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ABSTRACT

Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead
of plaintext data. However, there is still a potential risk of privacy leakage, for example, attackers can obtain the
original data through model inference attacks. Therefore, safeguarding the privacy of model parameters becomes
crucial. One proposed solution involves incorporating homomorphic encryption algorithms into the federated
learning process. However, the existing federated learning privacy protection scheme based on homomorphic
encryption will greatly reduce the efficiency and robustness when there are performance differences between
parties or abnormal nodes. To solve the above problems, this paper proposes a privacy protection scheme named
Federated Learning-Elastic Averaging Stochastic Gradient Descent (FL-EASGD) based on a fully homomorphic
encryption algorithm. First, this paper introduces the homomorphic encryption algorithm into the FL-EASGD
scheme to prevent model plaintext leakage and realize privacy security in the process of model aggregation. Second,
this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,
which ensures the accuracy of model prediction while solving performance differences such as computation speed
and node anomalies such as downtime of each participant. In addition, the scheme in this paper preserves the
independent exploration of the local model by the nodes of each party, making the model more applicable to the
local data distribution. Finally, experimental analysis shows that when there are abnormalities in the participants,
the efficiency and accuracy of the whole protocol are not significantly affected.
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1 Introduction

In the information age, the rapid evolution of machine learning and artificial intelligence has made
it more convenient and effective for people to use massive data for various reliable predictions and data
analysis, thereby bringing enormous economic benefits to people. However, at the same time, whether
domestic or foreign, personal information and corporate data have been leaked, stolen and misused [1].
In the beginning, the main method of data protection was database firewalls, but attackers could bypass
the defenses through loopholes to steal data and could not fundamentally solve the problem of privacy
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leakage during data processing. Subsequently, some scholars have suggested that a possible solution to
these problems is cryptographic techniques. The core idea is to collect complete data used for machine
learning together and then encrypt the data, which is processed as ciphertext throughout the training
process, thus protecting the plaintext of the data [2]. This approach is theoretically sound, but there are
security and efficiency issues with centralizing enormous amounts of data in real-world scenarios, and
it cannot be implemented well on existing equipment. With the birth and development of distributed
machine learning [3], Google Inc. used this idea to first propose federated learning privacy-preserving
techniques in 2016 [4]. Federated learning is a distributed data protection technology technique that
enables participants to keep data only locally without sharing it, and the training process is completed
collaboratively through the shared model of all parties, which is an effective protection for the original
data of the participants [5].

During federated learning, data do not leave local storage, which can address privacy and data
silos. However, with the advent of attack techniques such as model inference attacks [6], attackers
can reverse the inference of the original data through the model parameters, so both the data and the
model need to be protected. In the actual federated learning process, the sharing of model parameters
could indirectly result in privacy leakage, participants may also passively or actively participate in
malicious attacks. An excellent solution to the above problem is to apply homomorphic encryption,
which allows the ciphertext to perform the needed operations directly without being decrypted, and
the result obtained is identical to that achieved by decrypting the ciphertext and subsequently carrying
out the operations. Homomorphic encryption can be applied in the model aggregation phase by
implementing the cipher state computation of the model parameters so that the aggregation server
aggregates the model in the form of ciphertext, thus improving the privacy of the parameters in the
machine learning training process. This can both protect the attacker from obtaining valid information
through the aggregation server and reduce encryption and decryption costs.

The synchronized federated learning algorithm necessitates the global synchronization of all
working nodes at a specific frequency. However, in practical scenarios, performance variations among
parties exist, leading to varying completion times for each training round. Consequently, global
training is often delayed until all nodes have uploaded their local models, resulting in reduced
efficiency. And more seriously, if there is an exception in one of the parties during the training process, it
will directly lead to the federated learning can not complete the training task. Feng et al. [7] introduce
a time variable, which does not require all users to participate in this aggregation, but controls the
number of models uploaded to the server in this round, thus solving the problem of node performance
difference, but it does not consider the local exploration of the local model ground.

The following are the main contributions of this paper:

We propose a homomorphic encryption-based privacy-preserving scheme for federated learning,
which applies the machine-learning-friendly Cheon-Kim-Kim-Song (CKKS) fully homomorphic
encryption technique to the process of federated learning and substantially enhances the security of
data and model parameters, while the model correctness is almost unaffected.

Due to the heterogeneity of the working nodes and the possibility of anomalous conditions,
a secure and efficient model aggregation FL-EASGD approach is proposed. Even if there is an
individual participant with anomalies, the system is more robust, in addition to preserving the local
exploration of the models of the parties.

