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ABSTRACT

Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions without
necessitating extensive training. However, the complexity of operational instructions and the slow pace of character
spelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-
mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects for
classification and tracking. By applying predefined stimulation rules and object-specific masks, the proposed system
triggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in the
patient’s brain. Its video processing mechanism enables the system to identify the target the patient is focusing on
even if the object is partially obscured, overlapped, moving, or changing in number. The system alters the target’s
color display, thereby conveying the patient’s intentions to caregivers. The data analysis revealed that the self-
recognition accuracy of the subjects using this method was between 92% and 100%, and the cross-subject P300
recognition precision was 81.9%–92.1%. This means that simple instructions such as “Do not worry, just focus
on what you desire” effectively discerned the patient’s intentions using the Image Segmentation-P300 selector. This
approach provides cost-effective support and allows patients with communication difficulties to easily express their
needs.
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1 Introduction

Exploring the generation of signals within the brain and the human thoughts they encapsulate
constitute an important research topic. Extensive research has been conducted to decipher the
information contained in electroencephalograms (EEGs). These studies include the use of EEGs
for emotion recognition [1], exploration of users’ mental states [2,3], person identification [4], and
assessment of epilepsy patients’ conditions in clinical medicine [5]. Researchers are now attempting
to reconstruct thoughts within people’s brains to assist those struggling to express intentions directly.
The objective is to facilitate nonverbal information exchange between patients and the outside world
by identifying EEGs. Furthermore, these studies aimed to develop brain–computer interface (BCI)
systems for the direct manipulation of external devices, allowing the execution of specific actions or
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information transmission. There are several methods for implementing BCI, among which motor
imagination shows the most potential due to its extensive applicability, such as achieving control
of vehicles [6], enabling movement with hexapod robots [7], and assisting patients in controlling
wheelchairs for autonomous mobility [8]. However, given the complexity of human brain activities,
the implementation of BCI systems based on motor imagination is challenging due to the limited
number of recognizable EEGs, which are typically categorized into two [9] or six [10] types. Research on
classifying more than 10 types of EEGs is scarce [11]. Despite the advent of advanced network models,
the accuracy rate for motor imagination in most subjects does not exceed 90% [12]. As such, practical
application requires extensive patient training, which could impose an insurmountable burden on
patients.

In contrast to BCI systems that rely on motor imagination for subjective control of external
devices, BCI systems implemented using steady-state visual evoked potentials (SSVEP) and the P300
paradigm offer the advantage of being usable with minimal or no training. These systems have
demonstrated a significant improvement in signal classification accuracy. For instance, a high-speed
brain speller capable of 40 classifications can achieve an accuracy of 97.5% by using SSVEP [13].
Moreover, a calibration-free SSVEP–BCI system with 160 classifications can maintain an accuracy
of 90% [14]. Furthermore, SSVEP can be employed to control UAV swarms in a virtual reality
environment [15] and assist people with disabilities in recreational activities [16]. However, SSVEP
poses a challenging issue because they may trigger epileptic seizures in photosensitive individuals [17],
rendering them unsuitable for long-term use [18]. Another important control approach in BCI systems
is the P300 paradigm, with its foremost application being the P300-based BCI speller [19]. This system
allows patients to spell out specific words [20] by analyzing the correlation between P300 signals
and the timing of stimuli [21]. However, the effective use of the P300 speller requires that patients
comprehend its operational process and possess an educational background and adequate cognitive
capacity to complete the spelling task. To enhance the usability of the P300 speller for individuals
who struggle, it can be improved by replacing flashing character blocks with patterns, achieving a
relatively high accuracy rate [22]. Nevertheless, the predefined nature of these images limits their
applicability. Expanding the array of selectable targets is essential for direct patient interaction with
their surroundings. This can be accomplished through the use of camera systems for monitoring the
external environment, enabling patients to select targets and perform operations [23]. However, in this
methodology, selecting a target requires temporarily stopping the video stream. A system has been
developed for wheelchair control in real-world settings [24]; however, this system is constrained by a
fixed number of selectable targets and the problem of overlapping targets. An alternative approach
involves utilizing Mask-RCNN [25] for object detection [26], which facilitates the control of robotic
arms by focusing on object centroids. However, this technique restricts subjects to making selections
based on the centroids of objects rather than their entire scope. Furthermore, constraints within the
network architecture pose challenges in achieving real-time image segmentation. The literature on BCI
systems reveals that challenges such as obstructions in real-world interactions and limitations in the
number of detectable elements are yet to be fully addressed, with real-time processing efficacy falling
short of expectations.

