
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.049480

ARTICLE

A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch
Machine Scheduling Problem

Deming Lei* and Heen Li

College of Automation, Wuhan University of Technology, Wuhan, 430070, China

*Corresponding Author: Deming Lei. Email: deminglei11@163.com

Received: 09 January 2024 Accepted: 29 March 2024 Published: 15 May 2024

ABSTRACT

This study focuses on the scheduling problem of unrelated parallel batch processing machines (BPM) with release
times, a scenario derived from the moulding process in a foundry. In this process, a batch is initially formed,
placed in a sandbox, and then the sandbox is positioned on a BPM for moulding. The complexity of the scheduling
problem increases due to the consideration of BPM capacity and sandbox volume. To minimize the makespan, a
new cooperated imperialist competitive algorithm (CICA) is introduced. In CICA, the number of empires is not a
parameter, and four empires are maintained throughout the search process. Two types of assimilations are achieved:
The strongest and weakest empires cooperate in their assimilation, while the remaining two empires, having a
close normalization total cost, combine in their assimilation. A new form of imperialist competition is proposed
to prevent insufficient competition, and the unique features of the problem are effectively utilized. Computational
experiments are conducted across several instances, and a significant amount of experimental results show that the
new strategies of CICA are effective, indicating promising advantages for the considered BPM scheduling problems.

KEYWORDS
Release time; assimilation; imperialist competitive algorithm; batch processing machines scheduling

1 Introduction

Unlike traditional scheduling, batch processing machines (BPM) scheduling consists of at least
one BPM, and on BPM all jobs in a batch are processed simultaneously after the batch is formed. BPM
scheduling problems widely exist in many real-life industries such as casting, chemical engineering,
semiconductors, transportation, etc. BPM can be divided into parallel BPM and serial BPM, the
processing time of a batch on the former is defined as the maximum processing time of all jobs in
the batch, and the processing time of a batch on the latter is defined as the sum of processing time of
all jobs in the batch. BPM scheduling problems can be divided into single BPM scheduling, parallel
machine scheduling, and hybrid flow shop scheduling with BPM, etc., which have received extensive
attention.

There are some works about single BPM scheduling problem, in which all batches are processed
by a BPM. Uzsoy [1] first studied the problem with job size, proved that it is NP-hard, and proposed a
heuristic algorithm to minimize makespan and total completion time. Lee [2] presented a polynomial

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.049480
https://www.techscience.com/doi/10.32604/cmc.2024.049480
mailto:deminglei11@163.com

1856 CMC, 2024, vol.79, no.2

algorithm and pseudo-polynomial-time algorithm to solve the problem with dynamic job arrivals.
Melouk et al. [3] solved the problem with job sizes by a simulated annealing algorithm. Zhou et al. [4]
considered the problem with unequal release times and job sizes and proposed a self-adaptive
differential evolution algorithm with adaptively chosen mutation operators based on their historical
performances to minimize makespan. Yu et al. [5] proposed a branch-and-price algorithm to solve
additive manufacturing problems with the minimization of makespan. Zhang et al. [6] presented two
heuristics to minimize total weighted earliness and tardiness penalties of jobs.

The parallel BPM scheduling problem has attracted much attention. Regarding the uniform
parallel BPM scheduling problem, some results are obtained. Xu et al. [7] presented a Pareto-based
ant colony system to simultaneously minimize makespan and maximum tardiness. Jiang et al. [8]
presented a hybrid algorithm with discrete particle swarm optimization and genetic algorithm (GA),
in which a heuristic and a local-search strategy are introduced. Zhang et al. [9] proposed a multi-
objective artificial bee colony (ABC) to solve the problem of machine eligibility in fabric dyeing
process. Jia et al. [10] proposed a fuzzy ant colony optimization (ACO) for the problem with fuzzy
processing time. Liu et al. [11] designed a GA and a fast heuristic for the problem in coke production.
Jia et al. [12] applied two heuristics and an ACO for the problem with arbitrary capacities. Li et al. [13]
developed a discrete bi-objective evolutionary algorithm to minimize maximum lateness and total
pollution emission cost. Xin et al. [14] developed an efficient 2-approximation algorithm for the
problem with different BPM capacities and arbitrary job sizes.

A number of works have been obtained on unrelated parallel BPM scheduling problems.
Arroyo et al. [15] proposed an effective iterated greedy for the problem with non-identical capacities
and unequal ready times. Lu et al. [16] presented a hybrid ABC with tabu search to minimize the
makespan of the problem with maintenance and deteriorating jobs. Zhou et al. [17] provided a random
key GA for the problem with different capacities and arbitrary job sizes. Zhang et al. [18] proposed
an improved evolutionary algorithm by combining a GA with a heuristic placement strategy for
the problem in additive manufacturing. Kong et al. [19] applied a shuffled frog-leaping algorithm
with variable neighborhood search for the problem with nonlinear processing time. Song et al. [20]
developed a self-adaptive multi-objective differential evolution algorithm to minimize total energy
consumption and makespan. Zhang et al. [21] formulated a mixed-integer programming (MIP) model
and presented an improved particle swarm optimization algorithm for the problem with production
and delivery in cloud manufacturing. Fallahi et al. [22] studied the problem in production systems
under carbon reduction policies and used non-dominated sorting genetic algorithm-II and multi-
objective gray wolf optimizer to simultaneously minimize makespan and total cost. Xiao et al. [23]
proposed a tabu-based adaptive large neighborhood search algorithm for the problem with job sizes,
ready times, and the minimization of makespan. Zhang et al. [24] provided a MIP model and a
modified elite ant system with local search (MEASL) to minimize the total completion time of the
problem with release times, and job sizes. Jiang et al. [25] applied an iterated greedy (IG) algorithm for
the problem of release times, job sizes, and incompatible job families. Ji et al. [26] developed a hybrid
large neighborhood search (HLNS) with a tabu strategy and local search to solve the problem with
job sizes, ready times, and incompatible family. Ou et al. [27] presented an efficient polynomial time
approximation scheme with near-linear-time complexity to solve the problem with dynamic arrivals
job and rejection.

As stated above, the existing works on single BPM scheduling and parallel BPM scheduling
are mainly about job sizes, incompatible family, and BPM capacity constraints, that is, the sum
of the weight of all jobs in a batch cannot exceed the prefixed capacity, parallel BPM scheduling
problems are handled in actual production processes like coke production, fabric dyeing, and additive

CMC, 2024, vol.79, no.2 1857

manufacturing, which are close to the real situation of manufacturing process and their optimization
results have high application values; however, parallel BPM scheduling problems with more constraints
are not studied fully. For example, in the moulding process of a foundry [28,29], a batch is first
allocated into a sandbox and then the sandbox is added to the assignment machine of the batch, for
each batch, has to meet sandbox volume constraint and machine capacity constraint, and complexity
of the problem increases. This is a challenge in moulding process in a foundry. On the other hand,
release times of all jobs are mostly different in unrelated parallel BPM scheduling problems [24,25],
release times have a positive impact on the performance of the schedule and are a frequently considered
real-life condition, which also exist in moulding process, so it is necessary to deal with parallel BPM
scheduling problem with sandbox volume constraint and release times.

The imperialist competitive algorithm (ICA) is an intelligent optimization algorithm inspired by
social and political behavior [30]. Each intelligent optimization algorithm has its own advantages
[31–34]. ICA has many notable features such as good neighborhood search ability, effective global
search property, good convergence rate, and flexible structure [35]. As the main method of production
scheduling [36–40], ICA has been successfully applied to solve parallel machine scheduling problem
(PMSP) [41–45]. Lei et al. [37] proposed an ICA with a novel assimilation strategy to deal with low-
carbon PMSP. Yadani et al. [46] developed a hybrid ICA for PMSP with two-agent and tool change
activities. The good searchability and advantages of ICA in solving PMSP are tested and proven. The
parallel BPM scheduling problem is the extended PMSP and the same coding can be used in these two
problems. The successful applications of ICA to PMSP reveal that ICA has potential advantages in
solving parallel BPM scheduling, so ICA is used.

In this study, an unrelated parallel BPM scheduling problem with release times is considered,
which is refined from moulding process of a foundry, and a cooperated imperialist competitive
algorithm (CICA) is presented to minimize makespan. To produce high-quality solutions, the number
of empires is not used as a parameter and four empires always exist throughout the search process,
cooperation between the strongest empire and the weakest empire is applied in the assimilation of
these two empires, and a combination of the two remaining empires is used in the assimilation of
these two empires. A new imperialist competition is given. Extensive experiments are conducted and
the computational results demonstrate that new strategies of CICA are effective and that CICA has
promising advantages on considered problems.

