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ABSTRACT

Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and
drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks
(MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that
are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI
approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study
suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data
acquired from various sources within the MANETs. The framework uses the proposed approach to learn from the
data and create prediction models to detect possible traffic problems and their severity in real time. Real-time traffic
prediction allows for proactive actions like resource allocation, dynamic route advice, and traffic signal optimization
to reduce congestion. The framework supports effective decision-making, decreases travel time, lowers fuel use, and
enhances overall urban mobility by giving timely information to pedestrians, drivers, and urban planners. Extensive
simulations and real-world datasets are used to test the proposed framework’s prediction accuracy, responsiveness,
and scalability. Experimental results show that the suggested framework successfully anticipates urban traffic issues
in real-time, enables proactive traffic management, and aids in creating smarter, more sustainable cities.
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1 Introduction

In heavily populated places, urban traffic offers serious issues since many cars compete for the
same road space. Increased travel times, air pollution, and declining locals’ quality of life are all effects
of heavy urban traffic. Different approaches are used to overcome these problems. Signal timings
can be improved, traffic flow can be improved, and congestion can be decreased using intelligent
traffic management systems. Additionally, encouraging modal shifts and reducing traffic volume may

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.049260
https://www.techscience.com/doi/10.32604/cmc.2024.049260
mailto:ar.ansari@mu.edu.sa


1904 CMC, 2024, vol.79, no.2

be accomplished by supporting environmentally friendly transportation alternatives, including public
transportation, bicycle lanes, and pedestrian-friendly infrastructure [1]. Urban planners also place a
premium on mixed-use zoning and compact city forms to mitigate the need for long-distance travel.
Additionally, encouraging shared mobility and reducing the number of automobiles on the road may
be accomplished via education campaigns on safe driving and carpooling. Urban traffic problems may
be reduced through a thorough and diversified strategy, resulting in more effective and sustainable
transportation networks for cities [2]. Systems for Urban Traffic Control and Management are
essential for enhancing the effectiveness and security of urban transportation networks. These systems
use cutting-edge technology and data-driven methodologies to monitor, analyze, and regulate traffic
flow in real-time. Urban traffic control and management aim to optimize the flow of automobiles,
pedestrians, and bicycles by integrating intelligent transportation systems, traffic signals, sensors, and
communication networks. Congestion may be lessened, and travel times shortened by dynamically
altering signal timings depending on traffic conditions [3]. Urban traffic systems make coordinating
traffic lights at junctions and along arterial highways easier, resulting in less congestion and better
traffic flow. These systems can anticipate traffic patterns and react adaptably to shifting needs by
using predictive algorithms and machine learning approaches. Ultimately, urban traffic control and
management systems provide higher safety, better air quality, and more mobility in urban settings [4].

Urban transportation systems’ effectiveness and efficiency are significantly impacted by traffic
speed, that is a critical factor. Speed may be severely affected in cities by heavy traffic and a variety
of poor road conditions. Traffic speed must be monitored and managed for the best travel times,
the least congestion, and the smoothest possible traffic flow. Traffic speed data is essential for
urban planners and politicians to identify areas for improvement, evaluate the success of traffic
management techniques, and make educated judgments on infrastructure development and capacity
increases [5]. The widespread violation of traffic laws by motor vehicles seriously affects day-to-day
traffic management, making the independent evaluation of vehicle operations during urban traffic
surveillance an important and pressing topic. Surveillance systems aid in implementing efficient
traffic management methods, such as altering signal timings, redirecting traffic, or quickly deploying
emergency services by spotting congested regions, accidents, or other interruptions [6]. Real-time data
regarding the roads’ condition and the traffic volume in metropolitan areas are available via traffic
information. Congestion levels, traffic incidents, lane closures, and construction zones are just a few of
the many factors it includes. Sensors, cameras, GPS information, and crowdsourcing via mobile apps
are some technologies used to gather this data. Traffic data is essential for improving the effectiveness,
security, and dependability of urban transportation networks, which benefits commuters by improving
mobility and cutting down on trip time [7]. MANETs significantly address the difficulties of managing
urban traffic. MANETs provide a flexible option for effective communication between cars and
infrastructure in highly populated metropolitan regions involving widespread traffic congestion and
unpredictability. By enabling ad hoc connections between cars, these networks allow for transmitting
real-time data such as traffic conditions, accidents on the road, and alternate routes [8]. Managing
traffic overload in MANETs is essential for ensuring effective and trustworthy communication
between mobile devices. The available network resources in MANETs, where devices dynamically
create networks without centralized infrastructure, are constrained and shared among the participating
devices. High traffic loads on the network may cause congestion and performance degradation,
impairing network performance as a whole [9].

