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ABSTRACT

The presence of numerous uncertainties in hybrid decision information systems (HDISs) renders attribute reduc-
tion a formidable task. Currently available attribute reduction algorithms, including those based on Pawlak attribute
importance, Skowron discernibility matrix, and information entropy, struggle to effectively manages multiple
uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute
values, and attributes with fuzzy boundaries and abnormal values. In order to address the aforementioned issues,
this paper delves into the study of attribute reduction within HDISs. First of all, a novel metric based on the decision
attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute
values. The newly introduced distance metric has been christened the supervised distance that can effectively
quantify the differences between the nominal attribute values. Then, based on the newly developed metric, a novel
fuzzy relationship is defined from the perspective of “feedback on parity of attribute values to attribute sets”. This
new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.
Furthermore, leveraging the newly introduced fuzzy relationship, the fuzzy conditional information entropy is
defined as a solution to the challenges posed by fuzzy attributes. It effectively quantifies the uncertainty associated
with fuzzy attribute values, thereby providing a robust framework for handling fuzzy information in hybrid
information systems. Finally, an algorithm for attribute reduction utilizing the fuzzy conditional information
entropy is presented. The experimental results on 12 datasets show that the average reduction rate of our algorithm
reaches 84.04%, and the classification accuracy is improved by 3.91% compared to the original dataset, and by an
average of 11.25% compared to the other 9 state-of-the-art reduction algorithms. The comprehensive analysis of
these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties
inherent in hybrid data.
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Symbols and Notations Used in the Paper

Symbols and notations Meaning
X A set of objects
C A set of attributes
BA Set of conditional attributes
D The decision attribute
2X The power set of X
|Y| The cardinality of Y
I [0,1]
IX A set of all fuzzy sets on X
IX×X A set of all fuzzy relationship on X
R A fuzzy relationship
Rx The fuzzy information granule of x
θ The threshold value of tolerance relationship
P A subset of conditional attributes
T θ

P A tolerance relationship determined by θ and P

1 Introduction
1.1 Research Background

In information systems, the attributes of data are not of equal importance. Some of them may not
have a direct or significant impact on decision-making. These attributes are considered as redundant.
The objective of attribute reduction is to eliminate these redundant attributes, while maintaining
the same classification accuracy, to facilitate more concise and efficient decision-making. Attribute
reduction is also called feature selection.

With the emergence of the era of big data, the intricacies and diversities of data have been
constantly on the rise. Many datasets encompass both nominal and real-valued attributes, which are
referred to as hybrid data. Such hybrid data can be found in various domains, including finance,
healthcare, and e-commerce. The hybrid data encompass diverse attributes, necessitating distinct
methodologies and strategies for their manipulation. The complexity intensifies the challenges of
attribute reduction. Primarily, the disparities among nominal attribute values prove challenging to
assess accurately using Euclidean distance. Furthermore, data may encompass uncertainties such as
fuzzy attributes and anomalous attribute values. The reduction of attributes in hybrid data is a pivotal
research topic in the field of data mining and lies at the heart of rough set theory. This line of research
not only enhances the efficiency and precision of data processing but also fosters the advancement of
data mining and machine learning. Consequently, exploring the attribute reduction problem in mixed
information systems holds profound theoretical significance and practical relevance [1].

1.2 Related Works

The classical rough set theory is limited in its ability to handle continuous data, hence it has been
enhanced to include neighborhood rough sets and fuzzy rough sets as extensions. Currently, numerous
scholars have delved into the intricacies of attribute reduction by using neighborhood rough sets and
fuzzy rough sets, ultimately yielding impressive outcomes.

Neighborhood rough sets can effectively handle continuous values and have been widely applied
in attribute reduction. Fan et al. [2] established a max-decision neighborhood rough set model and
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successfully applied it to achieve attribute reduction for information systems, leading to more accurate
and concise decision-making. Shu et al. [3] proposed a neighborhood entropy-based incremental
feature selection framework for hybrid data based on the neighborhood rough set model. In their study,
Zhang et al. [4] conducted the entropy measurement on the gene space, utilizing the neighborhood
rough sets, for effective gene selection. Zhou et al. [5] put forward an online stream-based attribute
reduction method based on the new neighborhood rough set theory, eliminating the need for domain
knowledge or pre-parameters. Xia et al. [6] built a granular ball neighborhood rough set method for
fast adaptive attribute reduction. Liao et al. [7] developed an effective attribute reduction method for
handling hybrid data under test cost constraints based on the generalized confidence level and vector
neighborhood rough set models. None of the above methods provides a specific strategy for handling
the differences between nominal attribute values. Instead, they use Euclidean distance to measure
the differences between nominal attribute values, or use category information to simply define the
differences between nominal attribute values as 1 or 0.

Fuzzy rough sets are capable of effectively dealing with the ambiguity in real-world scenarios, and
have also been successfully applied in attribute reduction. Yuan et al. [8] established a unsupervised
attribute reduction model for hybrid data based on fuzzy rough sets. Zeng et al. [9] examined the
incremental updating mechanism of fuzzy rough approximations in response to attribute value changes
in a hybrid information system. Yang et al. [10] considered the uncertainty measurement and attribute
reduction for multi-source fuzzy information systems based on a new multi-granulation rough sets
model. Wang et al. [11] utilized variable distance parameters and, drawing from fuzzy rough set theory,
developed an iterative attribute reduction model. Singh et al. [12] came up with a fuzzy similarity-based
rough set approach for attribute reduction in set-valued information systems; Jain et al. [13] created
an attribute reduction model by using the intuitionistic fuzzy rough set. The above methods are either
not suitable for handling mixed data or do not have special techniques for handling nominal attribute
values and abnormal attribute values.