The remainder of the paper is organized as follows. The problem description is described in
Section 2. Section 3 shows the proposed CICA for unrelated parallel BPM scheduling problems with
the release times stage. Numerical test experiments on CICA are reported in Section 4. Conclusions
and some topics of future research are given in the final section.

2 Problem Description

Unrelated parallel BPM scheduling problem in moulding process of a foundry is described as
follows. n jobs J1, J2, . . . , Jn are processed by m parallel BPM M1, M2, . . . , Mm, ri indicates release times
of Ji, pik denotes processing time of Ji on machine Mk. All jobs are divided into l families according to
materials. Each mater-ial corresponds to a job family and jobs of different families cannot be grouped
into a batch. fi ∈ {1, 2, . . . , l} indicates the family of job Ji, Ji has weight wi and volume vi. There
are sufficient sandbox and all sandboxes have the same volume V , all machines are given the same
capacity W . Each batch is placed in a sandbox and then sandbox is placed in BPM for moulding,
so two constraints are required to be satisfied for each batch: Total volume of all jobs in the batch
cannot exceed V and total weight of all jobs in the batch cannot exceed W . Processing time of a batch

1858 CMC, 2024, vol.79, no.2

is maximum processing time of all jobs in the batch. Release time of a batch is maximum release time
of job in the batch.

There are some constraints on jobs and machines:

Each BPM can only handle one batch at a time.

No job can be processed in different batches on more than one BPM.

Operations cannot be interrupted.

The problem has three sub-problems: (1) batch formation for deciding which jobs used to form
each batch, (2) BPM assignment for choosing a BPM for each batch, (3) batch scheduling for
determining processing sequence of all batches on each machine. There are strong coupled relations
among them. Batch formation decides directly the optimization content of other two sub-problems
and optima solution of the problem can be obtained by comprehensive coordination of three sub-
problems.

The goal of problem is to minimize makespan under the condition that all constraints are met.

Cmax = max
i=1,2,...,n

Ci (1)

where Ci is completion time of Ji, Cmax indicates maximum completion time of all jobs.

Table 1 shows an example with 12 jobs, 3 families and 3 parallel BPMs, W = 10, V = 10. A
schedule of the example is shown in Fig. 1.

Table 1: Processing data of the example

Ji wi vi fi ri pi1 pi2 pi3

J1 4 5 1 2 2 3 4
J2 2 1 2 4 3 6 4
J3 2 2 1 5 1 3 2
J4 3 4 2 3 3 2 4
J5 2 5 1 7 5 3 5
J6 8 10 3 1 2 4 3
J7 9 1 3 3 4 2 3
J8 5 5 1 1 6 5 2
J9 1 7 3 4 6 7 4
J10 5 4 2 3 5 3 3
J11 9 5 1 1 3 2 7
J12 4 7 2 0 3 6 5

CMC, 2024, vol.79, no.2 1859

55

0

M
1

M
2

M
3

2 , 4 , 10

4 9

6

9 11

11

1 3

7 , 9

4 11

12

11 17

1 , 8

2 6

3 , 5

7 12

5 10 15
Time(s)

enihca
M

Figure 1: A schedule of the example

3 CICA for Parallel BPM Scheduling

In the existing ICAs [30,35], there are Nim initial empires and Nim is used as parameter. In this study,
CICA is proposed, in which Nim is not a parameter and set to be 4 in the whole search process, then
assimila-tion based on cooperation between two empires and assimilation with empire combination
are implemented respectively and a new imperialist competition is given. The detailed steps of CICA
are shown below.

3.1 Initialization and Formation of Four Empires

Lei et al. [47] presented a two-string representation to describe solution of unrelated PMSP, which
can be directly used to describe solution of unrelated parallel BPM scheduling problem. For the
problem with n jobs and m BPM, its solution is represented as a scheduling string [π1, π2, . . . , πn],
and a machine assignment string [θ1, θ2, . . . , θn], where πi ∈ {1, 2, . . . , n}, θi ∈ {1, 2, . . . , m}.

There are some differences of the above method from coding method [47]: Scheduling string is a
perm-utation of all jobs, machine assignment string is used for all batches, the number η of batches is
determined by batch formation. Usually, η < n, so only the first η elements of machine assignment
string are used in decoding.

The decoding procedure is described below:

Step 1: Let k = 1, b-th = 1, WBb-th = 0, VBb-th = 0, let Bb-th be empty. Each job Ji is assigned a
marki, if job is not in a batch, marki = 0, otherwise marki = 1.

1860 CMC, 2024, vol.79, no.2

Step 2: Repeat the following steps until each job is assigned into a batch.

1) choose first job πb with markπb
= 0 and the first machine Mθk

from machine assignment string,
then Bb-th = Bb-th ∪ {

Jπb

}
, markπb

= 1, WBb-th = wπb
+ WBb-th, VBb-th = vπb

+ VBb-th.

2) repeat the following steps until no job πc can be chosen or WBb-th +wπc > W or VBb-th +vπc > V :
Choose a job πc with markπc = 0 and fπc = fπb

from scheduling string, if WBb-th+wπc < W , VBb-th+vπc <

V , then Bb-th = Bb-th ∪ {
Jπc

}
, markπc = 1, WBb-th = wπc + WBb-th, VBb-th = vπc + VBb-th.

3) Obtain batch Bb-th, b-th = b-th + 1, let Bb-th be empty, WBb-th = 0, VBb-th = 0, k = k + 1.

Step 3: η batches are finally formed and processed sequentially in terms of B1, B2, . . . , Bη.

Where WBb-th and VBb-th are total weight of all jobs and total volume of all jobs in batch Bb-th.

For the example in Table 1, a solution is scheduling string [8, 2, 6, 4, 11, 1, 10, 9, 5, 12, 7, 3] and
machine as-signment string [3, 1, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3]. The corresponding schedule is shown in
Fig. 1. Job J8 is chosen first, B1 = {J8}, WB1 = 5, VB1 = 5, then find a job J1 with the same family with
J8, WB1 + w1 = 9, VB1+ v1= 10, B1 = {J8, J1}. When job J3 is considered, sandbox volume constraint
is violated, so B1 = {J8, J1}. Other batches are obtained in the same way. B2 = {J2, J4, J10}, B3 = {J6},
B4 = {J11}, B5 = {J9, J7}, B6 ={J5, J3}. On M1, processing sequence of B1, B6. The processing sequence
on M2 and M3 are B4, B5, B7 and B2,B3, respectively. Cmax is 17.

An initial population P with N solutions are randomly generated, then four initial empires are
construc-ted based on initial population P.

Four initial empires are constructed in the following way:

Step 1: Calculate cost ci = Cxi
max of each solution xi ∈ P, sort all solutions in P in ascending order

of cost.

Step 2: Choose four solutions with lowest cost as imperialists, which are IM1, IM2, IM3, IM4, and
calc-ulate normalized cost ck of IMk, powk andNCk = round (Ncol × powk).

Step 3: Randomly allocate NCk colonies for each imperialist k.

Where round (x) is a function that gives the nearest integer of x, Ncol = N − 4 denotes total
number of co-lonies. powk = ck/

∑4

i=1 ci is power of imperialist k, NCk indicates the number of colonies
in empire k.

Normalized cost ck of IMk is usually defined as ck = maxl {cl} − ck, so at least one imperialist has
ck = 0, powk = 0 and no allocated colonies and the corresponding empire will have no colony, as a
result, assimilation and revolution cannot be done in the empire, ck is defined to avoid the above case:

ck = 2 × max
l

{cl} − ck (2)

TCk of empire k is defined and four empires are sorted in the descending order of TCk, suppose
TC1 ≥ TC2 ≥ TC3 ≥ TC4, the strongest empire is empire 1, empire 4 is the weakest empire, empires
2,3 have close normalization total cost.

TCk = ck + ξ
∑
λ∈Tk

cλ

NCk

, k = 1, 2, 3, 4. (3)

where Tk is set of colonies possessed by imperialist k and ξ is real number, ξ = 0.1.

CMC, 2024, vol.79, no.2 1861

3.2 Assimilation and Revolution

Unlike the previous ICAs [30,35], CICA has new implementation way for assimilation. In CICA,
assimilations of empires 1,4 are executed together based on their cooperation because there has greater
difference on their normalization total cost, empires 2,3 have close normalization total cost, when their
assimilations are done, they are first merged and assimilation is conducted for the merged empire. Nim

is fixed to be 4 to achieve the above two kinds of assimilations; moreover, imperialist competition will
be simplified.