MANETs with enhancements provide interesting approaches for improving traffic management in
dynamic and resource-restricted settings.AI systems can evaluate and forecast traffic trends, allowing
proactive load balancing and routing choices. Furthermore, AI-enhanced MANETs can detect and
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reduce network traffic, identify possible bottlenecks, and adjust the network architecture for effective
data transmission. By incorporating AI, MANETs may self-configure, self-optimize, and self-heal,
improving the scalability and dependability of communication in mobile and dynamic situations [10].
Urban communities all across the globe continue to struggle with traffic congestion. There are several
difficulties due to the sheer number of automobiles on the roadways. First, congested traffic results in
lengthy delays and aggravation for commuters, wasting time and lowering productivity. A hazard to
public health is also posed by the excessive number of automobiles, contributing to environmental
damage and air pollution. The response times of emergency services may be hampered by traffic
congestion, possibly endangering lives [11]. This study evaluated the difficulties associated with urban
traffic and suggested the CSFPNN technique to anticipate and solve urban traffic problems.

1.1 Motivation of the Study

The critical requirement to address the growing issues of urban congestion drives the development
of artificial intelligence-enhanced Mobile Ad Hoc Networks (MANETs) for real-time prediction of
traffic problems in cities. Conventional traffic management methods are unable to maintain to create
the growing urban population and increasing vehicle density. By integrating AI into MANETs, traffic
estimates become dynamic and adaptable, allowing for proactive interventions to reduce congestion,
optimize traffic flow, and improve urban mobility as an entire. By reducing fuel consumption and
emissions linked to traffic delays, this novel strategy not only improves transport systems but also
supports preservation of assets and a sustainable environment.

1.2 Objective of the Study

The goal of using Mobile Ad Hoc Networks (MANETs) supplemented by artificial intelligence
to handle urban traffic issues is to develop a dynamic and effective traffic control system. The aim
is to improve overall urban mobility, optimize traffic flow, and lessen congestion by utilizing AI
algorithms within MANETs. The objective of this strategy is to facilitate adaptive and data-driven
decision-making by enabling real-time communication and coordination among cars, traffic signals,
and infrastructure. In the end, the goal is to enhance the whole urban transit experience, reduce travel
time, and support the development of an ecologically friendly and sustainable urban environment.

1.3 Problem Statements

Effective transport systems are severely hampered by urban traffic congestion, which also
increases travel times and pollutes the environment. Innovative solutions are required since traditional
traffic management systems frequently fail to accommodate the changing traffic circumstances seen
in metropolitan areas. The development of AI-enhanced MANETs is required since the present urban
traffic systems are unable to optimize traffic flow due to a lack of intelligent communication and
decision-making capabilities

1.4 Contributions of the Study

• To examine travel times, environmental impacts, and financial resources are all severely
impacted by traffic in modern cities.

• A real-time prediction paradigm for urban traffic difficulties is presented in this study, which
is supplemented with artificial intelligence (AI) and based on Mobile Ad Hoc Networks
(MANETs).
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• In order to evaluate real-time data collected from different sources inside MANETs, this
research proposes a novel Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN)
method.

• To identify potential traffic issues and their severity in real time, the framework employs the
suggested method to learn from the data and generate prediction models.

The rest of the paper is divided into sections. The objective based on the related works is provided
in Section 2. The proposed methodology is shown in Section 3. The result analysis is provided in
Section 4. The paper was concluded in Section 5.

2 Literature Review

The study [12] suggested the transportation infrastructure has advanced significantly in the last
several decades, yet traffic issues persist since more people are living in metropolitan areas and using
these modes of transportation. The techniques used are explained and examined in order to compre-
hend the benefits as well as limitations of these clever strategies. The article [13] looked at in order
to construct and implement a system for predicting traffic flows that is both efficient and accurate.
When it comes to practical use, current traffic flow prediction methods still fall short. That effort
to translate theoretical advancements into responsible, real-world traffic flow prediction technologies
have not advanced very far. The study [14] suggested the simulated findings demonstrate the multi-
factor modeling prediction technology uses a forecasting regulator that outperforms programming
in the fixed-time technique in order to ensure the reliability of each model intersecting. Vehicles’
moments in queue are shortened. Its endured well acknowledged that traffic jam is an acute problem.
Two important challenges are controlling traffic and the direct effects of urban transit systems on
traffic flow. It also demonstrates a model predictive control strategy for each intersection’s stability,
the predictive model controller in this multi-factor model predictive system beats scheduling in the
fixed-time methodology. It shortens the time drivers have to wait in line. The study [15] provided
the Bayesian meta-learning tack on the age-old problem of traffic dynamics prediction and offers
a fresh solution: The continuous spatial-temporal meta-learner (CST-ML). The model learns from
a set of traffic prediction tasks divided up by historical traffic data to swiftly adjust its approach to
similar but previously unseen tasks. The experiment’ standards requiring regular through periodic data
application are inaccurate since the information, they have only contained six months’ worth of traffic
information. The article [16] recommended Internet of Things (IoT) enables large cities to collect
data from numerous sensors, allowing smart cities. Smart city sensors may have APIs from multiple
administrative domains. The paper introduces a full method for combining diverse sensor, service,
and external data into a hybrid spatial-temporal feature space. To reduce model over fitting issues,
handle missing data, insufficient data, and stack LSTM to take time series trends into account. The
study [17] suggested new concurrent learning framework for traffic control and execution, the study
presented PL-WGAN, a technique for short-term traffic speed estimation for urban roadways. The
suggested approach uses a hybrid of generative and discriminative neural networks called Wasserstein
Generative Adversarial Nets (WGAN) to simulate traffic in a reliable way that is driven by data. The
correctness and diversity of the input data are critical factors that affect how well the model generalizes
to actual urban traffic settings and how reliable the simulated patterns of traffic.