Information entropy quantifies the uncertainty of knowledge and can be used for the attribute
reduction. Li et al. [14] used conditional information entropy to measure the uncertainty and reduce
the attributes of multi-source incomplete information systems. Vergara et al. [15] summarized the
feature selection methods based on the mutual information. Li et al. [16] measured the uncertainty
of gene spaces and designed a gene seleciton algorithm using information entropy. Zhang et al. [17]
defined a fuzzy information entropy of classification data based on the constructed fuzzy information
structure and used it for attribute reduction. Zhang et al. [18] constructed a hybrid data attribute
reduction model utilizing the λ-conditional entropy derived from fuzzy rough set theory. Sang et al. [19]
proposed an incremental attribute reduction method using the fuzzy dominance neighborhood
conditional entropy derived from fuzzy dominant neighborhood rough sets. Huang et al. [20] defined a
new fuzzy conditional information entropy for fuzzy β covering information systems and applied it to
attribute reduction. The above methods also do not provide a specific solution for handling mixed data.

Akram et al. [21,22] presented the concept of attribute reduction and designed the associated
attribute reduction algorithms based on the discernibility matrix and discernibility function. These
methods are intuitive and easy to comprehend, enabling the calculation of all reducts. However, they
exhibit a high computational complexity, rendering them unsuitable for large datasets.

The comprehensive overview of the strengths and weaknesses of diverse attribute reduction
algorithms can be found in Table 1.
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Table 1: Details of various attribute reduction algorithms

Algorithms References Strengths Weaknesses

Pawlak attribute
importance

[2–6] Strong interpretability, high
stability, no prior knowledge
required, and the ability to
handle uncertainty.

Susceptibility to outliers and
noise, challenges in handling
large-scale datasets, and the
inability to effectively leverage
prior knowledge.

Information entropy [14–17] Strong interpretability, wide
applicability, and effective
avoidance of redundant
attributes.

Extensive computational
requirements, susceptibility to
outliers, and inability to
guarantee global optimality.

Skowron
discernibility matrix

[21,22] Concise and straightforward
expression, ease of operation,
and the ability to derive all
possible reductions.

large storage space
requirements, low
computational efficiency,
sensitivity to outliers and
noise, and unsuitability for
continuous attributes.

1.3 Motivation and Contribution

Hybrid data is a common occurrence in data mining. They have been observed that nominal
attributes significantly impact the measurement of data similarity, and Euclidean distance do not work
well when dealing with nominal attribute values, yet the majority of current reduction algorithms
rely heavily on Euclidean distance. Therefore, the supervised distance, a novel metric specifically for
measuring the difference between nominal attribute values, has been meticulously crafted. Existing
attribute reduction algorithms often exhibit sensitivity to abnormal attribute values and lack an
efficient mechanism to address them. Consequently, this article introduces a novel fuzzy relationship
that replaces similarity measurements based on attribute values with the count of similar attributes.
This innovative approach effectively filters out abnormal attribute values, enhancing the overall
accuracy and robustness of the algorithm. Due to the fact that the fuzzy conditional information
entropy not only considers the fuzziness of data but also has a certain anti-noise ability, this paper uses
fuzzy conditional information entropy to reduce the attributes of mixed data. The article’s novelty and
contribution are outlined below:

1. A new distance metric called the supervised distance is introduced. The supervised distance
metric, which considers the decision attribute that affect attribute similarity, leads to more precise
attribute reduction.

2. Based on the new distance measurement, a new fuzzy relationship determined by the quantity of
attributes with similar values is established. This approach views the relationship from the perspective
of “feedback on parity of attribute values to attribute sets”, resulting in a fuzzy relation that is robust
to a few abnormal attributes.

3. The fuzzy conditional information entropy is defined based on the new fuzzy relationship and
an advanced attribute reduction algorithm is developed based on the fuzzy conditional information
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entropy. This algorithm incorporates an innovative distance function, an innovative fuzzy relationship,
and fuzzy conditional information entropy.

4. Through meticulous experimental validation, this study clearly demonstrates that the fuzzy
relation offers superior performance to the equivalence relation when dealing with hybrid data,
effectively handling its complexity and uncertainties.

1.4 Organization

The structure of this paper is outlined as follows. Section 2 provides a brief overview of fuzzy
relationships and HDISs, laying the foundation for the subsequent sections. Section 3 describes the
method in detail. Section 4 presents the experimental results and discusses them. Section 5 summarizes
the paper.

2 Preliminaries

In this section, we will review some fundamental concepts of fuzzy relations and HDISs.

2.1 Fuzzy Relation

Let I = [0, 1]. A fuzzy set F on X is known as a mapping μ : X → I . ∀x ∈ X , μ (x) is the degree
of membership of x in F [23]. F can be represented as follows:

F = μ (x1)

x1

+ μ (x2)

x2

+ · · · + μ (xn)

xn

. (1)

Let |F | = ∑n

i=1 μ (xi) . Then |F | is called the cardinality of F .

Let IX denote the family of all fuzzy sets on X .

∀F ∈ IX and ∀G ∈ 2X , F ∩ G is defined as follows:

(F ∩ G) (x) = F (x) ∧ G (x) =
{

F (x) , x ∈ G
0, x /∈ G . (2)

Then |F ∩ G| = |F |.
If R is a fuzzy set on X × X , then R is referred to as a fuzzy relation on X . R can be represented

by the matrix: M (R) = (
rij

)
n×n

(rij = R
(
xi, xj

) ∈ I denotes the similarity between xi and xj).

Let IX×X denote the set of all fuzzy relationship on X .

Definition 2.1. Reference [24] Let R be a fuzzy relation on X. Then R is

1) Reflexive, if R(x,x) = 1 (∀x ∈ X ).

2) Symmetric, if R(x,y) = R(y, x) (∀x, y ∈ X ).

3) Transitive, if R (x, z) ≥ R (x, y) ∧ R (y, z) (∀x, y, z ∈ X).

If R is reflexive, symmetric, and transitive, then R is called a fuzzy equivalence relation on X . If R
is reflexive and symmetric, then R is called a fuzzy tolerance relation on X .

Let R ∈ IX×X . ∀x ∈ X , the fuzzy set Rx on X is defined as follows:

Rx (y) = R (x, y) (y ∈ X) . (3)

Then Rx is called the fuzzy information granule of x.
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According to (1), Rx = R (x, x1)

x1

+ R (x, x2)

x2

+ · · · + R (x, xn)

xn

.

Then |Rx| = ∑n

i=1 R (x, xi) .

