 0.9869

5 0.9697 0.9397 1.0000 0.9689

6 0.9740 0.9483 1.0000 0.9735

7 0.9740 0.9569 0.9911 0.9737

8 0.9870 0.9741 1.0000 0.9869

9 0.9913 0.9828 1.0000 0.9913

Mean 0.9788 0.9628 0.9946 0.9784

Table 8: Standard ML classifier results
Model Accuracy AUC Recall Precision F1
Random forest classifier 0.9887 0.9971 0.9879 0.9897 0.9888
Extra trees classifier 0.9879 0.9965 0.9853 0.9905 0.9879
CatBoost classifier 0.9861 0.9984 0.9827 0.9896 0.9861
SVM-linear kernel 0.9848 0.0000 0.9801 0.9897 0.9848
Extreme gradient boosting 0.9835 0.9979 0.9844 0.9828 0.9835
Gradient boosting classifier 0.9827 0.9976 0.9801 0.9853 0.9826
Logistic regression 0.9810 0.9981 0.9792 0.9828 0.9809
Ada boost classifier 0.9779 0.9973 0.9775 0.9786 0.9779
K neighbors classifier 0.9771 0.9932 0.9766 0.9776 0.9770
Decision tree classifier 0.9771 0.9785 0.9835 0.9713 0.9773
Ridge classifier 0.9727 0.0000 0.9662 0.9790 0.9725
Linear discriminant analysis 0.9701 0.9891 0.9671 0.9734 0.9700
Quadratic discriminant analysis  0.8827 0.8827 0.8086 0.9543 0.8726
Naive Bayes 0.8052 0.8052 0.9965 0.7213 0.8367
Dummy classifier 0.4978 0.5000 0.5000 0.2489 0.3324
Table 9: Tuned model results
Model Accuracy Recall Precision F1
Random forest classifier 0.9970 0.9958 0.9982 0.9970
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Table 10: Comparison results with recent related works

Method Accuracy Precision Recall F1
ABT 97.9 97.9 97.9 97.9
APTAI 91.8 90.9 92.7 91.8
SMB 95.0 94.0 96.0 95.0
Proposed ANN 99.7 99.2 99.5 99.3
Proposed DNN 99.6 99.4 99.0 99.2
Proposed CNN 99.7 98.8 99.2 99.0
Proposed tuned 99.7 99.5 99.8 99.7
ML model

In contrast, the proposed ANN significantly outperforms the referenced studies, demonstrating
superior accuracy, precision, recall, and F1 score. This indicates the effectiveness of the proposed
neural network architecture in the classification task. The DNN model also shows exceptional
performance, slightly lower than the ANN in terms of recall, but still significantly outperforming the
referenced studies. On the other hand, the proposed CNN achieves outstanding accuracy and recall,
demonstrating its efficacy in handling spatial information and patterns in the dataset. The tuned ML
model also demonstrates excellent classification performance, with high values across all evaluation
metrics. In summary, Table 10 indicates that the proposed neural network models (ANN, DNN, CNN)
and the tuned ML model outperform the referenced studies in terms of accuracy, precision, recall, and
F1 score, showcasing the effectiveness of the proposed approaches in the given classification task.

In order to compare the time complexity of the proposed work in comparison with the existing
works, the best-performed Random Forest model out of the XML implemented model has been
modelled using the Big O notation model. The time complexity for Training: O (iter * (n x d + d"2)),
where ifer is the number of iterations, n is the number of samples, and d is the number of features.
The time complexity for Prediction: O (n * d), where n is the number of samples and d is the number
of features. In our proposed method, the number of features was efficiently maintained due to the
reasoning mechanism that offers wise justification in selecting the best set.

Despite the promising results, a few potential limitations need to be further considered. For
instance, the proposed method relies heavily on permissions as features to train the model for
classification. Changes in permission structures or the emergence of new permissions could impact
the model’s performance. Regular updates on the developed dataset in this paper and adaptations
may be necessary to address this limitation. Also, model overfitting risk could be one of the potential
limitations that need to be carefully handled. Careful consideration of model generalisability and
robustness is essential for real-world deployment. Besides, further training and testing of more than
10 epochs will be explored as a result of the update on the developed dataset will require further
investigation.

Fig. 10a demonstrates the curve plot of the performance metrics, including accuracy, recall,
precision, and F1 score, across 10 epochs. Each obtained value point represents the trend of a specific
metric over the ten epochs, showcasing variations and patterns in the model’s performance. On the
other hand, Fig. 10b plots the bar shape of the obtained mean values for key performance metrics
in Fig. 10a, including accuracy, recall, precision, and F1 score. The blue bar represents the mean
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value, emphasising the overall performance of the model across the evaluated metrics. This concise
illustration provides a clear overview of the average model performance.
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Figure 10: Performance measure comparison across 10 epochs with their mean values

5 Conclusions and Future Work

We have presented a novel method for detecting banking malware in the Android operating
system by utilising permissions and employing optimized neural network models. Our approach,
which is the first to use large number of permissions as features and apply neural network models
for Android banking malware detection, has shown promising results. The increasing prevalence of
mobile banking and the rise in malware attacks targeting financial applications emphasise the need for
effective detection techniques. Traditional machine learning models have demonstrated their potential
in identifying malware based on various features, but the lack of transparency and interpretability
has been a concern. To address this limitation, we incorporated XML techniques into our detection
method, providing human-understandable explanations for the decisions made by our model. By
doing so, we enhance transparency and interpretability, crucial factors in building trust in the detection
system. Our experiments, conducted using a dataset consisting of benign and malicious banking APK
files, demonstrated that our proposed neural network models outperformed several well-known and
standard machine learning models. The results indicate that the permissions provided by Android
applications can be effectively utilized to detect banking malware.

As part of future work, we plan to expand our feature set by combining other types of features with
permissions and integrating more diverse feature sets. This will enable us to detect sophisticated bank-
ing malware, considering additional aspects of application behaviour and characteristics. Besides, as
banking malware is heavily dynamic, constantly evolving to bypass detection mechanisms, adaptation
to such highly evolved malware tactics is vital. Furthermore, more experimental results will be part of
the plan for future work, such as the use of multiple validation and explanations for a trustworthy ML
system [28].
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