Through several experiments, we have proven the validity of the above method, and show excellent
security advantages with decent performance on the MINIST dataset.
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2 Related Work

There are several existing privacy protection methods for federated learning model parameters:
Differential privacy [8], homomorphic encryption [9], and secure multi-party computation [10]. These
methods can all protect federated learning privacy to varying degrees.

Geyer et al. [11] proposed a joint optimization algorithm for client-side differential privacy
protection, which reduces the difference of perturbed gradients and improves aggregation efficiency
by normalizing the shared gradient but does not provide strict privacy restrictions for the participating
client gradient parameter perturbations. Aledhari et al. [12] proposed an improved Stochastic Gradient
Descent (SGD) algorithm based on differential privacy, which adds a certain amount of noise when
the participants share the gradient. Although this will have an impact on the training results, the
overall accuracy is still relatively good and meets the expected privacy requirements. Bonawitz et al. [13]
combine secure multi-party computation into federated learning scenarios and securely aggregate the
gradients of each client from multiple client scenarios. However, the sharing of parameters such as
key negotiation is very complicated, resulting in great communication pressure. Angulo et al. [14]
proposed a classification model training method based on homomorphic encryption and federated
learning, analyzed the attack on federated learning under given conditions, proposed an MLP
neural network training protocol to achieve privacy protection in multi-classification problems, and
improved the accuracy of model training compared with differential privacy added noise. However,
the computing scenario is limited because this method is based on Pailler additive homomorphic
encryption. Febrianti et al. [15] proposed a privacy-preserving federated learning algorithm, utilizing
the BFV fully homomorphic encryption algorithm to safeguard the deep learning model based on
a convolutional neural network (CNN) against malicious attackers. However, it does not consider
the difference in the performance of worker nodes or even abnormal conditions, and the performance
between devices will affect the efficiency of overall training. Qiu et al. [16] proposed a privacy-enhanced
federated averaging (Per-FedAvg) method to protect model parameters, using CKKS encryption to
have a wider range of computational scenarios and higher efficiency than the Paillier encryption
method. To reduce the impact of device performance on training, Nishio et al. [17] proposed the FedCS
method, which collects device information from randomly selected participants on the aggregate server
side to balance the performance differences between participants and with little or no reduction in
model accuracy and efficiency of training. Feng et al. [7] leveraged the smart contract technology of
blockchain in the model aggregation process of federated learning, thereby addressing the security
concerns associated with centralized servers. In this paper, the optimization of the [7] solution to the
performance difference problem scheme makes the utilization of the global model more flexible and
is reflected in the method FL-EASGD proposed in this paper.

In summary, the schemes that both protect data privacy and consider the performance difference
of the working nodes and the emergence of anomalous problems in the process of federated learning
are relatively immature, so this paper mainly integrates the above problems to study schemes that are
secure, efficient, and robust.

3 Preliminaries
3.1 Homomorphic Encryption

Homomorphic encryption is a secure encryption method proposed by Rivest et al. [18] in 1978.
Homomorphic encryption encrypts the initial plaintext data into ciphertext data by means of a
cryptographic function and then performs computation on the ciphertext data directly without
decryption. The result obtained is essentially consistent with performing the same calculation on the
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decrypted plaintext. Because of this powerful feature of homomorphic encryption, we do not need to
perform frequent encryption and decryption operations between the server and the client, which can
largely reduce the overhead of communication and computational resources. In addition, the data are
transmitted in the form of ciphertext so that no one else, including the server, knows the exact content
of the data, which makes it possible to perform many operations on the private ciphertext data even
in an untrusted environment. As a result, data can be effectively prevented from being illegally stolen
or tampered with. In summary, the use of homomorphic encryption improves data availability and
security, and user privacy information is well protected. Until now, there has been no fully uniform
classification standard for homomorphic encryption. According to the different types and times of
ciphertext operations, this paper can divide homomorphic encryption into three categories.

(1) Partial homomorphic encryption: Only a single type of addition or multiplication operation is
supported, and there is no limit on the number of times.

(2) Somewhat homomorphic encryption: Supports addition and multiplication, but the number
of operations is limited.

(3) Fully homomorphic encryption: Supports any number of addition or multiplication opera-
tions.