2.2 Hybrid Decision Information Systems

Definition 2.2. Reference [25] (X,C) is called an information system (IS), if ∀c ∈ C decides a function
f : X → Vc, where Vc = {f (x) : x ∈ X}. If Q ⊆ C, then (X,Q) is said to be a subsystem of (X,C).

If C = B ∪ {d}, where B = {b1, b2, · · · , bm} represents the conditional attributes set, d represents
the decision attribute, then (X,C) is called as a decision information system.

Definition 2.3. Let (X,B,d) is a decision information system. Then (X,B,d) is known as a hybrid
decision information system (HDIS), if B = Bc ∪ Br, where Bc is a set of categorical attributes, Br is a
set of real-valued attributes.

Example 2.4. Table 2 shows an HDIS, where X = {x1, x2, · · · , x9}, Bc = {b1, b2} and Br = {b3}.

Table 2: An HDIS

X Headache (b1) Muscle pain (b2) Temperature (b3) Symptom (d)

x1 ∗ Yes 37.2 Health
x2 Middle No ∗ Rhinitis
x3 Middle ∗ 39.1 Flu
x4 No ∗ ∗ Health
x5 ∗ Yes 36.5 Rhinitis
x6 Sick Yes 39.8 Flu
x7 No No 36.0 Health
x8 No Yes 38.3 Flu
x9 Sick Yes 39.8 Flu
Note: * denotes missing values.

3 Methodology
3.1 A New Distance Function

To accurately measure the difference between two attributes in HDISs, we have developed a novel
distance function that accounts for various types of attributes and missing data. This innovative
approach allows for a more comprehensive assessment of the similarity or dissimilarity between
different attributes in the system.

We first assign a definition for the distance between categorical attribute values to enable further
distance definition of hybrid data.

Definition 3.1. For an HDIS (X,B,d), let Vd = {d (x) : x ∈ X} = {d1, d2, · · · , dr},
N (b, x) = |{y ∈ X : b (x) = b (y) , b ∈ Bc, b (x) �= ∗}| (∀x ∈ X)

Ni (b, x) = |{y ∈ X : b (x) = b (y) , d (y) = di}|
Then N (b, x) = ∑r

i=1 Ni (b.x).
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Example 3.2. (Continue with Example 2.4)

Vd = {d1 = Flu, d2 = Rhinitis, d3 = Health} , N (b2, x5) = |{x ∈ X : b2 (x) = b2 (x5) = Yes}|
= |{x1, x2, x4, x5, x9}| = 5, N1 (b2, x5) = |{x ∈ X : b2 (x) = b2 (x5) = Yes, d (x) = d1 = Flu}|
= |{x1, x2, x4}| = 3N2 (b2, x5) = |{x ∈ X : b2 (x) = b2 (x5) = Yes, d (x) = d2 = Rhinitis}| = |{x5}|
= 1N3 (b2, x5) = |{x ∈ X : b2 (x) = b2 (x5) = Yes, d (x) = d3 = Health}| = |{x9}| = 1.

Definition 3.3. For an HDIS (X,B,d), let |Vd| = r, b ∈ Bc, x ∈ X , y ∈ X , b (x) �= ∗ and b (y) �= ∗.
Then the distance between b(x) and b(y) is defiend as follows:

ρc (b (x) , b (y)) = 1
2

r∑
i=1

∣∣∣∣Ni (b, x)

N (b, x)
− Ni (b, y)

N (b, y)

∣∣∣∣ . (4)

The distribution of attribute values defines a distance that is well-suited for the characteristics of
classification data.

Proposition 3.4. Let (X,B,d) be an HDIS. Then the following conclusions are valid:

1) ρc (b (x) , b (x)) = 0,
2) 0 ≤ ρc (b (x) , b (y)) ≤ 1.

Proof . 1) The conclusion is self-evidently valid.

2) ρc (b (x) , b (y)) ≥ 0 is self-evidently valid.

Since
r∑

i=1

Ni (b, x)

N (b, x)
=

r∑
i=1

Ni (b, y)

N (b, y)
= 1,

we have

ρc (b (x) , b (y)) ≤ 1
2

(
r∑

i=1

Ni (b, x)

N (b, x)
+

r∑
i=1

Ni (b, y)

N (b, y)

)
= 1.

Definition 3.5. For an HDIS (X,B,d), let b ∈ Br, x ∈ X , y ∈ X , b (x) �= ∗, and b (y) �= ∗. Then the
distance between b(x) and b(y) is defined as follows:

ρr (b (x) , b (y)) = |b (x) − b (y)|
max {b (x) : x ∈ X} − min {b (x) : x ∈ X} . (5)

ρr (b (x) , b (x)) = 0 and 0 ≤ ρr (b (x) , b (y)) ≤ 1 are self-evidently valid.

Definition 3.6. For an HDIS (X,B,d), let b ∈ B, x ∈ X , and y ∈ X . Then the distance between b(x)
and b(y) is defined as follows:

ρ (b (x) , b (y)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, b ∈ B, b (x) = ∗ ∨ b (y) = ∗, d (x) = d (y)

1, b ∈ B, b (x) = ∗ ∨ b (y) = ∗, d (x) �= d (y)

ρc (b (x) , b (y)) , b ∈ Bc, b (x) �= ∗ ∧ b (y) �= ∗
ρr (b (x) , b (y)) , b ∈ Br, b (x) �= ∗ ∧ b (y) �= ∗

. (6)
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Example 3.7. (Continuation of Example 2.4) According to Definitions 3.1–3.6, we have

1) ρ (b1 (x1) , b1 (x3)) =
(∣∣∣∣2

2
− 1

2

∣∣∣∣ +
∣∣∣∣0
2

− 1
2

∣∣∣∣ +
∣∣∣∣0
2

− 0
2

∣∣∣∣
)

/3 = 1
3

,

2) ρ (b1 (x1) , b1 (x4)) =
(∣∣∣∣2

2
− 1

3

∣∣∣∣ +
∣∣∣∣0
2

− 0
3

∣∣∣∣ +
∣∣∣∣0
2

− 2
3

∣∣∣∣
)

/3 = 4
9

,

3) ρ (b1 (x5) , b1 (x9)) = 1,

4) ρ (b2 (x1) , b2 (x3)) = 0,

5) ρ (b3 (x1) , b3 (x3)) = |39.5 − 39|
40 − 36

= 1
8

.