The article [18] provided “Dynamic Traffic Correlation-based Spatio-Temporal Graph Convolu-
tional Network (DTC-STGCN)” is a novel deep learning framework that tracks the dynamic spatio-
temporal correlations among traffic data in order to accurately forecast traffic flow and speed.
Dynamic adjacency matrices explain spatio-temporal correlations, and DTC-STGCN generates them
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from a number of traffic factors. The current frameworks still have several drawbacks that make
them less effective in predicting urban traffic due to their subsequent dynamical spatio-temporal
relationships. The study [19] examined policymakers might use the work to inform measures to reduce
the negative effects of growing urban noise. In cities like Mumbai, where mixed-category zones are
prevalent, this would pave the way for a new method of estimating background noise levels from
patterns of land use, which would be a huge step forward in policymaking. Noise is defined as sound
levels that are greater than the acceptable limit and cause aggravation. The article [20] provided a
thorough outline of traffic forecast algorithms, this poll is designed to accomplish just that. Given the
current state of the art and future prospects of AI-based traffic prediction approaches, particularly
multivariate traffic time series modelling, we will be concentrating on these areas of study. One
drawback is their reliance on historical data; the accuracy of forecasts may be questioned by unforeseen
or sudden occurrences like accidents or road closures. The study [21] suggested the intelligent transport
systems (ITS) rely on traffic forecasts for their operation. While current approaches pay attention
to spatial-temporal dependency modeling, two inherent features of the traffic forecasting issue are
disregarded. The limits the ability of intelligent transports systems to adapt to the dynamic and
unpredictable conditions of urban traffic. The study [22] identified the most heavily populated parts of
the road network and established a correlation between these areas and driver demand. The research
determines the traffic congestion using the Floating Car Data technique and assesses how well the
observed congestion clusters reflect the patterns of congestion on a larger metropolitan road network.
The study determines the traffic congestion using the Floating Car Data technique and assesses how
well the observed congestion clusters reflect the patterns of congestion on a larger metropolitan road
network.

The study [23] introduced a multi-directional two-dimensional continuous urban traffic model in
the paper. The (North, East, West, South) NEWS model uses four partial differential equations to
show vehicle density propagation in the cardinal directions. The NEWS model can predict traffic on
any metropolitan network based on its topology, infrastructure parameters, and boundary flows. Its
capacity to provide real-time forecasts could be tested by unforeseen circumstances or abrupt changes
in traffic dynamics. To enhance the precision of urban traffic condition forecasting, the study [24]
suggested the construction of an electronic graph including the most essential sections of road. A
graph convolutional neural network, a bidirectional gated recurrent unit network, and an attention
mechanism are all part of an end-to-end design. The intricate and ever-changing nature of urban traffic
patterns can pose challenges to effectively capturing them, which might have an influence on predicting
accuracy even with the use of sophisticated neural network designs. The research [25] proposed a deep
learning-based accident prediction mechanism. To forecast potential dangers, this recently proposed
model takes into account both the fixed characteristics of the road, like its length and speed limit, and
the dynamic ones, such the amount of traffic on the road, the sun’s inclination and elevation, and so
on. The recent presented approach considers both the fluid and permanent properties of the roadway,
such as its width and velocity restriction, to predict possible hazards. The speed limit is higher on
continuing flow vs. interrupting flow due to the greater highway duration.