This study aimed to minimize the operational burden on patients while achieving real-time target
selection and to increase the methods for patients to accurately express their own intentions. The key to
this approach is the ability to select from an unrestricted range of target types and quantities without
immobilizing these targets. The aim is to simplify patients’ expression of intentions without the need
for complex control mechanisms to provide them with a stress-free experience by encouraging them
to “do not worry, simply focus on what you desire.” This approach seeks to reduce the strain and
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learning curve associated with BCI usage. The contributions and innovations of this paper are as
follows:

1) For the first time, based on the YOLOv7-mask [27] and DeepSORT [28] algorithms, we
achieved target selection by using P300 in real-world environments without any restrictions
on categories or quantity and by expanding the number of objects that patients can choose.

2) In real-time video streams, we utilized object masks to implement object-triggered P300 stimuli.
The presence of overlapping objects, dynamic real-time movement, or changes in the number
of objects does not compromise the effectiveness of target selection, providing the possibility
of synchronous interaction between patients and the outside world.

3) A real-time display paradigm that does not limit the number of targets has been designed to
improve the accuracy of target selection and avoid interactions between different targets.

2 Method
2.1 Participants

In the current environment of the IS-P300 selector, directly requesting patient assistance for
research would be burdensome. Therefore, the study recruited participants to assist in completing
the research. The participants consisted of six healthy subjects aged between 21 and 25 years, and the
standard deviation of the ages of the six subjects was 1.39, all without neurological or relevant medical
conditions and with normal vision (either natural or corrected). Participants agreed to participate
in this research. None of the participants had prior training or knowledge of BCI systems. Before
collecting the EEG data, the experimenter explained the experimental protocols and objectives to the
participants. Throughout the experiment, participants were encouraged to minimize physical activity,
maintain composure, and immediately halt the session if they encountered any discomfort. The study
was conducted in two phases over a period of 1 week: Sample collection and testing phases. During
the sample collection phase, the participants were instructed to focus their gaze solely on the object
relevant to the current experimental segment. The frequency with which this item produced stimuli
during the experimental segment was documented to enhance the participants’ concentration on the
target object. In the testing phase, participants were directed to fixate their attention exclusively on
any object of interest until the testing segment concluded.

In this study, the most commonly used international standard, the 10–20 lead system, was used to
collect EEG data. The electrode layout of the system is depicted in Fig. 1. P300 signals were acquired
using a 10-channel configuration: Fz, C3, Cz, C4, P3, P4, P7, P8, Pz, and Oz (highlighted in red in
Fig. 1). The sample collection site is shown in Fig. 2. P300 signals were acquired with participants
seated comfortably in a quiet environment to minimize unnecessary triggering of EEG activity by
external stimuli.

Data collection and processing were performed using an Intel 5900 hs processor and an NVIDIA
RTX 3070 laptop. The camera had a resolution of 1920 × 1080, and images were displayed on a 17-
inch monitor with a refresh rate of 165 Hz. Python was used for image and signal processing. EEG
signals were sampled at 1000 Hz, and EEG signal transmission was accomplished using the TCP/IP
protocol, with eight EEG information packets transmitted per second.
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Figure 1: The employed EEG channel

Figure 2: Testing site

2.2 Image Segmentation-P300 Selector

The implementation process of the image segmentation-P300 selector (IS-P300 selector) proposed
in this study is depicted in Fig. 3.

The IS-P300 selector captures real-time environmental information by using a camera. The images
are then fed into the executing program. There are three main aspects of data processing in the IS-P300
selector: Image processing, image display, and EEG processing. These are employed to acquire mask
information for different objects, selectively adjust the RGB values of objects to trigger stimuli, and
analyze the EEG information of subjects.