Definition 3.8. For an HDIS (X,B,d), ∀b ∈ B, ∀xi, xj ∈ X , let Mb = (
ρ

(
b (xi) , b

(
xj

)))
n×n

. Then Mb

is called the distance matrix of b.

Example 3.9. (Continuation of Example 2.4) Here are the distance matrices of b1 and b3:

Mb1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1/3 4/9 1 1/3 4/9 4/9 1
0 0 1/3 4/9 1 1/3 4/9 4/9 1
1/3 1/3 0 4/9 1 0 4/9 4/9 1
4/9 4/9 4/9 0 1 4/9 0 0 1
1 1 1 1 0 0 1 1 1
1/3 1/3 0 4/9 0 0 4/9 4/9 1
4/9 4/9 4/9 0 1 4/9 0 0 0
4/9 4/9 4/9 0 1 4/9 0 0 0
1 1 1 1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Mb3
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/8 1/8 3/8 3/4 1 7/8 1 5/8
1/8 0 1/4 1/2 7/8 1 1 1 3/4
1/8 1/4 0 1/4 5/8 1 3/4 1 1/2
3/8 1/2 1/4 0 3/8 1 1/2 1 1/4
3/4 7/8 5/8 3/8 0 0 1/8 1 1/8
1 1 1 1 0 0 1 1 1
7/8 1 3/4 1/2 1/8 1 0 0 1/4
1 1 1 1 1 1 0 0 0
5/8 1 3/4 1/2 1/4 1 1/4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2 A New Fuzzy Relation

Definition 3.10. For an HDIS (X,B,d), ∀P ⊆ B, ∀θ ∈ [0, 1], the tolerance relationship is defined
as follows:

T θ

P = {(x, y) ∈ X × X : ∀b ∈ P, ρ (b (x) , b (y)) ≤ θ} .

Let T θ

P (x) = {
y ∈ X : (x, y) ∈ T θ

P

}
. T θ

P (x) is called the tolerance class of x.

T θ

P uses distance to measure the similarity of objects. Next, we introduce a new fuzzy relationship
that evaluates the similarity of objects based on the number of similar attributes.

Definition 3.11. Let (X,B,d) be an HDIS. ∀P ⊆ B, ∀θ ∈ [0, 1], ∀x ∈ X , ∀y ∈ X , define

Rθ

P (x, y) = 1
|B| |{b ∈ P : ρ (b (x) , b (y)) ≤ θ}| , Rd = {(x, y) ∈ X × X : d (x) = d (y)}
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Then Rθ

P and Rd are a fuzzy relation and an equivalence relation on X , respectively.

The matrix representation of Rθ

P is M
(
Rθ

P

) = (
Rθ

P

(
xixj

))
n×n

.

Let Rθx
P (y) = Rθ

P (x, y) and Rx
d = {y ∈ X : (x, y) ∈ Rd}.

Rθx
P is the fuzzy information granule of x and Rx

d is the decision class of x.

According to (1), Rθx
P = Rθ

P (x, x1)

x1

+ Rθ

P (x, x2)

x2

+ · · · + Rθ

P (x, xn)

xn

,
∣∣Rθx

P

∣∣ = ∑n

i=1 Rθ

P (x, xi)

Let X/Rd = {
Rx

d : x ∈ X
} = {D1, D2, · · · , Dr}.

Let Pθxy = {b ∈ P : ρ (b (x) , b (y)) ≤ θ}. Then Rθx
P (y) = 1

|B| |Pθxy|.

Rθx
P (x) = |P|

|B| ≤ 1 and Rθx
P (y) ≤ |P|

|B| are self-evidently valid.

Proposition 3.12. Let (X,B,d) be an HDIS. If P ⊆ B, P1 ⊆ P2 ⊆ B, and 0 ≤ θ1 ≤ θ2 ≤ 1, Rθx
P1

⊆ Rθx
P2

and Rθ1x
P ⊆ Rθ2x

P (∀x ∈ X).

Proof . According to Definition 3.11, ∀y ∈ X , ∀θ ∈ [0, 1], Rθx
P1

(y) = 1
|B|

∣∣Pθxy
1

∣∣, Rθx
P2

(y) = 1
|B|

∣∣Pθxy
2

∣∣.
Since P1 ⊆ P2, Pθxy

1 ⊆ Pθxy
2 . Therefore, ∀y ∈ X , Rθx

P1
(y) ≤ Rθx

P2
(y).

Thus, ∀x ∈ X , Rθx
P1

⊆ Rθx
P2

.

Since 0 ≤ θ1 ≤ θ2 ≤ 1, Pθ1xy ⊆ Pθ2xy. Thus Rθ1x
P (y) ≤ Rθ2x

P (y). Therefore, Rθ1x
P ⊆ Rθ2x

P .

3.3 Fuzzy Conditional Information Entropy in HDISs

This section explores the concept of fuzzy entropy measures in HDISs to measure the uncertainty
of HDISs.

Definition 3.13. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. Then the fuzzy information entropy
of P is defined as follows:

Hθ (P) = −
n∑

i=1

∣∣Rθxi
P

∣∣
n

log2

∣∣∣∣Rθxi
P

∣∣∣∣
n . (7)

Proposition 3.14. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. The following inequality holds:

0 ≤ Hθ (P) ≤ nlog2

mn|P| .

Proof . Since
|P|
m

≤ ∣∣Rθxi
P

∣∣ ≤ n,
|P|
mn

≤
∣∣Rθxi

P

∣∣
n

≤ 1.

Thus, 0 ≤ −log2

∣∣∣∣Rθxi
P

∣∣∣∣
n ≤ log2

mn
|P| . Hence, 0 ≤ −

∣∣Rθxi
P

∣∣
n

log2

∣∣Rθxi
P

∣∣
n ≤ log2

mn
|P| .