Cooperation-based assimilation of empires 1,4 is shown as follows:

Step 1: Sort all colonies in empire 1 in the ascending order of ci, decide the first α colonies including
the best colony λ∗ ∈ T1, determine the best α colonies of empire 4 using the same approach and include
them into a set Λ, τ = 1.

Step 2: Repeat the following steps until τ > α: Choose the τ -th colony λ ∈ T1 and the τ -th
colony λ ∈ T4 execute global search between λ, λ, a new solution z is obtained, if Cz

max less than one of
Cλ

max, Cλ

max, suppose Cz
max < Cλ

max, then update the set θ with λ and let z substitute for λ; if Cz
max < Cλ

max

andCz
max < Cλ

max, then update the set θ with the worse one of λ, λ and let z substitute for the worse one
of λ, λ.

Step 3: For each colony λ ∈ Λ, execute global search between λ and λ∗ ∈ T1, a new solution z is
obtained, if Cz

max < Cλ

max, then update the set θ with λ and let z substitute for λ. If Cz
max ≥ Cλ

max, then
conduct global search between λ and IM1, a new solution z is obtained, if Cz

max < Cλ

max, then update
the set θ with λ and replace λ with z.

Step 4: Choose the best colony in Λ, if it better than IM4, then exchange it with IM4.

Step 5: For each colony λ ∈ T1\ {λ∗}, conduct global search between λ and λ∗, a new solution z is
obtained, if Cz

max < Cλ

max, then update θ with λ and replace λ with z; else, execute global search between
λ and IM1, a new solution z is obtained, if Cz

max < Cλ

max, then update the set θ with λ and replace λ

with z.

Step 6: For each colony λ ∈ T4\Λ, choose a λ ∈ Λ ∪ {IM4}, by using roulette selection, execute
global search between λ and λ, a new solution z is obtained, if Cz

max < Cλ

max, then update the set θ with
λ and let z su-bstitute for λ.

Where selection probability of each solution xi is
(∑

y∈Λ∪{IM4} Cy
max − Cxi

max

)
/
∑

y∈Λ∪{IM4} Cy
max for

roulette selection.

After the best α colonies of empires 1, 4 are decided respectively, then cooperation is conducted
by global search on α pairs of the decided best coloniesλ ∈ T1, λ ∈ T4 in step 2, and the usage of the
best colony λ∗ ∈ T1 or IM1 for improving solution quality of the best α colonies of empire 4 in step 3.

Empires 2,3 have close TC2, TC3 and there are high similarity between them, to avoid the waste
of com-puting resource on the worst solutions, empires 2,3 are first combined into a new empire D,
assimilation is done on all colonies of D except Q the chosen worst solutions in D.

Combination-based assimilation in empires 2,3 is described below:

Step 1: Obtain temporary empire D by combining empires 2,3 together, imperialists of empire D
are defined as IM2 and IM3, choose Q colonies with the biggest cost, let 	 be a set of these colonies.

Step 2: For each colony λ ∈ D\Θ, select one imperialist from IM2 and IM3 by roulette selection,
suppose IM2 is selected, execute global search between λ and IM2, a new solution z is obtained, if
Cz

max < Cλ

max, then if λ is one of Q colonies of D with the lowest cost, then random select colony λ ∈ Θ,

1862 CMC, 2024, vol.79, no.2

update θwith λ, replace λ with z; if λ is not one of the best Q colonies in D, then conduct multiple
neighborhood search on colon λ, random select colony λ ∈ Θ, update θ with λ, replace λ with z.

Step 3: Assign all solutions of D into their original empire.

where roulette selection is done, {IM2, IM3} substitutes for Λ ∪ {IM4}.
The set θ is used to retain historical optimization data in the search process. The process of

updating θ with solution x is shown as follows: If the number of solutions in θ is than its maximum
size I , then the worst solution is eliminated and x is added to θ if x is better than the worst solution in
θ , otherwise, x is added to θ .

Global search is described below: For solutions x and y, if rand ≤ 0.5, order crossover [48]
is executed for scheduling strings of x, y, otherwise, two-point crossover [40] is performed between
machine assign-ent string of x and y. Where rand is random number following uniform distribution
on [0,1].

5 neighborhood structures are applied, N1 is used to swap two randomly selected πk1
and πk2

. N2

is swap operator on machine assignment string and applied to swap two randomly selected θk1
and θk2

,
k1, k2 < η. N3 is shown as follows: Decide machine Mk1

with smallest completion time and Mk2
with

the biggest comp-letion time, randomly choose θi1
= k1 and θi2

= k2, i1, i2 ≤ η and swap θi1
, θi2

. N4

is executed in the following way: Choose machine Mk1
with biggest completion time, randomly select

θi = k1, i ≤ η, randomly choose Mk2
, let θi = k2. N5 is described as follows: Decide all jobs on a

machine with biggest completion time in scheduling string, and sort these jobs in ascending order of
release times.

Multiple neighborhood search is below: Let ϑ = 1, repeat the following steps until ϑ = 5: a new
solution z ∈ Nϑ (x) is obtained, if Cz

max < Cx
max, then update θwith x, replace x with z, ϑ = ϑ + 1.

Where Nϑ (x) is denotes neighborhood solution set of solution x by using Nϑ .

When Nim is fixed to be 4, empires 1, 4 with bigger differences on TCk can be easily obtained, coope-
ration between them can be done and global search ability can be enhanced; meanwhile, empires 2,3
will have close normalized total cost and the search in empire 2 is similar with the search in empire
3 and the waste of computing resource will occur on some worst solutions twice. When the above
assimilation is done on empires 2,3, the waste of computing resource will diminish greatly, thus, it can
be found that the usage of four empires is appropriate, so Nim is not parameter in CICA and always
equal to 4.

Revolution of empire k is conducted in the following way:

Step 1: Determine the number δ of colonies in empire k according to revolution probability R.

Step 2: Sort all colonies of empire k in ascending order of cost and decide δ colonies with the
smallest cost, then for each decided colony λ, perform multiple neighborhood on colony λ, a new
solution z is obtained, if Cz

max < Cλ

max, then replace the worst colony in Tk with λ, replace λ with z;
otherwise, if solution z is better than the worst colony of Tk, replace the worst colony of Tk with z.

3.3 Algorithm Description

As stated above, CICA is made up of initialization, formation of four empires, assimilation,
revolution and imperialist competition.

CMC, 2024, vol.79, no.2 1863

Its detailed steps of CICA are shown below:

Step 1: Randomly produce initial population P and construct four initial empires.

Step 2: While the stopping condition is not met, do

Sort four empires in the descending order of TCk.

Execute assimilation in empires 1,4.

Perform assimilation in empires 2,3.

Execute revolution.

Apply imperialist competition.

End While

Only four empires are used and exist in the whole search process, so a new imperialist competition
is given to adapt this new situation.

The new imperialist competition is described as follows:

1) Calculate TCk and EPk, k = 1, 2, 3, 4, construct vector [EP1 − rand, EP2 − rand, EP3 − rand,
EP4 − rand], choose empire g with the biggest EPg − rand as winning empire. Suppose g = 1.

2) Choose I colonies with the lowest cost in empire g, for each chosen colony λ, execute global
search between λ and IMg, a new solution z is obtained, ifCz

max < Cλ

max, then update θ with λ and replace
λ with z, then execute multiple neighborhood search on colony λ.

3) Construct vector [EP2 − rand, EP3 − rand, EP4 − rand], empire g with the biggest EPg − rand
as winning empire, suppose g = 2, then choose I colonies with the lowest cost of empire 2 and execute
global search between each chosen colony and IMg as done in step 2).

4) Choose empire g with the biggest EPg − rand from vector [EP3 − rand, EP4 − rand], suppose
g = 3, then choose I colonies with the lowest cost of empire 3 and execute global search between each
chosen colony and IMg as done in step 2).

5) In empire 4, execute multiple neighborhood search for each solution x ∈ θ , delete I worst
colony from empire 4, add all solutions of θ into empire 4.

Where EPk denotes power of empire k,

EPk =
∣∣∣∣∣

TCk∑4

i=1 TCi

∣∣∣∣∣ (4)

Unlike the existing ICAs [30,35], CICA has four empires and no elimination of empire. In CICA,
assimilations of empires 1,4 are handled together and cooperation is used, assimilations of empires 2,3
are conducted on the temporary empire formed by these two empires, a new imperialist competition
is also given. These new features can lead to the enhanced global search ability and the avoidance of
the waste of computing resource.