The image processing workflow is primarily based on YOLOv7 and DeepSORT for object
category recognition and tracking. This approach allows real-time extraction of information about
objects captured by the camera in both temporal and spatial domains, along with their respective
masks. YOLOv7, a one-stage object detection algorithm, excels in accomplishing object classification
and localization simultaneously and provides details such as object names and position information.
Compared to other network architectures such as Fast-RCNN, YOLOv7 is superior in terms of image
processing speed and delivers excellent real-time video processing performance. It includes various
branches, such as the YOLO-pose branch for human pose detection and keypoint identification and
the YOLO-mask branch for image segmentation. In this study, image segmentation was implemented
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using YOLOv7-mask. Upon inputting an image, the program promptly returns information regarding
the identified object’s category, location, and corresponding mask. The term “image mask” refers to
the extraction of both the outline and internal details of an object, encompassing all pixel positions
occupied by the object in the image. Even when certain parts of the target object are obscured by other
objects, unobstructed sections can be extracted. This allows for the application of a single color value
to cover the object in subsequent processing and achieve stimulus triggering. The image processing
process is illustrated in Fig. 4.

Figure 3: Implementation process of the IS-P300 selector

Figure 4: Image composition principle

However, due to the limitations inherent in the YOLOv7 mechanism, it is mainly used for
recognizing individual images. YOLOv7 treats different images or sequential frames of a video as
unrelated pictures, effectively breaking down and categorizing objects into separate points, with no
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continuity between consecutive frames. This poses challenges for operations that require continuity on
two images or across a video. To address this, we integrated DeepSORT for advanced object tracking
in this study. DeepSORT calculates the degree of matching between objects in consecutive frames by
using the Kalman filter and the Hungarian algorithm. In addition, YOLOv7 is utilized to ascertain the
order in which objects appear, and each identified object is allocated an ID. This allows for efficient
gathering of relevant information about the object across the time domain. Kalman filtering comprises
a time update equation (Eq. (1)) employed for computing the current state variables and covariance
estimates, as well as a measurement update equation (Eq. (2)) used for combining prior estimates with
new measurements to construct an improved posterior estimate.{

x̂k = Ax̂k−1 + Buk−1

Pk = APk−1AT + Q
(1)

⎧⎪⎨
⎪⎩

Kk = (PkHT)/(HPkHT + R)

x̂k = x̂k + Kk(zk − Hx̂k)

Pk = (I − KkH)Pk

(2)

where x̂k and x̂k−1 represent the posterior state estimates at time (k−1) and k, respectively, which are the
updated results of the object; x̂k is the estimated value of the object’s prior state. It is predicted by the
state of the system and the system model at the previous time; Pk−1 and Pk denote the posterior estimate
covariance at time (k – 1); Pk is the covariance of the prior estimate at time k; H is the state observation
matrix, which can transform the state variables of the system into measurement variables; and Kk is the
Kalman coefficient. When its value is close to 0, the posterior state estimator will trust the prediction of
the model more; otherwise, it will favor the actual measurement. A is the state transition matrix, which
can describe changes in the state of the system; Q and R represent the covariance of process excitation
and the covariance of noise measurement, respectively; B serves as the transformation matrix that
translates the input into a state suitable for computation; and (zk − Hx̂k) denotes the residual value
between the actual observation and the predicted observation. The fundamental objective is to predict
the possible location of an object at the next moment by using a series of current motion variables of the
object. The stability of tracked objects is ensured using the Hungarian algorithm, which identifies the
most accurate matching effect through one-to-one comparisons between targets from the previous and
current frames. This method incorporates a matching cascade and a confirmation feature to prevent
the loss of IDs for obscured objects. During the image display phase, the program processes the masks
of different objects according to the IDs recognized by DeepSORT to achieve the stimulation required
by the IS-P300 selector.

Unlike other P300-based BCIs, such as the P300 speller, the IS-P300 selector allows the selection of
nonfixed target objects. Users can freely adjust or move the arrangement order of similar or different
items without the need for absolute stillness. The range of targets available for subjects to choose from
includes various entities, such as persons, knives, and cats. The object recognition ability of the IS-P300
selector depends on the YOLOv7 training model. With adequate training data, the system can identify
a broader array of categories. The targets that subjects can select are strictly related to the training level
of the YOLO model. This significantly reduces the training demands on subjects, who merely need to
focus on the specific target with whom they wish to interact. In addition, during the IS-P300 selector
operation, it is possible to block certain fixed objects, preventing subjects from generating P300 signals
associated with these objects.
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The P300 paradigm triggers an EEG response in the parietal lobe of the brain with a latency of
300–600 ms after subjects receive low-probability anomalous stimuli. Continuous stimulation leads
to a decrease in P300 wave amplitude, with the P300 waveform manifesting only at the moment of
alteration. In the IS-P300 selector, the stimulation process involves covering the object with a white
mask, followed by a period before restoring it to its original color, as depicted in Fig. 5.