The following conclusion follows directly from Definition 3.13:

0 ≤ Hθ (P) ≤ nlog2

mn|P| .
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Definition 3.15. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. The fuzzy conditional information
entropy of P concerning d is defined as follows:

Hθ (P|d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθxi
P ∩Dj

∣∣∣∣∣∣∣∣Rθxi
P

∣∣∣∣ . (8)

Lemma 3.16. (X,B,d) is an HDIS. Let P ⊆ B, θ ∈ [0, 1] and D ∈ X/d. The following conclusion is
valid:(
Rθx

P ∩ D
)
(y) + (

Rθx
P ∩ (X − D)

)
(y) = Rθ

P (x, y) (∀x, y ∈ X) .

Proof . ∀x, y ∈ X , we have(
Rθx

P ∩ D
)
(y) = Rθ

P (x, y) ∧ D (y) =
{

Rθ

P (x, y) , y ∈ D
0, y /∈ D ,

(
Rθx

P ∩ (X − D)
)
(y) = Rθ

P (x, y) ∧ (X − D) (y) =
{

0, y ∈ D
Rθ

P (x, y) , y /∈ D .

Thus,
(
Rθx

P ∩ D
)
(y) + (

Rθx
P ∩ (X − D)

)
(y) = Rθ

P (x, y) .

Proposition 3.17. (X,B,d) is an HDIS. Let P ⊆ B, θ ∈ [0, 1] and D ∈ X/d. The following conclusion
is valid:∣∣Rθx

P ∩ D
∣∣ + ∣∣Rθx

P ∩ (X − D)
∣∣ = ∣∣Rθx

P

∣∣ (∀x ∈ X) .

Proof . According to Lemma 3.16,

∣∣Rθx
P ∩ D

∣∣ + ∣∣Rθx
P ∩ (X − D)

∣∣ =
n∑

i−1

(
Rθx

P ∩ D
)
(xi) +

n∑
i=1

(
Rθx

P ∩ (X − D)
)
(xi)

=
n∑

i−1

[(
Rθx

P ∩ D
)
(xi) + (

Rθx
P ∩ (X − D)

)
(xi)

] =
n∑

i=1

Rθ

P(x, xi) = ∣∣Rθx
P

∣∣ .

Proposition 3. 18. (X,B,d) is an HDIS.

1) If Q ⊆ P ⊆ B, then Hθ (Q|d) ≤ Hθ (P|d).

2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then Hθ1 (P|d) ≤ Hθ2 (P|d) (∀P ⊆ B).

Proof . 1) Let p(1)

ij = ∣∣Rθxi
P ∩ Dj

∣∣, p(2)

ij = ∣∣Rθxi
P ∩ (

X − Dj

)∣∣, q(1)

ij = ∣∣Rθxi
Q ∩ Dj

∣∣, and q(2)

ij =∣∣Rθxi
Q ∩ (

X − Dj

)∣∣.
Rθxi

Q ⊆ Rθxi
P according to Proposition 3.12.

Hence, 0 ≤ q(1)

ij ≤ p(1)

ij and 0 ≤ q(2)

ij ≤ p(2)

ij .

According to Proposition 3.17, we have p(1)

ij + p(2)

ij = ∣∣Rθxi
P

∣∣ and q(1)

ij + q(2)

ij = ∣∣Rθxi
Q

∣∣.
Let f (x, y) = −xlog2

x
x+y (x > 0, y > 0).

Then Hθ (P|d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣Rθxi
P ∩ Dj

∣∣∣∣Rθxi
P

∣∣ = −
n∑

i=1

r∑
j=1

p(1)

ij

n
log2

p(1)

ij

p(1)

ij + p(2)

ij = 1
n

n∑
i=1

r∑
j=1

f
(
p(1)

ij , p(2)

ij

)
and
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Hθ (Q|d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
Q ∩ Dj

∣∣
n

log2

∣∣Rθxi
Q ∩ Dj

∣∣∣∣Rθxi
Q

∣∣ = −
n∑

i=1

r∑
j=1

q(1)

ij

n
log2

q(1)

ij

q(1)

ij + q(2)

ij = 1
n

n∑
i=1

r∑
j=1

f
(
q(1)

ij , q(2)

ij

)
.

Since the function f(x, y) exhibits monotonic increases in both x and y,

f
(
q(1)

ij , q(2)

ij

) ≤ f
(
p(1)

ij , q(2)

ij

) ≤ f
(
p(1)

ij , p(2)

ij

)
.

Hence, Hθ (Q|d) ≤ Hθ (P|d).

2) Let s(1)

ij = ∣∣Rθ1xi
P ∩ Dj

∣∣, s(2)

ij = ∣∣Rθ1xi
P ∩ (

X − Dj

)∣∣, t(1)

ij = ∣∣Rθ2xi
P ∩ Dj

∣∣, and t(2)

ij = ∣∣Rθ2xi
P ∩ (

X − Dj

)∣∣.
Rθ1xi

P ⊆ Rθ2xi
P according to Proposition 3.12. Hence, 0 ≤ s(1)

ij ≤ t(1)

ij and 0 ≤ s(2)

ij ≤ t(2)

ij .

According to Proposition 3.17, we have s(1)

ij + s(2)

ij = ∣∣Rθ1xi
P

∣∣ and t(1)

ij + t(2)

ij = ∣∣Rθ2xi
P

∣∣.

Hθ1 (P|d) = −
n∑

i=1

r∑
j=1

∣∣Rθ1xi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθ1xi
P ∩Dj

∣∣∣∣∣∣∣∣Rθ1xi
P

∣∣∣∣ = −
n∑

i=1

r∑
j=1

s(1)

ij

n
log2

s(1)
ij

s(1)
ij +s(2)

ij = 1
n

n∑
i=1

r∑
j=1

f
(
s(1)

ij , s(2)

ij

)

Hθ2 (P|d) = −
n∑

i=1

r∑
j=1

∣∣Rθ2xi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθ2xi
P ∩Dj

∣∣∣∣∣∣∣∣Rθ2xi
P

∣∣∣∣ = −
n∑

i=1

r∑
j=1

t(1)

ij

n
log2

t(1)
ij

t(1)
ij +t(2)

ij = 1
n

n∑
i=1

r∑
j=1

f
(
t(1)

ij , t(2)

ij

)

It follows from the monotonicity of f(x,y) that f
(
s(1)

ij , s(2)

ij

) ≤ f
(
t(1)

ij , s(2)

ij

) ≤ f
(
t(1)

ij , t(2)

ij

)
.