4 Computational Experiments

Extensive experiments are conducted to test the performance of CICA for considered paral-
lel BPM scheduling problem. All experiments are implemented by using Microsoft Visual Studio
C++2022 and run on 8.0 G RAM 2.4 Hz CPU PC.

1864 CMC, 2024, vol.79, no.2

4.1 Instances, Comparative Algorithms and Metrics

96 instances are used, each of which depicted by n × l × m, where n ∈ {10, 20, 40, 60, 100, 140, 180,
220, 260,300}, l ∈ {3, 4}, m ∈ {3, 4, 5}, pik ∈ [10, 50], vi ∈ [1, 10], wi ∈ [1, 10], V = 10, W = 10, ri ∈
[0, 25]. pik, vi, wi and ri are integer following uniform distribution in the above intervals. These instances
consist of small-scale ones, medium-scale ones and large-scale ones and can be show the optimization
ability differences of different algorithms.

Zhang et al. [24] proposed a MEASL to minimize makespan for parallel BPM scheduling problem
with release time, job size and processing time. Jiang et al. [25] presented IG algorithm for parallel BPM
scheduling problem with release time, job sizes, incompatible job families. Ji et al. [26] provided HLNS
to solve parallel BPM scheduling problem with release time, job sizes, incompatible job families and
makespan minimization.

MEASL, IG and HLNS can be directly applied to solve the considered parallel BPM scheduling
probl-em and the computational results show that these three algorithms have promising advantages
on solving parallel BPM scheduling, so they are chosen as comparative algorithms.

To show the effect of new strategies of CICA, CICA is compared with ICA [30,35], in ICA,
assimilatio-n of empire k, is done below: For each colony λ ∈ Tk, execute global search between λ,
IMk, a new solution z is obtained, if Cz

max < Cλ

max, then replace λ with z. When revolution is done,
multiple neighborhood search acts on the chosen colony.

Three metrics are used. For each instance, each algorithm randomly runs 10 times and an elite
solution with the smallest makespan is obtained in a run, MIN is the best solution found in 10 runs,
MAX denotes the worst elite solutions in 10 runs and AVG indicates the average makespan of 10 elite
solutions. MIN, AVG, MAX are used to measure convergence, average performance and stability of
algorithms. These metrics are often used to evaluate results of single objective problem.

4.2 Parameter Settings

It can be found that CICA can converges well when 0.6 × n s CPU time reaches; moreover, when
0.6×n s CPU time is applied, MEASL, IG, HLNS and ICA also converge fully within this CPU time,
so this time is chosen as stopping condition.

Other parameters of CICA, namely N, α, Q, R and I , are tasted by using Taguchi method [49] on
instance 140×3×3. The levels of each parameter are shown in Table 2. CICA with each combination
runs 10 times independently for the chosen instance.

Table 2: Levels of parameters

Parameters Factor Level

1 2 3

N 50 60 70
α 3 5 7
Q 5 6 7
R 0.4 0.5 0.6
I 5 6 7

CMC, 2024, vol.79, no.2 1865

Fig. 2 shows the result of MIN and S/N ratio, which is defined as −10 × log10

(
MIN2

)
. It can be

found in Fig. 2 that CICA with following combination N = 60, α = 5, Q = 6, R = 0.5, I = 6 can be
obtain better results than CICA with other combinations, so above combination is adopted.

N

NI
M

Q R I N

S/
N

Q R I��

Figure 2: Main effect plot for mean MIN and S/N ratio

Parameters of ICA are shown below. N = 60, R = 0.5, Nim = 4 and stopping condition is 0.6 × ns
CPU time. These settings are obtained by experiments. All parameters of MEASL, IG and HLNS
except stopping condition are obtained directly from [24–26]. The experimental results show that those
setting of each comparative algorithm are still effective and comparative algorithms with those setting
can produce better results than MEASL, IG and HLNS with other settings.

4.3 Results and Discussions

CICA is compared with MEASL, IG, HLNS and ICA. Each algorithm randomly runs 10 times
on each instance. Tables 3–5 describe corresponding results of five algorithms. Figs. 3 and 4 show box
plots of all algorithms and convergence curves of instances 100 × 3 × 3 and 220 × 3 × 3. The relative
percentage deviation (RPD) between the best performs algorithm and other four algorithms is used
in Fig. 3. RPDMIN, RPDAVG, RPDMAX are defined:

RPDMIN = MIN − MIN∗

MIN∗ × 100% (5)

where MIN∗ (MAX∗, AVG∗) is the smallest MIN (MAX, AVG) obtained by all algorithms, when
MIN and MIN∗ are replaced with MAX(AVG) and MAX∗(AVG∗), respectively, RPDMAX (RPDAVG) is
obtained in the same way.

Table 3: Computational results of five algorithms on MIN

Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

10 × 3 × 3 50 50 51 55 53 160 × 3 × 3 980 1196 1088 1459 1248
10 × 3 × 4 48 56 54 65 62 160 × 3 × 4 741 907 824 1081 948
10 × 3 × 5 46 46 46 47 48 160 × 3 × 5 565 724 620 836 727
10 × 4 × 3 51 56 53 60 63 160 × 4 × 3 1018 1212 1101 1471 1278
10 × 4 × 4 52 53 51 50 46 160 × 4 × 4 752 913 823 1086 940
10 × 4 × 5 47 50 53 59 56 160 × 4 × 5 575 726 618 853 700

(Continued)

1866 CMC, 2024, vol.79, no.2

Table 3 (continued)
Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

20 × 3 × 3 121 146 131 158 158 180 × 3 × 3 1156 1299 1187 1611 1466
20 × 3 × 4 95 102 102 120 117 180 × 3 × 4 815 995 864 1141 980
20 × 3 × 5 79 99 81 72 94 180 × 3 × 5 657 821 707 943 827
20 × 4 × 3 122 146 130 160 157 180 × 4 × 3 1177 1356 1217 1620 1452
20 × 4 × 4 100 110 100 117 121 180 × 4 × 4 832 1003 870 1170 1009
20 × 4 × 5 79 106 79 95 95 180 × 4 × 5 675 856 704 978 848
40 × 3 × 3 230 264 241 294 280 200 × 3 × 3 1235 1446 1336 1797 1545
40 × 3 × 4 162 197 159 237 202 200 × 3 × 4 906 1109 975 1328 1135
40 × 3 × 5 124 169 126 187 152 200 × 3 × 5 723 887 759 1064 872
40 × 4 × 3 231 265 238 295 282 200 × 4 × 3 1305 1481 1363 1822 1611
40 × 4 × 4 155 196 171 235 187 200 × 4 × 4 925 1122 992 1346 1150
40 × 4 × 5 135 169 130 191 133 200 × 4 × 5 758 937 791 1105 915
60 × 3 × 3 317 374 394 477 417 220 × 3 × 3 1402 1635 1492 1934 1769
60 × 3 × 4 244 287 313 370 302 220 × 3 × 4 995 1194 1071 1463 1280
60 × 3 × 5 174 225 242 274 221 220 × 3 × 5 787 917 865 1179 938
60 × 4 × 3 325 384 414 475 437 220 × 4 × 3 1432 1653 1540 1948 1823
60 × 4 × 4 237 291 310 359 315 220 × 4 × 4 1028 1218 1087 1482 1273
60 × 4 × 5 180 232 253 280 226 220 × 4 × 5 806 989 862 1189 1011
80 × 3 × 3 448 534 554 657 585 240 × 3 × 3 1463 1719 1611 2165 1913
80 × 3 × 4 338 427 451 494 438 240 × 3 × 4 1086 1273 1175 1587 1416
80 × 3 × 5 254 329 346 385 318 240 × 3 × 5 933 951 903 1243 926
80 × 4 × 3 474 542 590 673 585 240 × 4 × 3 1508 1720 1630 2160 1930
80 × 4 × 4 336 433 456 501 419 240 × 4 × 4 1093 1316 1195 1630 1402
80 × 4 × 5 243 336 356 392 319 240 × 4 × 5 941 983 946 1268 952
100 × 3 × 3 543 626 676 838 689 260 × 3 × 3 1615 1843 1729 2381 2094
100 × 3 × 4 420 514 457 659 541 260 × 3 × 4 1205 1393 1266 1709 1491
100 × 3 × 5 313 407 339 488 412 260 × 3 × 5 949 1153 1014 1417 1228
100 × 4 × 3 548 631 683 840 680 260 × 4 × 3 1647 1871 1709 2367 2105
100 × 4 × 4 423 530 559 664 545 260 × 4 × 4 1211 1440 1319 1767 1563
100 × 4 × 5 317 408 330 506 409 260 × 4 × 5 960 1162 1034 1417 1233
120 × 3 × 3 726 838 754 1033 859 280 × 3 × 3 1809 2037 1966 2581 2127
120 × 3 × 4 517 647 579 792 681 280 × 3 × 4 1348 1552 1405 1969 1511
120 × 3 × 5 418 521 436 618 479 280 × 3 × 5 1006 1200 1100 1499 1133
120 × 4 × 3 735 868 782 1046 876 280 × 4 × 3 1874 2105 1967 2675 2155
120 × 4 × 4 555 665 591 815 667 280 × 4 × 4 1367 1570 1401 1945 1662
120 × 4 × 5 410 534 454 625 517 280 × 4 × 5 1036 1221 1111 1537 1194
140 × 3 × 3 820 923 865 1216 943 300 × 3 × 3 1988 2236 2128 2864 2313
140 × 3 × 4 590 719 614 917 763 300 × 3 × 4 1400 1621 1491 2076 1615
140 × 3 × 5 462 585 499 737 612 300 × 3 × 5 1131 1312 1210 1652 1250
140 × 4 × 3 822 937 886 1226 1063 300 × 4 × 3 2043 2306 2210 2843 2454
140 × 4 × 4 602 722 631 904 777 300 × 4 × 4 1442 1650 1496 2054 1610
140 × 4 × 5 478 595 472 721 599 300 × 4 × 5 1158 1350 1208 1653 1283