The study [26] presented a single-line detection-based time-tracking model for a solitary bus
using the Kalman filter included in the model, which stand for route travel time forecast and stop
dwell time prediction, respectively. The study also supplied assessment criteria and indexes for the
models. A case study based on AVL data is used to conduct the error analysis of the prediction
findings. The paper [27] discussed a unique approach to enhancing urban MANET routing efficacy is
presented. To provide a new method for route optimization and that it might perform noticeably better
than traditional protocols. The study [28] evaluated machine learning and based on data statistical
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approaches for predicting urban traffic travel times with a 15-min resolution over the following 24 h.
For effective supply chain logistics and precise navigation services, travel time and traffic predictions in
metropolitan settings are crucial. The study [29] suggested a big worldwide public health concern; the
COVID-19 epidemic has disrupted people’s regular production and daily lives. In order to help
municipal administrators create policies pertaining to traffic and epidemic prevention, it is possible
to predict the traffic revitalization index. The study [30] recommended traffic signal control is to
maximize the efficiency of transportation infrastructure use, minimize travel and waiting times, and
optimize traffic flows in road networks. To address the issue of traffic signal regulation, we created a
new method based on hybrid reinforcement learning and presented it in the work.

3 Methodology

The first stage in addressing urban traffic issues is to compile the appropriate dataset, including
numerous traffic characteristics. Following the collection of the dataset, preprocessing methods, such
as Min-Max Normalization (MMN), are used to normalize the data and prepare it for analysis. After
preprocessing, an advanced technique known as the CSFPNN is used to anticipate urban traffic
issues. This ground-breaking model effectively predicts traffic patterns and degrees of congestion by
combining the strengths of chaos theory, spatial analysis, and fuzzy logic. Finally, a comprehensive
performance study is carried out to assess how well the CSFPNN performs in foretelling and treating
urban traffic issues (Fig. 1).

Figure 1: Evaluating the efficacy of the suggested approach

3.1 Dataset

Statistics on user-to-user file sharing beginning in August 2002 is included in the Gnutella
MANET dataset, which was compiled by Stanford University. The dataset was constructed using
PyTorch Geometric, a popular GNN framework. The dataset contains 8846 nodes that are connected
by 31839 undirected edges. The MANET dataset’s meta-data is included in the Table 1. I ran a link
prediction operation on the MANET dataset. The goal is to foretell the presence or absence of edges
that connect two nodes. Apply the dataset to the framework after setting the train-test split mask to
80% and 20%, respectively.

Table 1: MANET dataset

Dataset Edges Node Feature length

MANET [31] 31839 8846 1
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3.2 Preprocessing for Min-Max Normalization

The original data set is subjected to a linear modification using the MMN. An approach that
maintains the original data’s associations is called MMN. A simple method known as MMN fits data
exactly within a preset limit. When applied to traffic problems in cities, MMN is an efficient solution.
In this way, urban planners and traffic experts may standardize and normalize the vast amounts of
traffic data collected from all sorts of different places and things.

Using the MMN method,

E ′ =
(

E − min value of E
max value of E − min value of E

)
∗ (T − V) + V (1)

where,

E-includes one set of Min-Max normalized data

A predefined boundary is- [T − V ]

If E is the original data range, B is mapped data, thus.

The process of converting unstructured source data into normalized values or ranges using notions
such as mean and standard deviation is known as z-score normalization. Therefore, using the z-score
parameter and the following formulas, the unstructured data may be normalized:

c
′
j = cj − A

std(A)
(2)

where, c′
j-is one value normalized z-score, cj is value of row A of the jth column.

std (A) =
√

1
(m − 1)

∑m

j=1

(
cj − A

)2

A = 1
m

∑m

j=1
cj

Assume for this approach that we have five rows, X, Y, Z, U, and V, with various variables or
columns that are ‘n’ in each row. Therefore, the normalized ones in each row above may be calculated
using the z-score method. All values for a row are set to zero if, for example, a row’s standard deviation
equals zero and all values are similar. The z-score provides the range of variables between 0 and 1, the
same as that Min-Max normalization.

Decimal scaling is the method that creates a range between –1 and 1. Consequently, using the
decimal scaling method:

cj = c
10i

(3)

where, cj it scaled values, c- range of values, j is the smallest integer Max (|vi|) < 1.

But these methods stated above are widely known to us all. But the recommended strategy, which
talks about in part after this, is as follows:



1910 CMC, 2024, vol.79, no.2

3.3 Prediction of Urban Traffic Problem Using Chaotic Spatial Fuzzy Polynomial Neural Network
(CSFPNN)
This study employs CSFPNN, a hybrid design combining fuzzy systems and neural networks.

Fuzzy neural networks (FNNs) and polynomial neural networks (PNNs) are the two primary
components of the system. FNN serves as the system’s premise, while PNN serves as its consequence
in a rule-based framework. FNN uses both the BP method and the condensed fuzzy inference system
as the If-Part of FPNN. The PNN is constructed and utilizes the Group Method of Data Handling
(GMDH) as the Then-Part of FPNN, and the FNN has two spots where it may be coupled with PNN.
This system’s design is adaptable, allowing the learning process to change the topology. As a result,
FPNN is an autonomous map. CSFPNNs, which are AI-enhanced MANETs, have great potential for
forecasting traffic issues in cities. The CSFPNN uses the MANETs’ capacity for self-organization to
gather real-time traffic statistics from a network of linked mobile devices. The neural network design
of the CSFPNN incorporates chaotic dynamics to represent the inherently complex and nonlinear
nature of urban traffic patterns.