Hence Hθ1 (P|d) ≤ Hθ2 (P|d).

Definition 3.19. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. The fuzzy joint information entropy
of P and d is defined as follows:

Hθ (P ∪ d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθxi
P ∩Dj

∣∣∣∣
n . (9)

Lemma 3.20. (X,B,d) is an HDIS. Let P ⊆ B, θ ∈ [0, 1], U ∈ 2X , and V ∈ 2X , then∑
y∈U Rθ

P (x, y) + ∑
y∈V Rθ

P (x, y) ≥ ∑
y∈U∪V Rθ

P (x, y) (∀x ∈ X).

The equality holds as U ∩ V = Φ.

Proof . The conclusion is self-evident.

Proposition 3.21. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. Then
r∑

j=1

∣∣Rθx
P ∩ Dj

∣∣ = ∣∣Rθx
P

∣∣ (∀x ∈ X) .

Proof . Since D = {D1, D2, · · · , Dr} constitutes a partition of X ,
r∑

j=1

∣∣Rθx
P ∩ Dj

∣∣ =
r∑

j=1

∑
y∈Dj

(
Rθ

P (x, y) ∧ Dj (y)
) =

∑
y∈X

(
Rθ

P (x, y) ∧ D (y)
)

=
∑
y∈X

Rθ

P (x, y) = ∣∣Rθx
P

∣∣ (∀x ∈ X) by Lemma 3.20.
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Proposition 3.22. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. Then

Hθ (P|d) = Hθ (P ∪ d) − Hθ (P) .

Proof .
r∑

j=1

∣∣Rθxi
P ∩ Dj

∣∣ = ∣∣Rθxi
P

∣∣ according to Proposition 3.21.

Hθ (P|d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθxi
P ∩Dj

∣∣∣∣∣∣∣∣Rθxi
P

∣∣∣∣

= −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

⎛
⎝log2

∣∣∣∣Rθxi
P ∩Dj

∣∣∣∣
n − log2

∣∣∣∣Rθxi
P

∣∣∣∣
n

⎞
⎠

= −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθxi
P ∩Dj

∣∣∣∣
n +

n∑
i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣∣∣Rθxi
P

∣∣∣∣
n

= Hθ (P ∪ d) +
n∑

i=1

∣∣Rθxi
P

∣∣
n

log2

∣∣∣∣Rθxi
P

∣∣∣∣
n = Hθ (P ∪ d) − Hθ (P) .

Theorem 3.23. (X,B,d) is an HDIS. Let P ⊆ B and θ ∈ [0, 1]. Then Hθ (P|d) ≥ 0.

Proof . Hθ (P) = −
n∑

i=1

∣∣Rθxi
P

∣∣
n

log2

∣∣Rθxi
P

∣∣
n according to Definition 3.13.

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣ = ∣∣Rθxi
P

∣∣ according to Proposition 3.21.

Thus, Hθ (P) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣Rθxi
P

∣∣
n = −

n∑
i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣Rθxi
P

∣∣
n .

Hθ (P ∪ d) = −
n∑

i=1

r∑
j=1

∣∣Rθxi
P ∩ Dj

∣∣
n

log2

∣∣Rθxi
P ∩ Dj

∣∣
n according to Definition 3.19.

Since log2

∣∣Rθxi
P ∩ Dj

∣∣
n ≤ log2

∣∣Rθxi
P

∣∣
n , Hθ (P) ≤ Hθ (P ∪ d).

Hθ (P|d) = Hθ (P ∪ d) − Hθ (P) according to Proposition 3.22.

Hence, Hθ (P|d) ≥ 0.
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3.4 An Attribute Reduction Algorithm Utilizing Fuzzy Conditional Information Entropy

Algorithm 1: An attribute reduction algorithm based on fuzzy conditional information entropy
(IARFCIE)

Input: An HDIS (X,B,d) and θ .
Output: A reduct S.
1 Initialization: S ← B;
2 Calculate X/d = {D1, D2, · · · , Dr}, where r denotes the number of distinct categories present in

the dataset;
3 Calculate Hθ (B|d) according to Definition 3.15;
4 i = 0;
5 for each attribute s ∈ S do
6 if Hθ (S − s|d) = Hθ (B|d) then
7 S = S-s;
8 else
9 i = i + 1;
10 end
11 if i = |S| then
12 Return S;
13 end
14 end

Definition 3.24. (X,B,d) is an HDIS. Let A ⊆ B and θ ∈ [0, 1]. If Hθ (A|d) = Hθ (B|d), A is called
a coordination subset of B.

Let coo (B) denote the collection of all coordination subsets of B.

Definition 3.25. (X,B,d) is an HDIS. Let A ⊆ B and θ ∈ [0, 1]. If A ∈ coo (B) and A − a /∈
coo (B) (∀a ∈ A), A is called a reduct of B.

Let red(B) denote the collection of all reducts of B.

In accordance with the aforementioned definitions and Proposition 3.18, Algorithm 1 for attribute
reduction is hereby presented.

The time complexity of Algorithm 1 is shown in Table 3.

Table 3: The time complexity of IARFCIE

Step Time complexity

2 O (|X |)
3 O (|X ||B| r)
5–14 O

(|X ||B|2 r
)

Total O
(|X ||B|2 r

)
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4 Experimental Results and Discussions
4.1 Datasets

Across all experiments, we utilized twelve University of California Irvine (UCI) datasets with
hybrid attributes to evaluate our approach. Table 4 offers comprehensive details on each dataset.