The most famous homomorphic encryption algorithm is the additive homomorphic-only crypto-
graphic algorithm proposed by Paillier [19] at EUROCRYPT in 1999. Due to its high efficiency and
complete proof of security, Paillier encryption has been used in a wide range of practical applications
in academia and industry. which is an extremely common scheme used for partial homomorphic
encryption in privacy computing scenarios. However, as computing scenarios become increasingly
complex, the Paillier solution cannot meet the needs of complex computing.

Cheon et al. [20], four Korean researchers in 2017, proposed the CKKS algorithm which is
an approximate computationally fully homomorphic encryption algorithm. It supports addition,
subtraction, and multiplication of floating-point vectors in ciphertext space and maintains homo-
morphism, but only supports finite multiplication. Although floating-point arithmetic produces very
small inaccuracies, this is consistent with the core idea of the CKKS algorithm which is approximate
calculation. The main application scenario of this paper is machine learning, and CKKS supports real
number computation and vector operations friendly to machine learning. In addition, because of the
allowable error and relaxed accuracy constraints, some implementation details have been simplified,
which leads to a significant improvement in the computational efficiency of CKKS.

The specific structure of CKKS is as follows:

CKKS.KenGen (1λ): Let ql = pl for l = 1, . . . , L. Sampled polynomial s ← HWT (h) , a ←
U

(
RqL

)
, e ← DG

(
σ 2

)
. Output the private key sk ← (1, S) and output the public key pk ← (b, a) ∈

R2
qL, where b = −as + emod qL. s ← HWT (h) denotes N coefficients uniformly sampled from

{1, −1, 0} and ensures that the number of nonzero coefficients is exact h. These coefficients form
the polynomial Rq. e ← DG

(
σ 2

)
denotes the sampling of N coefficients from a discrete Gaussian

distribution thus obtaining the polynomial e ∈ Rq.

CKKS.Enc (m): Sampled polynomial v ← ZO (0.5) , e0, e1 ← DG
(
σ 2

)
, output redaction ct ←

v ·pk + (m + e0, e1) (modqL). v ← ZO (0.5) denotes sampling N coefficients uniformly from {1, −1, 0}
and ensuring that 1 occurs with probability ρ/2. −1 occurs with probability ρ/2 and 0 occurs with
probability 1 − ρ.

CKKS.Decsk (ct): Let the ciphertext ct = (c0, c1) ∈ R2
qL, and output the plaintext polynomial

m ← c0 + c1 · s (mod qL).
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3.2 Federated Learning

Federated learning is a distributed machine learning technology that can practically assist various
industries in model training and model prediction while satisfying the protection of user privacy
and data security. When performing model training, only to exchange the parameter information of
the model without exchanging data. Specifically, the federated learning algorithm has the following
characteristics: (1) at least two participants are involved in federated learning, conducting local
machine learning training and model sharing, and each participant must have the original data used
to train the shared model. (2) At any point in the conduct of federal learning, the data of each user is
retained locally, only transfer and exchange information such as model parameters; that is, the data
do not move the model moves. (3) The difference in performance between federated learning models
and centralized models should be within acceptable limits. That is, let Mfl be the performance of
the federated learning model and Mcent be the centralized model, δ be non-negative real numbers,
satisfying |Mfl − Mcent| < δ.

A typical application scenario of federated learning is as follows: Different hospitals have
electronic health records of different patient groups, and data sharing is not possible among hospitals
due to the sensitive privacy of patients [21]. In such a case, hospitals in other parties can use their
respective data to build local machine models, and model sharing makes a more effective use of the
healthcare data.

3.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimization method commonly used to
determine the optimal parameters of a model. This technique involves randomly sampling from the
training dataset, computing the gradient, and subsequently updating the model’s parameters. The
process unfolds as follows:

(1) In each iteration, SGD randomly selects a sample from the training set.
(2) Calculate the gradient of that sample.
(3) Update the model parameters based on the calculated gradient.
(4) Repeat the above steps until the stopping condition is met.

As SGD utilizes random samples in each iteration, it possesses the potential to escape local
optimal solutions and explore a superior global optimal solution.

4 System Model

The architecture of the system model is shown in Fig. 1, and the model includes two roles: Cloud
server and local client.