3.3.1 FNN

The premise element of the system in this research employs a fuzzy neural network, as was already
explained. The FNN’s construction is seen in Fig. 2. FNN is created in this figure by using space
partitioning for distinct variables. In this instance, the performed granulation was defined by the
fuzzy sets included in each input variable. The circle with (N) inside it in this image represents the
normalization procedure applied to the membership value μji(yj) of an input variable yj. According to
some nonlinear function lj(yj), a

∑
. neuron’s output yj is described. The following equation governs

x̂ the result of FNN:

x̂ =
∑n

j=1
lj(yj) (4)

where n is the number of input variables. Each lj is possibly viewed as a sequence of mapping rules in
this way.

K1 If yj is Ej1 Then xj1 = uj1

K2 If yj is Ej2 Then xj2 = uj2

...
...

...
Ki If yj is Eji Then xji = uji

...
...

...
Km If yj is Ejm Then xjm = ujm

(5)

Ki stands for the ith rule, Eji for an undefined variable, and uni form the fuzzy neuron’s connection
weight. Fig. 2 using the common center of gravity approach to conclude the rule-base Eq. (6), it was
found that:

lj

(
yj

) =
∑m

i=1 μji

(
yj

)
uji∑m

i=1 μji

(
yj

) (6)
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Figure 2: Structure of the CSFPNN premise section

By changing the connection weights of neurons uji, the FNN can learn. We employ the conven-
tional BP method for the learning process and the Euclidian distance to quantify performance error.

Ab = (
xb − x̂b

)2
(7)

where, Ab is the Euclidean measure of error based on bth data and xb and x̂b are the bth goal and actual
model outputs, respectively. Additionally, this study uses a universal performance index for N data
from input to output pairs.

Ab = 1
M

∑M

b=1

(
xb − x̂b

)2
(8)

3.3.2 Neural Networks Using Polynomials

PNN is used in this study to represent the part of a fuzzy rules-based system, as was already
mentioned. The method is based on the GMDH technique that employs a family of polynomials
called partial descriptions (PDs), including linear, altered quadratic, etc. Selecting the most substantial
input variables and polynomials ordering from these publicly accessible forms, followed by choosing
each node of each layer and adding more layers until maximum performance is attained, is the most
efficient technique to employ extracted PDs. The following statement can represent the input-output
relationship that the PNN algorithm creates:

x = l(y1, y2, . . . ym) (9)
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According to actual production r1, predicted output x̂b is:

x̂ = l̂ (y1, y2, . . . ym) = v0 +
∑

r1
vr1yr1 +

∑
r1r2

vr1r2yr1r2 +
∑

r1r2r3
vr1r2r3yr1r2r3 + . . . . . . .. (10)

where model’s to-be-optimized coefficients are denoted as r1. A PNN structure is viewed in Fig. 3.
Table 2 lists the different polynomial orders and regression polynomial techniques according to
changes in several input variables and PNN. Type I, Type II, and Type III in this table refer to the
first order, the second order (SO), and the modified SO polynomial, respectively. In the last instance,
several completely quadratic polynomials’ components are left out to simplify usage.

Figure 3: An illustration of a polynomial neural network

Table 2: Types of polynomials used in a PNN

Number of inputs Type Polynomial

2 I V0 + V1y1 + V2y2

II V0 + V1y1 + V2y2 + V3y2
1 + V4y2

2 + V5y1y2

III V0 + V1y1+V2y2 + V3y1y2

3 I V0 + V1y1 + V2y2+V3y3

II V0 + V1y1 + V2y2 + V3y3 + V4y2
1 + V5y2

2 + V6y2
3 +

V7y1y2 + V8y1y3 + V9y2y3

III V0 + V1y1+V2y2+V3y3 + V4y1y2 + V5y1y3 + V6y2yf 3

3 I V0 + V1y1 + V2y2+V3y3 + V4y4

II V0+V1y1+V2y2+V3y3+V4y4+V5y2
1+V6y2

2+V7y2
3+V8y2

4+
V9y1y2 + V10y1y3 + V11y1y4 + V12y2y3 + V13y2y4 + V14y3y4

III V0 + V1y1+V2y2+V3y3 + V4y4 + V5y1y2 + V6y1y3 +
V7y1y4 + V8y2y3 + V9y2y4 + V10y3y4