Table 4: Details of 12 UCI datasets

No. Datesets Abbreviation Samples Features Classes

1 Abalone Aba 4177 8 28
2 Automobile Aut 205 25 6
3 Credit Cre 690 15 2
4 Dermatology Der 366 34 6
5 Hepatitis Hep 155 19 2
6 Horse colic HC 368 28 2
7 Processed

cleveland
PC 303 13 5

8 Cylinder bands CB 540 32 2
9 Insurance Ins 9822 85 2
10 Mechanical

analysis
MA 9254 7 6

11 German credit GC 1000 20 2
12 Thyroid Thy 7200 21 3

4.2 The Property of Monotonicity in Fuzzy Conditional Information Entropy

To verify the monotonicity of fuzzy conditional information entropy (FCIE), we calculate the
fuzzy conditional information entropy of each dataset as the number of attributes increases.

Fig. 1 demonstrates that the fuzzy conditional information entropy consistently rises as the
number of attributes increases, highlighting its monotonic behavior. The monotonicity displayed in
Fig. 1 is a result of the parameter θ set to 0.1. When other values are assigned to θ , similar outcomes
can also be observed.

4.3 The Influence of θ on Attribute Reduction and Classification Accuracy

The parameter θ of IARFCIE will affect the reduction results and classification accuracy. To
determine the optimal parameter value, we can iterate through each value in {0,0.1,0.2,0.3,0.4,0.5,0.6,
0.7,0.8,0.9,1} for θ and select the one that yields the best performance.

In the experiment, a decision tree classifier was employed, and the obtained results were the mean
of six iterations of 10-fold cross-validation. The complete dataset is evenly divided into 10 distinct
subsets. Of these, 9 subsets are designated as training datasets, while the remaining subset serves as
the test dataset. This rotation is repeated until the test dataset has undergone all 10 subsets, ensuring
comprehensive evaluation. The number of epochs is 60.
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Figure 1: Monotonicity of fuzzy conditional information entropy

Fig. 2 shows the classification accuracy of the reduction results obtained by algorithm IARFCIE
with different values of parameter θ . By referring to Fig. 2, we can effectively identify the optimal
parameter values for algorithm IARFCIE across the 12 datasets. Table 5 shows the optimal parameter
values for 12 datasets.

Figure 2: (Continued)
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Figure 2: Accuracy of classification for 12 datasets under different parameter settings

Table 5: The optimal parameter values of algorithm IARFCIE on 12 datasets

No. Datasets Abbreviation θ Classification
precision

1 Abalone Aba 0.4, 0.5, 0.6 0.2595
2 Automobile Aut 0.2 0.7805
3 Credit Cre 0.3 0.8652
4 Dermatology Der 0.2 0.9563
5 Hepatitis Hep 0.2 0.8750
6 Horse colic HC 0.1 0.8777
7 Processed cleveland PC 0.1 0.6073
8 Cylinder bands CB 0.1 0.7593
9 Insurance Ins 0 0.9403
10 Mechanical analysis MA 0.3 0.5567
11 German credit GC 0.2 0.7440
12 Thyroid Thy 0.1,02 0.9982

4.4 Performance Comparison Results of IARFCIE and Other State-of-the-Art Attribute Reduction
Algorithms
In this section, we present a comprehensive comparison of the proposed algorithm IARFCIE with

nine state-of-the-art attribute reduction algorithms: The positive region backward deletion algorithm
(PRBDA), the belief-based attribute reduction algorithm (BARA) [1], the cost-sensitive attribute-scale
selection algorithm (CSASSA) [7], the entropy-approximate reduction algorithm (EARA) [11], the
information-preserving reduction algorithm (IPRA) [26], the random forest algorithm (RFA) [27], the
relief algorithm (RA) [28], the mutual information algorithm (MIA) [18], and the neighborhood rough
set algorithm (NRSA) [2]. Tables 6 and 7 show the reduction results of 10 reduction algorithms on 12
datasets. Table 8 presents the classification accuracy achieved by 10 attribute reduction algorithms, as
well as the original datasets, when utilizing decision tree (DT) classifier. The experimental results are
obtained by averaging 10 runs of ten-fold cross-validation.
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Table 6: The reduction results of five reduction algorithms on 12 datasets

Datasets IARFCIE PRBDA EARA IPRA CSASSA

Aba 1, 3, 5, 8 1, 2, 3, 5, 6, 8 1, 3, 6, 8 5, 6, 7, 8 1
Aut 3, 6, 11, 12, 20 12, 5, 2, 1, 13,

10, 11, 3
22, 25 12, 11, 13, 1, 10,

5
2, 13

Cre 5, 6, 9, 10, 13 9, 8, 11, 15, 3, 4,
14

15, 14, 13, 12 5, 7, 8, 9, 11, 15 9, 11, 8, 15

Der 15, 5, 21, 28, 33,
6, 14, 2, 7

1, 2, 9, 14, 15,
16, 20, 22, 23,
24, 26, 28, 30

20, 22, 15, 21, 5,
28

5, 15, 26, 14, 21,
20, 22, 31, 28, 4,
7

1, 32, 17, 2,
3

Hep 9, 15, 17, 18 6, 11, 14, 17, 19 12, 11, 14 16, 1, 15 14, 17
HC 1, 13, 23, 25, 20,

7
1, 4, 11, 13, 15,
18, 20, 23, 25

1, 25, 13, 23 3, 12, 7, 15, 13 25, 1

PC 12, 3, 11, 9 8, 10, 5, 1, 12, 4,
13, 3

5, 8, 4 3, 8, 9, 10, 12, 13 12, 13

CB 8, 9, 24 1, 6, 7, 10, 11,
15, 17, 18, 19,
20, 21, 23, 24,
31

23, 22, 21, 14,
20

1, 2, 15, 20, 27,
29, 14

21

Ins 2 10, 16, 18, 21,
30, 32, 37, 42,
43, 44, 46, 47,
57, 59, 61, 64,
81, 82

59 1, 10, 35, 32, 5,
31, 7, 18, 15, 43

59

MA 3, 7 3, 7 3 4 7
GC 1, 3, 6 1, 2, 3, 5, 6, 7, 8,

9, 10, 12, 13, 14,
15, 20

5 1, 12, 20 5

Thy 3, 17, 19 17, 18, 21 3, 17, 21 17, 21, 19 17

Table 7: The reduction results of five reduction algorithms on 12 datasets

Datasets RFA NRSA MIA RA BARA

Aba 1, 3 4 5, 6 5 1, 3, 6, 8
Aut 12, 1, 13, 10 25, 13, 1, 10 10, 1, 11, 12,

21, 13
18, 19, 8 10, 25, 22,

13, 21
Cre 11, 14, 8 15, 14, 2 9, 14 14, 2 1, 2, 5, 9, 11,

12, 14
Der 34, 15, 5 22, 27, 5, 15,

34, 4
33, 27, 29, 22,
12, 20, 6, 21,
25, 8

34, 31, 30 15, 5, 21, 28,
33, 6, 14, 11,
31, 26

(Continued)
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Table 7 (continued)