4.1 Algorithmic Process

The specific process is that the client performs model training locally (as shown in Algorithm 1)
and then applies the CKKS to encrypt the model parameters and upload the ciphertexts of the model
parameters. Table 1 lists the main symbols used in this paper and their interpretations.
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Figure 1: Model architecture

Table 1: Interpretations of symbols

Symbol Interpretation

n The number of rounds
N The number of local models
α Constraint factor
β Smoothing coefficient
K The number of models uploaded in this round
T Preset time
Wi The local model of user i
[[Wi]] Local encryption model
Wg Global model[[

Wg

]]
Global encryption model

After the global update is complete, the global model parameters from the server side are sent
to each participant, and then each participant decrypts them, using the global model to update its
model. The server side receives the encrypted model parameters, aggregates the ciphertexts of the
model parameters and updates the global model parameters through secure aggregation (as shown
in Algorithm 2), sends them down to the clients participating in training, continuously repeats the
update steps, and iterates repeatedly until it meets the preset conditions or converges to stop training.
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Algorithm 1: Local model training

Input: global model encryption
[[

W n
g

]]
Output: local model encryption
1: for n = 0, 1, 2, ... do
2: while t <= T do
3: for i = 1 to N
4: decrypt the global model W n

g = [[
W n

g

]]
5: W n+1

i = W n
i − α

(
W n

i − W n
g

)
6: encryption model

[[
W n+1

i

]]
7: end for
8: end while
9: end for
10: return

[[
W n+1

i

]]
to server

Algorithm 2: Model aggregation

Input: local model encryption
[[

W n
i

]]
, the number of models uploaded K

Output: global model encryption
[[

W n+1
g

]]
1: for n = 0, 1, 2, ... do
2: if K = N then

3:
[[

W n+1
g

]] =
[[

(1 − β) W n
g + β

(
1
K

∑K

i=1 W n
i

)]]

4: else K < N then

5: increase β,
[[

W n+1
g

]] =
[[

(1 − β) W n
g + β

(
1
K

∑K

i=1 W n
i

)]]

6: end if
7: end for
8: return

[[
W n+1

g

]]

The Federated Averaging Algorithm (FedAvg) [22] is widely used in many federal learning
programs, based on the following idea: The server simply calculates the average of all the model
parameters as the global model parameter for the current round, sends this global model parameter
to the local device, and continues iterating until convergence. In this paper, for model aggregation,
we propose an improved elastic average gradient descent algorithm (EASGD) [23], which is called
FL-EASGD.

EASGD has been optimized based on SGD, the purpose of which is to retain the useful informa-
tion explored by each worker node itself. The fully consistent aggregation algorithms represented by
SGD, on the other hand, will definitely aggregate a global model at some point, such as the most widely
used FedAvg algorithm, which is that the local nodes will replace the obtained global model completely
with the local model, which is not always the most suitable choice for optimization problems with many
local optimal points, such as deep learning.

EASGD balances global consistency with local model independence. In other words, it can
not only constrain the local model from too much of a deviation of the global model through the
aggregation of the global model but also partially retain the parameter information of the global model
in history. Studies have shown that EASGD performs well in terms of accuracy and stability.
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However, EASGD does not well meet our need for the robustness of the system model when there
are individual nodes with problems. Therefore, we propose a safety and efficient aggregation algorithm
called FL-EASGD that considers node fault tolerance in this paper.

EASGD is based on the selection of a preset time T. The selected T ensures as much as possible
that the participants are able to complete the local training task under normal circumstances. Since the
commonality of the synchronization, algorithm is that all worker nodes meet at a certain frequency
for global synchronization, to overcome the problems of low overall operation and even inability
to complete training tasks when some worker nodes have problems, we do not require all users to
participate in this aggregation but instead guarantee minimum number of participants upload their
models to the server.

The specific ideas are as follows: If the number of upload parameter nodes is less than N at the
preset time T, it means that some worker nodes have abnormal conditions, the factor of the previous
round of global parameters is increased, and aggregation is performed. If the number of uploaded
parameter nodes is equal to N at the preset time T, the parameters of all uploaded nodes are aggregated.

Through the above algorithm, the normal training of the global model when the worker node is
abnormal is not only guaranteed but the utilization rate of the worker node dataset is also guaranteed.

4.2 Security Analysis

(1) For honest but curious servers

The greatest advantage of federated learning is that it can ensure joint training when the data are
local to ensure the privacy and security of all participants. However, assuming the aggregation server
is honest but curious, the server can spy on the plaintext of model parameters from the traditional
federated learning process and then use attacks such as gradient inference to push out the local data
of the participants. The security model proposed in this paper first allows participants to train locally
in plaintext form, then encrypts the model parameters using the CKKS, and the model parameter
ciphertext is then sent to the aggregation server.