3.3.3 CSFPNN

The utilization of artificial intelligence-enhanced MANETs in conjunction with the CSFPNN to
tackle urban traffic issues represents a significant development. A detailed grasp of intricate traffic
patterns is provided by the spatial modeling powers of CSFPNN, enhanced by chaotic dynamics.
The system’s capacity that adapts to change urban traffic circumstances is improved by including this
novel neural network into MANETs. To achieve maximum performance, strong data quality must
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be ensured, and handling the computational complexity brought forth by chaotic dynamics might
provide some obstacles. Into account the complex dynamics of urban traffic, this strategy emphasizes
accuracy in predicting and flexibility, offering a viable path forward for intelligent traffic management.
The subsequent action, which is to integrate the two structures that have already been explained, is the
formation of CSFPNN. This means that, as shown in Fig. 4, there are two possibilities for merging the
FNN and PNN. You may use any of these two potential connections positions to build an CSFPNN:
Additionally, Figs. 4 and 5 show the CSFPNN final architectural designs after joining the PNN and
FNN at relationship positions 1 and 2, respectively.

Figure 4: Two possible connecting locations in the FNN organization for building the CSFPNN

Figure 5: FNN-PNN connection point 1 (CSFPNN-Type1)

The system’s ultimate design, if we employ an initial connection point, will resemble Fig. 5. Using
this method, an alternate architecture depicted in Fig. 6 will be developed if the second potential
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connection point (CP) (Fig. 4) is employed. In other words, for each structure depicted in Figs. 5 and
6, wij and fi represent input variables that affect PDs in subsequent layers. The CSFPNN-Type1 and
CSFPNN-Type2 designations refer to the two different types of constructed CSFPNN.

Figure 6: FNN-PNN connection point 2 (CSFPNN-Type2)

3.4 Concept of CSFPNN

According to the CSFPNN premise and result, the design process for each Layer (L) is as follows
(shown in Figs. 5 and 6):

L1: Direct distribution of signal inputs to the nodes in the following L occurs at this L.

L2: Every node in this layer corresponds to a different L1 linguistic variable. The L chooses how
much of this label’s input activates.

L3: The following equation is used in this L to normalize the L activation below:

μji = μji∑m

i=1 μji

(11)

L4: Multiplied by the connection weights, the computed activation degree at L3.

eji = μji(yj)uji (12)

In Fig. 5, the input variable for PNN is supplied as aij if connection point 1 is used for merging
the FNN and PNN structures. They select a point of contact 2; Fig. 6’s aij represents an input signal
to basic FNN’s output layer when regarded as an input variable for PNN.
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L5: This L applies fuzzy inference using the center of gravity approach to the rules’ output.

lj

(
yj

) =
∑m

i=1 eji∑m

i=1 μji

(
yj

) =
∑m

i=1 μji

(
yj

)
uji∑m

i=1 μji

(
yj

) (13)

As a result of this CSFPNN, fi becomes the input variable of PNN in this case and selects
connection point 2 (Fig. 6). Output L of FNN: In this layer, the FNN’s output is determined using the
following formula:

x = l1 (y1) + l2 (y2) + . . . + lm (ym) =
∑n

j=1
li (yi) (14)

3.4.1 Steps for the CSFPNN Consequence Section

Phase P1: The input variables for the system’s consequential section are defined during this step.
As previously noted, there are two ways to join FNN and PNN to create the CSFPNN. If we select the
first connection point, Z appears as the input variable for the system’s consequence section. It follows
that:

y1 = e11, y2 = e12, . . . , ym = eji(m = j × i) (15)

Additionally, X is provided as the put-in variable of the system’s outcome section if we select the
second connection point. Furthermore, as shown in Fig. 3, there are:

y1 = l1, y2 = l2, . . . , ym = ln(m = n) (16)

Phase P2: Put variables for the PNN and the PD order are produced during this step, which also
involves forming the PNN structure. For instance, the equation below might provide an example using
three input integers and a SO polynomial.

hr = v0 + v1y1 + v2y2 + v3y3 + v4y4 + v5y2
1 + v6y2

2 + v7y2
3 + v8y2

4 + v9y1y2 + v10y1y3 + v11y1y4

+ v12y2y3 + v13y2y4 + v14y3y4 (17)

where, R = 1, 2, 3, . . . , m!/(m−3)×3! and v1, v2, . . . , v14 are coefficients that the LSE technique would
estimate.

This stage involves estimating PD coefficients.

Each layer can represent a set of output equations using a training data subset, Y.

X = YjVj (18)

Using the LSE technique, a coefficient of PD would be calculated as follows:

Vj = (
Y D

j Yj

)−1
Y D

j X (19)

Such that:

X = [
x1x2 . . . xmdk

]D
, Yj = [

Y1jY2l . . . Yrj . . . Ymdkj

]D
(20)

In the aforementioned phrase:

Y D
rj = [1yrj1yrj2 . . . .ykin . . . .yn

rj1y
n
rj2 . . . yn

kin]
D, Vj = [

V0jV1jV2jV3j . . . Vm′ j
]D

(21)
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where, n is the maximum order, j is the node number, mor e is the amount of training information
subsets, m is the total number of input variables that were selected, and m is the total number of
computed coefficients other than a constant term.