CMC, 2024, vol.79, no.2 1867

Table 4: Computational results of five algorithms on AVG

Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

10 × 3 × 3 52 53 59 58 57 160 × 3 × 3 1036 1205 1116 1512 1310
10 × 3 × 4 50 59 51 58 58 160 × 3 × 4 767 917 839 1111 971
10 × 3 × 5 48 56 49 57 57 160 × 3 × 5 592 738 636 872 747
10 × 4 × 3 53 65 56 68 68 160 × 4 × 3 1052 1224 1129 1506 1326
10 × 4 × 4 53 57 52 56 55 160 × 4 × 4 780 932 848 1118 970
10 × 4 × 5 50 61 55 69 68 160 × 4 × 5 585 743 641 875 733
20 × 3 × 3 135 160 138 168 166 180 × 3 × 3 1181 1336 1261 1670 1502
20 × 3 × 4 104 122 107 129 134 180 × 3 × 4 837 1010 898 1210 1035
20 × 3 × 5 91 109 88 86 102 180 × 3 × 5 682 836 732 991 850
20 × 4 × 3 133 152 136 168 163 180 × 4 × 3 1206 1364 1275 1675 1506
20 × 4 × 4 109 126 105 126 129 180 × 4 × 4 856 1021 912 1225 1058
20 × 4 × 5 87 112 86 112 103 180 × 4 × 5 700 872 743 1008 900
40 × 3 × 3 248 279 253 319 292 200 × 3 × 3 1278 1463 1374 1836 1616
40 × 3 × 4 173 215 167 251 212 200 × 3 × 4 941 1129 1013 1365 1183
40 × 3 × 5 137 179 137 206 166 200 × 3 × 5 750 919 799 1109 926
40 × 4 × 3 251 277 247 322 293 200 × 4 × 3 1318 1499 1403 1850 1662
40 × 4 × 4 166 204 181 251 204 200 × 4 × 4 963 1140 1019 1398 1191
40 × 4 × 5 140 177 141 205 138 200 × 4 × 5 780 954 827 1128 937
60 × 3 × 3 329 384 409 502 437 220 × 3 × 3 1470 1658 1545 2050 1835
60 × 3 × 4 258 297 320 387 320 220 × 3 × 4 1029 1227 1112 1502 1320
60 × 3 × 5 183 234 253 291 237 220 × 3 × 5 819 1003 887 1209 961
60 × 4 × 3 344 400 427 503 450 220 × 4 × 3 1457 1668 1582 2073 1856
60 × 4 × 4 256 303 324 384 329 220 × 4 × 4 1053 1241 1130 1519 1313
60 × 4 × 5 190 244 262 298 241 220 × 4 × 5 823 1024 899 1219 1051
80 × 3 × 3 472 546 580 702 602 240 × 3 × 3 1513 1727 1639 2197 1961
80 × 3 × 4 360 439 466 526 452 240 × 3 × 4 1117 1298 1201 1638 1453
80 × 3 × 5 269 345 367 409 329 240 × 3 × 5 958 966 933 1303 955
80 × 4 × 3 493 565 608 687 612 240 × 4 × 3 1548 1748 1669 2219 1981
80 × 4 × 4 354 442 471 535 458 240 × 4 × 4 1141 1344 1228 1681 1464
80 × 4 × 5 262 344 373 415 383 240 × 4 × 5 977 990 979 1311 972
100 × 3 × 3 561 650 701 863 715 260 × 3 × 3 1655 1871 1767 2421 2147
100 × 3 × 4 444 524 469 679 561 260 × 3 × 4 1229 1413 1309 1772 1554
100 × 3 × 5 329 414 357 515 424 260 × 3 × 5 983 1175 1057 1449 1263
100 × 4 × 3 576 667 700 863 713 260 × 4 × 3 1692 1897 1785 2432 2172
100 × 4 × 4 451 538 574 679 561 260 × 4 × 4 1260 1459 1358 1812 1601
100 × 4 × 5 334 418 355 516 423 260 × 4 × 5 992 1195 1069 1474 1254
120 × 3 × 3 735 856 788 1060 924 280 × 3 × 3 1868 2072 2003 2681 2177
120 × 3 × 4 548 663 611 820 697 280 × 3 × 4 1369 1574 1471 1993 1615
120 × 3 × 5 429 535 463 648 526 280 × 3 × 5 1043 1234 1125 1543 1212
120 × 4 × 3 752 885 817 1072 916 280 × 4 × 3 1919 2114 2037 2720 2227
120 × 4 × 4 567 679 604 829 687 280 × 4 × 4 1399 1587 1488 2002 1728
120 × 4 × 5 429 544 472 649 535 280 × 4 × 5 1065 1251 1152 1579 1227

(Continued)

1868 CMC, 2024, vol.79, no.2

Table 4 (continued)

Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

140 × 3 × 3 842 952 895 1268 969 300 × 3 × 3 2034 2259 2261 2868 2356
140 × 3 × 4 619 737 657 951 790 300 × 3 × 4 1446 1662 1452 2101 1660
140 × 3 × 5 483 600 518 763 623 300 × 3 × 5 1164 1350 1248 1679 1314
140 × 4 × 3 842 956 914 1262 1087 300 × 4 × 3 2076 2359 2374 2890 2583
140 × 4 × 4 619 740 667 951 793 300 × 4 × 4 1492 1685 1557 2108 1657
140 × 4 × 5 492 607 522 755 622 300 × 4 × 5 1177 1374 1253 1688 1342

Table 5: Computational results of five algorithms on MAX

Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

10 × 3 × 3 57 57 63 63 60 160 × 3 × 3 1077 1225 1170 1539 1367
10 × 3 × 4 58 67 58 63 66 160 × 3 × 4 783 932 862 1149 999
10 × 3 × 5 56 63 56 68 67 160 × 3 × 5 616 754 651 898 774
10 × 4 × 3 56 73 61 73 76 160 × 4 × 3 1085 1239 1147 1541 1380
10 × 4 × 4 55 64 53 67 63 160 × 4 × 4 794 943 867 1153 1003
10 × 4 × 5 55 70 60 74 77 160 × 4 × 5 597 763 665 900 768
20 × 3 × 3 144 163 147 174 174 180 × 3 × 3 1216 1355 1327 1717 1534
20 × 3 × 4 115 132 115 137 150 180 × 3 × 4 865 1022 917 1254 1067
20 × 3 × 5 102 118 97 95 116 180 × 3 × 5 697 856 757 1028 891
20 × 4 × 3 142 164 150 175 170 180 × 4 × 3 1239 1379 1328 1702 1566
20 × 4 × 4 115 133 113 137 140 180 × 4 × 4 884 1039 936 1275 1096
20 × 4 × 5 96 122 95 121 114 180 × 4 × 5 718 896 768 1041 1086
40 × 3 × 3 259 290 266 336 304 200 × 3 × 3 1322 1478 1408 1864 1694
40 × 3 × 4 184 226 181 258 223 200 × 3 × 4 994 1143 1044 1398 1231
40 × 3 × 5 153 196 149 223 178 200 × 3 × 5 779 941 841 1144 961
40 × 4 × 3 274 286 262 338 318 200 × 4 × 3 1340 1520 1446 1889 1715
40 × 4 × 4 173 212 192 266 234 200 × 4 × 4 1014 1149 1047 1448 1243
40 × 4 × 5 152 188 148 218 147 200 × 4 × 5 801 975 857 1156 976
60 × 3 × 3 339 396 422 526 464 220 × 3 × 3 1540 1676 1581 2082 1898
60 × 3 × 4 275 305 335 404 346 220 × 3 × 4 1050 1243 1153 1534 1371
60 × 3 × 5 197 246 263 300 256 220 × 3 × 5 861 1020 914 1250 986
60 × 4 × 3 357 407 442 542 462 220 × 4 × 3 1487 1681 1625 2123 1896
60 × 4 × 4 266 311 332 400 349 220 × 4 × 4 1077 1279 1125 1555 1344
60 × 4 × 5 200 259 268 317 252 220 × 4 × 5 851 1046 919 1262 1084
80 × 3 × 3 517 557 598 733 637 240 × 3 × 3 1557 1737 1666 2249 2012
80 × 3 × 4 371 449 490 547 478 240 × 3 × 4 1147 1321 1230 1695 1487
80 × 3 × 5 277 353 385 434 342 240 × 3 × 5 997 987 966 1352 989
80 × 4 × 3 516 576 623 701 682 240 × 4 × 3 1581 1775 1709 2282 2043
80 × 4 × 4 382 452 486 551 544 240 × 4 × 4 1173 1359 1274 1722 1519
80 × 4 × 5 293 349 392 433 429 240 × 4 × 5 1037 1154 1052 1341 1009
100 × 3 × 3 599 663 715 884 766 260 × 3 × 3 1694 1902 1796 2470 2191