Therefore, the ciphertexts received by the server from each participant can only perform the
ciphertext aggregation computation task according to the aggregation algorithm. Throughout the
process, it would be impossible for an honest but curious server to deduce valid information from
the ciphertext. It is not feasible even if the server changes from curiosity to malicious cracking of
the ciphertext. The CKKS algorithm based on the LWE problem on the lattice has indistinguishable
security under selective plaintext attacks with quantum-resistant properties [24]. Therefore, the model
is safe for honest but curious servers.

(2) For collusion between multiple parties

Suppose a client participant on one side wants to obtain the model parameters of the other
participant and thus uses methods such as inference attacks to obtain the other participant’s local
data. Again, this is unrealistic because in both the training phase and the aggregation phase, each
participant can obtain the global ciphertext of the model parameters at most, and even if there is a
private key, it can only decrypt the global model parameters and cannot obtain the model parameters
of any participant. Assume that in the extreme case, all participants except the participant p collude
with each other, including the server, the gradient information of the participants is safe, that is, the
colluding party cannot obtain the gradient information of p. Assume that the collusion party obtains
the weight W n

p of the nth round and the weight W n+1
p of the n+1th round of participant p, that is,
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W n+1
p − W n

p = −α
(
W n

p − W n
g

)
. Since only p itself knows the value of α, the collusion party cannot

obtain the gradient information of p. Therefore, the model is safe for curious clients.

In addition, we compared existing federated learning schemes on different security requirements,
and the results are shown in Table 2.

Table 2: Comparisons of existing federated learning schemes on different security requirements

Security requirements [15] [16] [24] FL-EASGD

Privacy protection Yes Yes Yes Yes
Inference attacks Yes No Yes Yes
Quantum security Yes No No Yes
Robust security No Yes Yes Yes

5 Experiment Evaluation

To demonstrate the feasibility of the above federated learning privacy security model, simulation
experiments are designed to evaluate the performance metrics such as accuracy and computational
overhead of the scheme. The lab environment CPU is configured as I7-12700H, the GPU is an
NVIDIA GeForce RTX 3060, and the memory is 16 GB. The development environment uses the
PyTorch neural network framework based on the Python language to build deep learning models. We
use the MNIST dataset, which is a standard dataset for deep learning models. The dataset contains
10 classes of grayscale handwritten digital images with a size of 28 × 28 and labels from digit 0 to
digit 9, for a total of 60,000 training samples and 10,000 test samples, which is well suited to validate
our proposed privacy model. The model uses a fully connected deep neural network (DNN). DNN
hyperparameter settings: The neural network consists of a total of three linear layers: The first layer
has inputs and outputs of 784 and 20, the second layer has inputs and outputs of 20 and 20, and the
third layer has inputs and outputs of 20 and 10. The activation functions all use the ReLU activation
function. Set 5 participants, the learning rate is 0.015, the local iteration round is 5, and the global
iteration round is 3. In the FL-EASGD algorithm, both the smoothing coefficient and the constraint
coefficient are set to 0.8.

5.1 Accuracy Analysis

To prove that our proposed model is effective, the training accuracy of the global model will be
verified from three schemas. (1) Federal average (FedAvg) under normal operation: At present, the
most popular federated learning algorithm is that the server simply aggregates the uploaded model
plaintext of all users to obtain the global model. (2) FL-EASGD under normal operation: All local
nodes operate normally, the local model is encrypted and uploaded to the server, and the server uses
the FL-EASGD algorithm for ciphertext aggregation. (3) Simulate the FL-EASGD anomaly under
the condition of 0 to 1 random abnormal nodes: Only the normal node encrypts the local model and
uploads it to the server, and the server uses the FL-EASGD algorithm for ciphertext aggregation.

Since the FedAvg algorithm cannot consider the aggregation situation under the abnormal node,
the experiment is not carried out here. Then, according to the experimental results in the figure below,
the above verification is further analyzed and summarized.
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As seen in Fig. 2, as the number of global rounds increases, the accuracy of all three cases tends to
increase when all other experimental conditions are the same. One of the highest accuracy rates after
completing 3 rounds of global iterations was FedAvg, with an accuracy of 0.95. The accuracy of FL-
EASGD when all the nodes are functioning normally and the accuracy of FL-EASGD when there are 0
to 1 abnormal nodes are both 0.93%. The accuracy of FedAvg is approximately two percentage points
higher than our algorithm’s accuracy, a loss that is perfectly acceptable for trading confidentiality
for accuracy. Moreover, the FedAvg algorithm does not consider the aggregation under abnormal
nodes and may not be able to complete the whole training when the nodes are abnormal, whereas
FL-EASGD’s accuracy is almost unaffected under the condition of 0 to 1 node, so we can consider
FL-EASGD as a feasible and safe aggregation scheme that hardly affects the accuracy of the model.