Phase P3: This step ends with selecting PDs with the highest predictive capability.

A hybrid model that combines fuzzy systems with neural networks, the CSFPNN, is presented
in this paper. FNN uses the condensed fuzzy inference system and the BP approach, whereas PNN
utilizes the GMDH for processing. Since of its flexible architecture, FPNN may change its topology as
it learns, making it a self-sufficient mapping. Self-organization is used by CSFPNNs to collect traffic
statistics in real-time when they are included into AI-enhanced MANETs. The use of chaotic dynamics
by the neural network emphasizes adaptation over simplifying by capturing the intrinsic complexity
of urban traffic patterns.

4 Result Evaluation

Evaluate current data from various Mobile Ad Hoc Networks (MANETs) sources. To demon-
strate its effectiveness, a suggested method’s Chaotic Spatial Fuzzy Polynomial Neural Network
(CSFPNN) is compared to those of modern approaches like the graph Quantum Support Vector
Machine (SVM) [30], Deep Neural Networks (DNN) [31], and K-Nearest Neighbor (KNN) [32]
The outcome of the provided approach demonstrates that use in assessing the suggested system’s
adaptability, responsiveness, and prediction accuracy.

4.1 Accuracy

In terms of information or data, accuracy relates to accuracy. When it comes to getting dependable
and trustworthy outcomes, it is an important factor. Accuracy is essential to assuring the validity
and efficacy of the results in many disciplines, including science, journalism, and decision-making
processes.

Accuracy = Number of correct predictions
Total number of predictions

(22)

Fig. 7 shows the accuracy of the proposed system. The accuracy of consumption forecasting in
current systems and the suggested method is indicated. The highest accuracy 98.09%, the suggested
CSFPNN approach outperformed SVM (91.82%), KNN (91.50%), and DNN (96.6%) among the
evaluated models. It demonstrates that the suggested course of action is more successful than the
existing one.

4.2 Precision

To achieve accuracy and dependability in any endeavor, precision is a key component. It entails
paying close attention to every little detail and carrying out activities carefully, ensuring that every
action is conducted with the highest correctness and precision. Precision is essential for reducing
mistakes and attaining intended results, whether in scientific investigations, engineering designs, or
interpersonal interactions.

Precision = Ro

Ro + Do

(23)



CMC, 2024, vol.79, no.2 1917

Figure 7: Accuracy

Fig. 8 shows the precision of the proposed system. Where FP denotes a false positive, and
TP indicates a true positive. In the comparison investigation, the suggested CSFPNN approach
outperformed SVM (91.82%), KNN (91.3%), and DNN (94%), exhibiting the greatest precision at
(99.02%). It shows that the proposed approach has more effective than the existing one.

Figure 8: Precision

4.3 Recall

Recall is a crucial component of being thorough and comprehensive in any task. Making educated
judgments, spotting patterns, and coming to meaningful conclusions depend on recall. By giving
recollection priority, we may improve our capacity to analyze events, draw lessons from the past, and
successfully tackle problems from all angles.

Recall = Ro

Ro + Ds

(24)
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Fig. 9 shows the recall of the proposed system. RT stands for the genuinely positive, and ROS stands
for the false negative. Where FP and TP stand for a true positive and a false positive, respectively.
Recall percentages for SVM, KNN, and DNN were 90.81%, 73.1% and 95%, respectively, while the
suggested CSFPNN approach got a highest 99.02% recall rate. It shows that the proposed approach
is more effective than the existing one.

Figure 9: Recall

4.4 F1-Score

F1-Score is a popular statistic for assessing the effectiveness of classification models. It yields a
single score that verifies a model’s efficacy by combining the accuracy and recall metrics. A model’s
precision and recall are both considered when calculating the F1-Score. Precision measures how well
a model can detect positive examples. The F1-Score offers a more thorough assessment of a model’s
overall performance by considering both factors.

F1-score = 2 × Recall × Precision
Recall + Precision

(25)

Fig. 10 shows the F1-score of the proposed system. The following are the F1-Scores for the
different approaches on the dataset: The results for SVM were 92.27%, KNN was 95.8%, and DNN
was 96% the F1-Score for the suggested CSFPNN technique was 98.16%. It demonstrates how
successful the suggested strategy is than the current one.

4.5 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) assigns more importance to bigger mistakes by calculating the
square root of average square discrepancies between expected and actual values. The RMSE provides
a thorough evaluation of overall model performance by accounting for both the direction and size of
errors. It is a useful tool in many disciplines, including machine learning, statistics, and data analysis.
Lower RMSE values suggest higher predicted accuracy.