(Continued)

CMC, 2024, vol.79, no.2 1869

Table 5 (continued)

Instance CICA ICA MEASL IG HLNS Instance CICA ICA MEASL IG HLNS

100 × 3 × 4 465 535 499 700 588 260 × 3 × 4 1249 1432 1353 1827 1596
100 × 3 × 5 350 429 373 524 444 260 × 3 × 5 1027 1196 1124 1488 1302
100 × 4 × 3 598 680 719 888 744 260 × 4 × 3 1745 1920 1854 2491 2220
100 × 4 × 4 475 550 588 710 587 260 × 4 × 4 1290 1477 1458 1846 1661
100 × 4 × 5 350 431 372 532 439 260 × 4 × 5 1038 1212 1109 1518 1278
120 × 3 × 3 749 865 820 1089 960 280 × 3 × 3 1918 2105 2046 2726 2205
120 × 3 × 4 562 670 637 847 714 280 × 3 × 4 1409 1596 1508 2024 1785
120 × 3 × 5 444 550 484 664 549 280 × 3 × 5 1077 1253 1158 1578 1261
120 × 4 × 3 776 899 844 1093 965 280 × 4 × 3 1958 2124 2100 2768 2365
120 × 4 × 4 590 691 617 850 721 280 × 4 × 4 1437 1606 1596 2061 1794
120 × 4 × 5 447 560 495 688 556 280 × 4 × 5 1098 1284 1193 1613 1266
140 × 3 × 3 884 964 936 1295 999 300 × 3 × 3 2112 2298 2293 2937 2416
140 × 3 × 4 648 752 704 981 826 300 × 3 × 4 1477 1686 1591 2159 1690
140 × 3 × 5 495 619 535 793 640 300 × 3 × 5 1222 1372 1314 1737 1361
140 × 4 × 3 876 975 940 1301 1114 300 × 4 × 3 2131 2305 2435 2938 2686
140 × 4 × 4 646 754 701 958 816 300 × 4 × 4 1530 1701 1626 2176 1712
140 × 4 × 5 503 622 556 793 640 300 × 4 × 5 1204 1391 1285 1718 1389

R
PD

A
V

G

HLNSIGMEALSICAICACHLNSIGMEALSICAICA

0.5

0.4

0.3

0.2

0.1

0.0

R
PD

M
IN

C

R
PD

M
A

X

HLNSIGMEALSICAICAC

Figure 3: Box plots of five algorithms

1870 CMC, 2024, vol.79, no.2

121086420

900

800

700

600

500

Time

CICA
ICA
MEASL
IG
HLNS

100�3�3

2520151050

2200

2100

2000

1900

1800

1700

1600

1500

1400

220�3�3

Time(s)

CICA
ICA
MEASL
IG
HLNS

(s)

m
ax

C
(m

in
)

m
ax

C
(m

in
)

Figure 4: convergence curves of instances 100 × 3 × 3 and 220 × 3 × 3

As shown in Table 3, CICA obtains smaller MIN than ICA on all instances and MIN of CICA is
lower than that of ICA by at least 20 on 87 instances. CICA converges better than ICA. This conclusion
also can be obtained from Figs. 3 and 4. It can be also found from Tables 4, 5 and Figs. 3, 4 that
CICA performs significantly than ICA on AVG and MAX. CICA obtain smaller AVG and MAX
than ICA on all instances. It can be concluded that cooperation-based assimilations, combination-
based assimilations and new imperial competition process have a positive impact on the performance
of CICA.

It can be found from Table 3 that CICA performs better than its comparative algorithms on MIN.
CICA produces smaller MIN than three comparative algorithms on 90 of 96 instances; moreover, MIN
of CICA is less than that of MEASL by at least 20 on 73 instances, that of IG by at least 20 on 87
instances and that of HLNS by at least 20 on 85 instances. When l and m are the same, with increasing
of n, the gap between MIN of CICA and three comparative algorithms is also increasing. CICA has
better convergence than MEASL, IG and HLNS. This conclusion can also be drawn from Figs. 3
and 4.

Table 4 describes that CICA obtains smaller AVG than MEASL, IG and HLNS on 88 instances;
moreover, AVG of CICA is better than that of its all comparative algorithms by at least 20 on
75 instances. CICA possesses better average performance than its three comparative algorithms.
Fig. 3 also illustrates notable average performance differences between CICA and each comparative
algorithm.

It also can be seen from Table 5 that MAX of CICA only exceeds that of three comparative
algorithms only 10 instances. CICA has smaller MAX than comparative algorithms by at least 20
on 76 instances. Fig. 3 also demonstrates that CICA possesses better stability than its comparative
algorithms.

As analyzed above, CICA performs better convergence, average performance and stability than
its co-mparative algorithms. The good performances of CICA mainly result from its new strategies.
Cooperation-based assimilations of empires 1,4, and combination-based assimilations of empires can
effectively improve quality of empires and avoid the waste of computing resources. High diversity
can be kept by new imperial competition process. These strategies can make good balance between

CMC, 2024, vol.79, no.2 1871

exploration and exploitation, thus, CICA is a very promising method for solving parallel BPM
scheduling problem with release times.

5 Conclusions and Future Topics

This study examines a scheduling problem involving unrelated parallel batch processing machines
(BPM) with release times, a scenario that is derived from the moulding process in a foundry. The
Cooperated Imperialist Competitive Algorithm (CICA), which does not use the number of empires as
a parameter and maintains four empires throughout the search process, is introduced. The algorithm
provides two new methods for assimilation through cooperation and combination between empires,
and presents a new form of imperialist competition. Extensive experiments are conducted to compare
CICA with existing methods and test its performance. The computational results demonstrate that
CICA is highly competitive in solving the considered parallel BPM scheduling problems. BPM is
prevalent in many real-life manufacturing processes, such as foundries, and scheduling problems
involving BPM are more complex than those without BPM. Future research will focus on scheduling
problems with BPM, such as the hybrid flow shop scheduling problem with the BPM stage. We
aim to use the knowledge of the problem and new optimization mechanisms in CICA to solve these
problems. To obtain high-quality solutions, new optimization mechanisms, such as machine learning,
are incorporated into meta-heuristics like the imperialist competitive algorithms. We also plan to apply
new meta-heuristics, such as teaching-learning-based optimization, to solve the problem. Energy-
efficient scheduling with BPM is another future topic. Furthermore, the application of CICA to other
problems is also worth further investigation.

Acknowledgement: The authors would like to thank the editors and reviewers for their valuable work,
as well as the supervisor and family for their valuable support during the research process.

Funding Statement: This research was funded by the National Natural Science Foundation of China
(Grant Number 61573264).

Author Contributions: Conceptualization, Deming Lei; methodology, Heen Li; software, Heen Li;
validation, Deming Lei; formal analysis, Deming Lei; investigation, Deming Lei; resources, Heen Li;
data curation, Heen Li; writing—original draft preparation, Deming Lei, Heen Li; writing—review
and editing, Deming Lei; visualization, Heen Li; supervision, Deming Lei; project administration,
Deming Lei. All authors have read and agreed to the published version of the manuscript.