Datasets RFA NRSA MIA RA BARA

Hep 14, 12 16, 15, 18, 1 15, 17, 14, 18,
12

16, 15, 18, 1 8, 16, 18

HC 25, 1 3, 25 1, 25, 7 18, 12 3, 25, 18, 12
PC 12, 13 5, 1 5, 8 8, 5 3, 9, 11, 12
CB 21, 14, 19, 7,

22, 9, 1
22, 21, 14 25, 20, 5, 23, 2,

22
21, 17, 24, 19,
20

21, 19, 22,
17, 15, 1, 14,
31, 22, 19

Ins 1, 2 1, 59, 31, 18, 47 47, 61, 82, 68,
59, 1

6, 45, 12, 1, 52,
48

52, 61, 31,
47, 58, 5, 82

MA 7 3 7 3 7
GC 1 5, 2, 13 5, 1 5, 13, 2 5, 2, 13
Thy 17, 3, 21 7, 13, 21, 17, 19 17, 21, 18, 19 7, 13, 8 21, 13, 3, 17,

3

Table 8: The classification accuracy of 10 algorithms and raw datasets utilizing the DT classifier

Dataset Raw dataset IARFCIE PRBDA EARA IPRA CSASSA RFA NRSA MIA RA BARA

Aba 0.2554 0.2595 0.2554 0.2554 0.2516 0.1754 0.2274 0.2516 0.2056 0.2495 0.2554
Aut 0.7268 0.7805 0.7317 0.4683 0.7122 0.5659 0.7610 0.6927 0.7366 0.5617 0.7472
Cre 0.8551 0.8652 0.8493 0.6681 0.8217 0.8159 0.7101 0.6565 0.8482 0.5812 0.8549
Der 0.9426 0.9563 0.8279 0.8115 0.8962 0.4672 0.5055 0.9344 0.7650 0.3661 0.9498
Hep 0.8000 0.8750 0.8065 0.7662 0.7548 0.8118 0.7857 0.8000 0.7792 0.8000 0.8599
HC 0.8207 0.8777 0.8587 0.8641 0.6793 0.8342 0.8342 0.8098 0.8342 0.7364 0.8491
PC 0.5809 0.6073 0.5380 0.5116 0.5512 0.5842 0.5842 0.5149 0.5380 0.5380 0.5886
CB 0.7333 0.7593 0.7148 0.7111 0.6778 0.5130 0.7278 0.7019 0.6907 0.7000 0.7275
Ins 0.9075 0.9403 0.9126 0.9403 0.9300 0.9403 0.9403 0.9406 0.9406 0.9402 0.9403
MA 0.5350 0.5567 0.5567 0.4812 0.4341 0.5451 0.4753 0.4196 0.4753 0.4196 0.4753
GC 0.7200 0.7440 0.7070 0.6000 0.7210 0.6000 0.7000 0.7110 0.6960 0.7110 0.7110
Thy 0.9960 0.9982 0.9779 0.9883 0.9729 0.9279 0.9783 0.9793 0.9808 0.9258 0.9802
Average 0.7394 0.7683 0.7280 0.6722 0.7002 0.6484 0.6858 0.7010 0.7075 0.6275 0.7449

4.5 Discussions

Tables 6–8 demonstrate that IARFCIE outperforms all other algorithms and raw datasets across
the 12 datasets when utilizing the DT classifier. Despite selecting more features than EARA, CSASSA,
RFA, and RA, there is minimal difference in the number of selected features and IARFCIE signifi-
cantly surpasses their accuracy.

CSASSA and RA selected very few features, but their accuracy was also very low, indicating that
they suffered from underfitting. PRBDA selected a very large number of features, but its accuracy was
not very high, indicating that it suffered from overfitting.

The superior performance of IARFCIE can be attributed to two factors: Firstly, it does not rely
on Euclidean distance, instead utilizing a novel distance metric. As is widely recognized, Euclidean
distance is unsuitable for assessing the differences between nominal attribute values. The novel distance



CMC, 2024, vol.79, no.2 2081

metric, which employs probability distributions to measure differences between nominal attribute
values, aligns more closely with their inherent characteristics. Secondly, the algorithm introduces a
new fuzzy relation that replaces similarity calculations based on distance with those derived from the
number of attributes. This updated similarity measure effectively filters out a small number of outliers,
thereby enhancing the robustness of the reduction algorithm.

5 Conclusions and Future Works

In this article, we introduce a novel difference metric that incorporates decision attributes.
This metric offers a more accurate measurement of disparities between nominal attribute values.
Subsequently, based on this new metric, we define a novel fuzzy relationship. This fuzzy relationship
effectively filters out abnormal attribute values by utilizing the number of similar attributes to
determine sample similarity. Furthermore, utilizing this new fuzzy relationship, we define a fuzzy
conditional information entropy. An attribute reduction algorithm, formulated on the basis of
fuzzy conditional information entropy, is then developed. Experimental results demonstrate that
this attribute reduction algorithm not only exhibits a significant attribute reduction rate but also
surpasses the original dataset as well as other attribute reduction algorithms in terms of average
classification accuracy. Consequently, the novel metric and fuzzy relationship introduced in this article
are effective in addressing the challenges associated with accurately measuring disparities between
nominal attribute values and the sensitivity of attribute reduction algorithms towards abnormal
attribute values. This study introduces a fresh perspective on reducing attributes in hybrid data by
enhancing distance and fuzzy relationships. However, optimizing the parameters of the algorithm
through grid search can significantly impact its efficiency. To address this issue, we aim to explore
automatic parameter optimization methods as a future research direction.
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