Figure 2: Accuracy assessment for each global epoch

5.2 Local Run and Server Aggregation Time Analysis

In the process of federated learning, time cost is also one of the evaluation indicators. Since
our proposed algorithm requires the use of homomorphic encryption algorithms, the encryption and
decryption of the algorithm will inevitably increase a portion of the computational cost. Through
experiments, we analyze the average time of the local node and server operation under the FL-EASGD
scheme, which mainly includes the time of encryption and decryption of the local node and the time
of the server’s ciphertext computation.

Fig. 3 shows the average time of local node running. The local running time of each round is
basically stable within the difference of two seconds. The time of FL-EASGD is higher than the FedAvg
time but lower than the time of the Paillier encryption scheme, which indicates that the local running
time of the scheme we used is more efficient than the parametric scheme of the Paillier encryption
model in terms of local running time under the same experimental conditions. The increase in time of
the encryption scheme over FedAvg is mainly the decryption time of the local node to the global node
vs. the encryption time to the local model, which is acceptable for privacy preservation purposes by
trading the increase in time cost for privacy enhancement. Table 3 shows the aggregation time of the
FL-EASGD server, as seen in Table 3, with the increase of global rounds, the aggregation time also
increases, this is because with the increase in the number of operations, the seed value in the encryption
and decryption algorithms increases, the ciphertext noise increases, the size of the ciphertext increases,
the cost of the computation increases, and the computational time increases along with it. Overall, the
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aggregation time of the server is longer than that of the local operation but still within the acceptable
range, which is in line with the resource constraints of the local participants.

Figure 3: Average local participants running time per epoch

Table 3: Server aggregation time each global epoch

Global epoch Time(s)

1 22.83
2 40.59
3 45.53

5.3 Communication Cost Analysis

In the process of federated learning, the transmission of model parameters between participants
and the server incurs a portion of the communication cost. Additionally, the communication overhead
is also a metric used to evaluate the effectiveness of an aggregation scheme. Suppose that there are n
parties, each party has m model parameters, each model parameter plaintext size is x, and each model
parameter ciphertext size is y.

The cost of the party communication during the FL-EASGD federated learning process is the
cost when the encrypted model parameters are uploaded to the server, and the size is n ∗ m ∗ y. The
server-side communication time consists of two parts: One is the server-side, and the initialized model
is first sent to each participant in plaintext, with a size of n ∗ m ∗ x. The second is the time when the
updated global ciphertext parameters are sent to the participants, and the size is n ∗ m ∗ y.

Table 4 compares the communication cost between FL-EASGD and FedAvg, from which we
can see the communication cost is mainly different from the time when the server sends the global
ciphertext parameter to the participants, and the difference is O (n ∗ m ∗ y − n ∗ m ∗ x), without
incurring additional time overhead, so this is an increase in the cost of communication necessary to
increase privacy.
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Table 4: Communication cost between FL-EASGD and FedAvg

Scenario name Participants Server

FL-EASGD O (n ∗ m ∗ y) O (n ∗ m ∗ y + n ∗ m ∗ x)

FedAvg O (n ∗ m ∗ x) O (n ∗ m ∗ x + n ∗ m ∗ x)

6 Conclusion

In this paper, a privacy protection scheme we have proposed is that we combine fully homomorphic
encryption algorithms and federated learning techniques to address issues such as data privacy leakage
in the machine learning process. Specifically, it involves the design of efficient and secure model
aggregation algorithms based on resilient mean stochastic gradient descent algorithms, taking into
account the presence of anomalies in local working nodes and uneven data quality. However, this
article still has many shortcomings. The aggregation server is still centralized, and it may still be
susceptible to distributed denial-of-service attacks. In the future, we may be possible to combine
decentralized blockchain technology with the elimination of central servers. In addition, the article
did not consider the incentive mechanism, and there may be lazy nodes that do not provide data. In
the future, by combining blockchain and incentive mechanisms, a more efficient model will be designed
and compared with the efficiency of existing leading solutions.
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