Availability of Data and Materials: All the study data are included in the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. Uzsoy, “Scheduling a single batch processing machine with non-identical job sizes,” Int. J. Prod. Res.,

vol. 32, no. 7, pp. 1615–1635, Jul. 1993. doi: 10.1080/00207549408957026.
[2] C. Y. Lee, “Minimizing makespan on a single batch processing machine with dynamic job arrivals Int,” J.

Prod. Res., vol. 37, no. 1, pp. 219–236, 1999. doi: 10.1080/002075499192020.
[3] S. Melouk, P. Damodaran, and P. Y. Chang, “Minimizing makespan for single machine batch processing

with non-identical job sizes using simulated annealing,” Int. J. Prod. Res., vol. 87, no. 2, pp. 141–147, Jan.
2004.

https://doi.org/10.1080/00207549408957026
https://doi.org/10.1080/002075499192020

1872 CMC, 2024, vol.79, no.2

[4] S. C. Zhou, L. N. Xing, X. Zheng, N. Du, L. Wang and Q. F. Zhang, “A self-adaptive differential evolution
algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times,”
IEEE Trans. Cybern., vol. 51, no. 3, pp. 1430–1442, Mar. 2019. doi: 10.1109/TCYB.2019.2939219.

[5] Y. G. Yu, L. D. Liu, and Z. Y. Wu, “A branch-and-price algorithm to perform single-machine schedul-
ing for additive manufacturing,” J Manag. Sci. Eng., vol. 8, no. 2, pp. 273–286, Jun. 2023. doi:
10.1016/j.jmse.2022.10.001.

[6] H. B. Zhang, Y. Yang, and F. Wu, “Just-in-time single-batch-processing machine scheduling,” Comput.
Oper. Res., vol. 140, no. C, pp. 105675, 2022. doi: 10.1016/j.cor.2021.105675.

[7] R. Xu, H. P. Chen, and X. P. Li, “A bi-objective scheduling problem on batch machines via a
Pareto-based ant colony system,” Int. J. Prod. Econ., vol. 145, no. 1, pp. 371–386, Sep. 2013. doi:
10.1016/j.ijpe.2013.04.053.

[8] L. Jiang, J. Pei, X. B. Liu, P. M. Pardalos, Y. J. Yang and X. F. Qian, “Uniform parallel batch machines
scheduling considering transportation using a hybrid DPSO-GA algorithm,” Int. J. Adv. Manuf. Technol.,
vol. 89, no. 5–8, pp. 1887–1900, Aug. 2016. doi: 10.1007/s00170-016-9156-5.

[9] R. Zhang, P. Chang, S. J. Song, and C. Wu, “A multi-objective artificial bee colony algorithm for parallel
batch-processing machine scheduling in fabric dyeing processes,” Knowl. Based Syst., vol. 116, no. C, pp.
114–129, Jan. 2017. doi: 10.1016/j.knosys.2016.10.026.

[10] Z. H. Jia, J. H. Yan, J. Y. T. Leung, K. Li, and H. P. Chen, “Ant colony optimization algorithm for scheduling
jobs with fuzzy processing time on parallel batch machines with different capacities,” Appl. Soft Comput,
vol. 75, no. 1, pp. 548–561, Feb. 2019. doi: 10.1016/j.asoc.2018.11.027.

[11] M. Liu, F. Chu, J. K. He, D. P. Yang, and C. B. Chu, “Coke production scheduling problem: A parallel
machine scheduling with batch preprocessings and location-dependent processing times,” Comput. Oper.
Res., vol. 104, no. 7, pp. 37–48, Apr. 2019. doi: 10.1016/j.cor.2018.12.002.

[12] Z. H. Jia, S. Y. Huo, K. Li, and H. P. Chen, “Integrated scheduling on parallel batch processing
machines with non-identical capacities,” Eng. Optim., vol. 52, no. 4, pp. 715–730, May 2019. doi:
10.1080/0305215X.2019.1613388.

[13] K. Li, H. Zhang, C. B. Chu, Z. H. Jia, and J. F. Chen, “A bi-objective evolutionary algorithm scheduled
on uniform parallel batch processing machines,” Expert. Syst. Appl., vol. 204, no. 6, pp. 117487, Oct. 2022.
doi: 10.1016/j.eswa.2022.117487.

[14] X. Xin, M. I. Khan, and S. G. Li, “Scheduling equal-length jobs with arbitrary sizes on uniform parallel
batch machines,” Open Math., vol. 21, no. 1, pp. 228–249, Jan. 2023. doi: 10.1515/math-2022-0562.

[15] J. E. C. Arroyo and J. Y. T. Leung, “An effective iterated greedy algorithm for scheduling unrelated parallel
batch machines with non-identical capacities and unequal ready times,” Comput. Ind. Eng., vol. 105, no. C,
pp. 84–100, Mar. 2017. doi: 10.1016/j.cie.2016.12.038.

[16] S. J. Lu, X. B. Liu, J. Pei, M. T. Thai, and P. M. Pardalos, “A hybrid ABC-TS algorithm for the unrelated
parallel-batching machines scheduling problem with deteriorating jobs and maintenance activity,” Appl.
Soft Comput, vol. 66, no. 1, pp. 168–182, May 2018. doi: 10.1016/j.asoc.2018.02.018.

[17] S. C. Zhou, J. H. Xie, N. Du, and Y. Pang, “A random-keys genetic algorithm for scheduling unrelated
parallel batch processing machines with different capacities and arbitrary job sizes,” Appl. Math. Comput.,
vol. 334, pp. 254–268, Oct. 2018.

[18] J. M. Zhang, X. F. Yao, and Y. Li, “Improved evolutionary algorithm for parallel batch processing machine
scheduling in additive manufacturing,” Int. J. Prod. Res., vol. 58, no. 8, pp. 2263–2282, May 2019. doi:
10.1080/00207543.2019.1617447.

[19] M. Kong, X. B. Liu, J. Pei, P. M. Pardalos, and N. Mladenovic, “Parallel-batching scheduling with nonlinear
processing times on a single and unrelated parallel machines,” J. Glob. Optim., vol. 78, no. 4, pp. 693–715,
Sep. 2018. doi: 10.1007/s10898-018-0705-3.

[20] C. Song, “A self-adaptive multiobjective differential evolution algorithm for the inrelated parallel batch
processing machine scheduling problem,” Math. Probl. Eng., vol. 2022, pp. 5056356, Sep. 2022.

https://doi.org/10.1109/TCYB.2019.2939219
https://doi.org/10.1016/j.jmse.2022.10.001
https://doi.org/10.1016/j.cor.2021.105675
https://doi.org/10.1016/j.ijpe.2013.04.053
https://doi.org/10.1007/s00170-016-9156-5
https://doi.org/10.1016/j.knosys.2016.10.026
https://doi.org/10.1016/j.asoc.2018.11.027
https://doi.org/10.1016/j.cor.2018.12.002
https://doi.org/10.1080/0305215X.2019.1613388
https://doi.org/10.1016/j.eswa.2022.117487
https://doi.org/10.1515/math-2022-0562
https://doi.org/10.1016/j.cie.2016.12.038
https://doi.org/10.1016/j.asoc.2018.02.018
https://doi.org/10.1080/00207543.2019.1617447
https://doi.org/10.1007/s10898-018-0705-3

CMC, 2024, vol.79, no.2 1873

[21] H. Zhang, K. Li, C. B. Chu, and Z. H. Jia, “Parallel batch processing machines scheduling in cloud
manufacturing for minimizing total service completion time,” Comput. Oper. Res., vol. 146, pp. 1–20, Oct.
2022.

[22] A. Fallahi, B. Shahidi-Zadeh, and S. T. A. Niaki, “Unrelated parallel batch processing machine scheduling
for production systems under carbon reduction policies: NSGA-II and MOGWO metaheuristics,” Soft
Comput., vol. 27, no. 22, pp. 17063–17091, Jul. 2023. doi: 10.1007/s00500-023-08754-0.

[23] X. Xiao, B. Ji, S. S. Yu, and G. H. Wu, “A tabu-based adaptive large neighborhood search for scheduling
unrelated parallel batch processing machines with non-identical job sizes and dynamic job arrivals,” Flex.
Serv. Manuf. J., vol. 62, no. 12, pp. 2083, Mar. 2023. doi: 10.1007/s10696-023-09488-9.