RMSE =
√∑b

u=1 (Wo − Wi)
2

b
(26)
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Figure 10: F1-Score

Fig. 11 shows the RMSE of the proposed system. Table 3 shows the numerical outcomes for
proposed method. The consumption prediction of RMSE in existing systems and the proposed method
is denoted. The following are the Root Mean Square Error (RMSE) values for the different methods:
The highest RMSE obtained was 2.3 by SVM, 2.9 by KNN, 3.3 by DNN, and 0.3 by the suggested
CSFPNN technique, which combine all other methods. It shows that the proposed approach has more
effective than the existing one.

Figure 11: RMSE

Table 3: Numerical outcomes

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) RMSE

SVM [28] 91.82 91.82 90.81 92.27 2.3
KNN [29] 91.50 91.3 73.1 95.8 2.9

(Continued)



1920 CMC, 2024, vol.79, no.2

Table 3 (continued)

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) RMSE

DNN [30] 96.6 94 95 96 3.3
CSFPNN [Proposed] 98.09 99.02 99.02 98.16 0.3

4.6 Discussion

The variety of reasons, including accidents, road closures, and modifications to traffic patterns,
urban traffic conditions are quite dynamic. Since SVMs usually assume a relatively static environment
during training, they could find it difficult to adjust rapidly to these changes [30]. In order to exchange
data or update models, DNN deployment in a MANET frequently requires connection between
devices. The connection generates increased traffic clouds and network overhead, especially for large
models [31]. This may affect the system’s overall efficiency in circumstances involving urban traffic,
when network capacity cloud is constrained. The scalability of KNN presents a challenge when
the number of nodes (vehicles) in the MANET rises [32]. Consequently, a DNN with fifteen time-
dependent layers is built to address the issue of traffic congestion within modern cities. DNN use
in urban areas will enable architectural architects to do their work more effectively. Furthermore,
the addition of more amenities to contemporary metropolitan centers will be aided by the efforts of
other engineering specialties, such communication technology [33]. The decision-making framework
for precise and effective traffic regulation and urban pollution reduction is provided by resulting
to enhance living conditions and lead to high-quality, sustainable urban growth [34]. Still these
methods have some of the limitations in real world scenarios. To overcome those drawbacks, we
have proposed a novel CSFPNN to assess real-time data acquired from various sources within the
MANETs. As the dataset expands, the algorithm’s performance can deteriorate, which would affect
its capacity for reacting in real time to a highly dynamic urban traffic situation. Our approach produces
better results as compared to the current way using the CSFPNN. The addition of a polynomial
neural network component raises the bar for sophistication and improves the model’s capacity for
learning and identifying complex links in the data. This enhances the MANET’s capacity to forecast
traffic, manage congestion, and optimize connections. This dynamic element is further introduced.
For solving complicated AI issues, fuzzy logic, neural networks, and polynomial solutions are well-
balanced combined in CSFPNN, a paradigm that shows promise.

• Strength and Limitation

Improvements are shown when modeling complicated spatial interactions among data using the
CSFPNN. The network’s capacity to recognize complex patterns is boosted by the addition of chaotic
dynamics, which also improves accuracy across a range of applications. CSFPNN has adaptability in
several fields, including as pattern recognition, time-series analysis, and image recognition. Because
of its ability to handle geographical data, it is especially well-suited for jobs involving complex spatial
relationships, such medical imaging and satellite imagery processing. CSFPNN’s ability to capture
spatial relationships in data makes it useful for situations where element arrangement is important.
The complicated nature restricts the model’s usefulness in fields where interpretability is critical by
making it difficult to interpret and comprehend the decision-making process.
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5 Conclusion

Urban traffic concerns are difficulties and problems with automobiles and people traveling
through highly populated urban regions. Numerous causes contribute to these issues, including an
abundance of automobiles, a lack of suitable road infrastructure, poor transit options, ineffective
traffic control, and population increase. Using the decentralized nature of MANETs and the efficacy
of AI methods, this framework aims to provide accurate and timely traffic forecasts. This study
presents a unique CSFPNN technique for assessing data in real-time that has been acquired from
different sources within MANETs. To anticipate potential traffic issues and their severity in real-
time, the framework employs the suggested method to learn from the data and develop prediction
models. The intricate and ever-changing character of urban surroundings is a significant restriction.
Road infrastructure, weather, driving behavior, and unanticipated occurrences like accidents or road
closures are just a few of the variables affecting traffic flow. Estimating traffic patterns and congestion
levels is challenging because of the high amount of unpredictability introduced by these elements.
Future studies on forecasting urban traffic issues must emphasize the use of cutting-edge technology,
the integration of multiple data sources, and the encouragement of cooperation between different
stakeholders to create creative solutions for effective and sustainable urban mobility.
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