[24] H. Zhang, K. Li, Z. H. Jia, and C. B. Chu, “Minimizing total completion time on non-identical parallel
batch machines with arbitrary release times using ant colony optimization,” Eur. J. Oper. Res., vol. 309, no.
3, pp. 1024–1046, Sep. 2023. doi: 10.1016/j.ejor.2023.02.015.

[25] W. Jiang, Y. L. Shen, L. X. Liu, X. C. Zhao, and L. Y. Shi, “A new method for a class of parallel
batch machine scheduling problem,” Flex Serv. Manuf. J., vol. 34, no. 2, pp. 518–550, Apr. 2022. doi:
10.1007/s10696-021-09415-w.

[26] B. Ji, X. Xiao, S. S. Yu, and G. H. Wu, “A hybrid large neighborhood search method for minimizing
makespan on unrelated parallel batch processing machines with incompatible job families,” Sustain., vol.
15, no. 5, pp. 3934, Feb. 2023. doi: 10.3390/su15053934.

[27] J. W. Ou, L. F. Lu, and X. L. Zhong, “Parallel-batch scheduling with rejection: Structural properties
and approximation algorithms,” Eur. J. Oper. Res., vol. 310, no. 3, pp. 1017–1032, Nov. 2023. doi:
10.1016/j.ejor.2023.04.019.

[28] E. Santos-Meza, M. O. Santos, and M. N. Arenales, “A lot-sizing problem in an automated foundry,” Eur.
J. Oper. Res., vol. 139, no. 3, pp. 490–500, Jun. 2002. doi: 10.1016/S0377-2217(01)00196-5.

[29] S. K. Gauri, “Modeling product-mix planning for batches of melt under multiple objectives in a small scale
iron foundry,” Producti. Manag., vol. 3, pp. 189–196, Feb. 2009. doi: 10.1007/s11740-009-0152-6.

[30] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An algorithm for optimization
inspired by imperialistic competition,” presented at the 2007 IEEE Cong. on Evoluti. Computati., Singa-
pore, Sep. 25–28, 2007.

[31] M. Zare et al., “A global best-guided firefy algorithm for engineering problems,” J. Bionic Eng., vol. 20,
no. 5, pp. 2359–2388, May 2023. doi: 10.1007/s42235-023-00386-2.

[32] G. Hu, Y. X. Zheng, L. Abualigah, and A. G. Hussien, “DETDO: An adaptive hybrid dande-
lion optimizer for engineering optimization,” Adv Eng. Inform., vol. 57, pp. 102004, Aug. 2023. doi:
10.1016/j.aei.2023.102004.

[33] G. Hu, Y. Guo, G. Wei, and L. Abualigah, “Genghis Khan shark optimizer: A novel nature-inspired
algorithm for engineering optimization,” Adv. Eng. Inform., vol. 58, pp. 102210, Oct. 2023. doi:
10.1016/j.aei.2023.102210.

[34] M. Ghasemi, M. Zaew, A. Zahedi, P. Trojovsky, L. Abualigah and E. Trojovska, “Optimization based on
performance of lungs in body: Lungs performance-based optimization (LPO),” Comput. Methods Appl.
Mech. Eng., vol. 419, pp. 116582, Feb. 2024. doi: 10.1016/j.cma.2023.116582.

[35] S. Hosseini and A. A. Khaled, “A survey on the imperialist competitive algorithm metaheuristic: Imple-
mentation in engineering domain and directions for future research,” Appl. Soft Comput., vol. 24, no. 1, pp.
1078–1094, Nov. 2014. doi: 10.1016/j.asoc.2014.08.024.

[36] C. Z. Guo, M. Li, and D. M. Lei, “Multi-objective flexible job shop scheduling problem with key
objectives,” presented at the 2019 34rd YAC, Jinzhou, China, Jun. 06–08, 2019.

[37] D. M. Lei, Z. X. Pan, and Q. Y. Zhang, “Researches on multi-objective low carbon parallel machines
scheduling,” J. Huazhong Univ. Sci. Technol. Med. Sci., vol. 46, no. 8, pp. 104–109, Aug. 2018.

[38] M. Li, B. Su, and D. M. Lei, “A novel imperialist competitive algorithm for fuzzy distributed assembly
flow shop scheduling,” J. Intell., vol. 40, no. 3, pp. 4545–4561, Mar. 2021. doi: 10.3233/JIFS-201391.

https://doi.org/10.1007/s00500-023-08754-0
https://doi.org/10.1007/s10696-023-09488-9
https://doi.org/10.1016/j.ejor.2023.02.015
https://doi.org/10.1007/s10696-021-09415-w
https://doi.org/10.3390/su15053934
https://doi.org/10.1016/j.ejor.2023.04.019
https://doi.org/10.1016/S0377-2217(01)00196-5
https://doi.org/10.1007/s11740-009-0152-6
https://doi.org/10.1007/s42235-023-00386-2
https://doi.org/10.1016/j.aei.2023.102004
https://doi.org/10.1016/j.aei.2023.102210
https://doi.org/10.1016/j.cma.2023.116582
https://doi.org/10.1016/j.asoc.2014.08.024
https://doi.org/10.3233/JIFS-201391

1874 CMC, 2024, vol.79, no.2

[39] J. F. Luo, J. S. Zhou, and X. Jiang, “A modification of the imperialist competitive algorithm with
hybrid methods for constrained optimization problems,” IEEE Access, vol. 9, pp. 1, Dec. 2021. doi:
10.1109/ACCESS.2021.3133579.

[40] D. M. Lei and J. L. Li, “Distributed energy-efficient assembly scheduling problem with transportation
capacity,” Symmetry, vol. 14, no. 11, pp. 2225, Oct. 2022. doi: 10.3390/sym14112225.

[41] B. Yan, Y. P. Liu, and Y. H. Huang, “Improved discrete imperialist competition algorithm for
order scheduling of automated warehouses,” Comput. Ind. Eng., vol. 168, pp. 108075, Jun. 2019. doi:
10.1016/j.cie.2022.108075.

[42] T. You, Y. L. Hu, P. J. Li, and Y. G. Tang, “An improved imperialist competitive algorithm for global opti-
mization,” Turk. J. Elec. Eng. Comp. Sci., vol. 27, no. 5, pp. 3567–3581, Sep. 2019. doi: 10.3906/elk-1811-59.

[43] H. Yu, J. Q. Li, X. L. Chen, and W. M. Zhang, “A hybrid imperialist competitive algorithm for the
outpatient scheduling problem with switching and preparation times,” J. Intell., vol. 42, no. 6, pp. 5523–
5536, Apr. 2022.

[44] Y. B. Li, Z. P. Yang, L. Wang, H. T. Tang, L. B. Sun and S. S. Guo, “A hybrid imperialist competitive
algorithm for energy-efficient flexible job shop scheduling problem with variable-size sublots,” Comput.
Ind. Eng., vol. 172, no. B, pp. 108641, Oct. 2022.

[45] D. M. Lei, H. Y. Du, and H. T. Tang, “An imperialist competitive algorithm for distributed assembly
flowshop scheduling with Pm → 1 layout and transportation,” J. Intell., vol. 45, no. 1, pp. 269–284, Jan.
2023.

[46] M. Yazdani, S. M. Khalili, and F. Jolai, “A parallel machine scheduling problem with two-agent and tool
change activities: An efficient hybrid metaheuristic algorithm,” Int. J. Comput. Integr. Manuf., vol. 29, no.
10, pp. 1075–1088, Jul. 2016.

[47] D. M. Lei and S. S. He, “An adaptive artificial bee colony for unrelated parallel machine scheduling with
additional resource and maintenance,” Expert. Syst. Appl., vol. 205, pp. 117577, Nov. 2022.

[48] J. Deng, L. Wang, S. Y. Wang, and X. L. Zheng, “A competitive memetic algorithm for the distributed
two-stage assembly flow-shop scheduling problem,” Int. J. Prod. Res., vol. 54, no. 12, pp. 3561–3577, Aug.
2015. doi: 10.1080/00207543.2015.1084063.

[49] J. Deng and L. Wang, “A competitive memetic algorithm for multi-objective distributed permutation flow
shop scheduling problem,” Swarm Evol. Comput., vol. 33, pp. 121–131, Feb. 2017.

https://doi.org/10.1109/ACCESS.2021.3133579
https://doi.org/10.3390/sym14112225
https://doi.org/10.1016/j.cie.2022.108075
https://doi.org/10.3906/elk-1811-59
https://doi.org/10.1080/00207543.2015.1084063

	A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem
	1 Introduction
	2 Problem Description
	3 CICA for Parallel BPM Scheduling
	4 Computational Experiments
	5 Conclusions and Future Topics
	References