Figure 5: Stimulation activation process

The timing of when objects are covered with a mask and restored is an important research
topic. This involves coordinating the frequency, timing, and sequence for stimulus generation across
various objects. Although YOLOv7-mask and DeepSORT can achieve real-time processing, under
the hardware conditions used in this study, each frame requires 60–120 ms for processing. The time
required for image processing, coupled with data processing fluctuations, affects the effectiveness
of the IS-P300 selector. Therefore, in this study, we increased the number of threads to achieve
precise timing in stimulus generation. To improve program speed, we scaled down the original images
before inputting them into YOLOv7-mask and DeepSORT to acquire target mask information. When
triggering stimulus generation, the mask image was superimposed onto the original image to elicit
stimuli.

The objects do not need to be arranged neatly, and there is no fixed number of items that can
be selected. The types of objects can vary, their positions can dynamically change, and items can be
added or removed. Unlike the traditional P300 speller, the timing and frequency of predetermining
activation stimuli for each object are not practical. To ensure normal stimuli activation in different
environments, seven rules were established in this study:

1. Upon the initial appearance of an object’s ID, immediate activation occurs, and the corre-
sponding stimulus is triggered.

2. The maximum stimulus interval for each object’s ID is T = N × 1 s, where N is the number
of identifiable object types in the current video. In essence, if the time since the last activation
stimulus for that object exceeds T, the stimulus is activated without delay to ensure that each
item receives stimuli in a cyclical manner.

3. For each object ID, a minimum stimulus interval of t = 0.8 s is set. This means that if the
time elapsed since the last activation stimulus for that object is less than 0.8 s, the object will
not produce another stimulus. This is done to avoid the rapid flashing of objects, which could
cause visual fatigue and unnecessary strain, while maintaining the integrity of single-stimulus
data and reducing signal overlap caused by repeated stimuli.

4. If an ID activation stimulus occurs within 0.3 s, other objects will not receive stimulus
activation.

5. If the last activation times for all objects are less than the maximum stimulus interval T and
rule 4 is satisfied, all objects with activation times greater than t are selected. An ID is randomly
selected, and the selected object is activated to complete the stimulus after introducing a
random delay of t’ ms (where 50 ms < t’ < 100 ms).
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6. During each activation stimulus (duration: 80–120 ms), the object corresponding to the ID
turns white, which generates the P300 signal. Following the completion of the activation
stimulus, the object returns to its original color.

7. To minimize the possibility of erroneous P300 responses, only one object generated a stimulus
at any given moment.

The aforementioned rules are designed to intentionally disrupt the timing of stimulus activations
for different objects on the IS-P300 selector screen. This is achieved by varying the order of stimulus
generation across different cycles and thus introducing a certain degree of chaos to prevent consecutive
objects from generating stimuli at identical frequencies. This, in turn, reduces the risk of inaccurate
P300 judgments. The stimulus generation for various objects in distinct cycles is depicted in Fig. 6;
the figure serves as an example, and the order of stimulus generation for objects in different cycles
may vary.

Figure 6: Sequence of object activation stimuli under different cycles

Due to blurred object boundaries and similar pixel colors in the IS-P300 selector, stimuli generated
in subjects’ brains may lack clarity compared to the traditional P300 speller. To address this issue, the
discrimination accuracy can be enhanced by increasing the frequency of signal overlays. The timestamp
of when objects generate stimuli is used, and a 1000-ms data segment following this timestamp is
extracted as a sample. This sample is then appended to the sample record list associated with the
corresponding ID object. The process of adding timestamps and samples is depicted in Fig. 7.

Figure 7: The method of recording timestamps and samples
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In this study, once it was established that subjects could elicit P300 responses based on target
objects, we employed the EEGNet [29] model for classifying these P300 signals. This requires acquiring
samples and corresponding labels essential for model training. These labels encompass both the ID
numbers of items and the timestamps of their generation. Considering that subjects may adjust their
gaze and alter the placement of items during the experiment and that object IDs may not remain
consistent across various phases, labels must be augmented with original image data to identify object
IDs accurately. During the subjects’ training, by gazing at the screen, the program superimposed the
mask of the stimulated object onto the original image, resizing it to a 100 × 100 DPI image. As
illustrated in Fig. 8, this method efficiently reduces the amount of necessary data storage and aids
in post-experiment identification of objects that generate stimuli during a specified timeframe.

Figure 8: Label storage format

2.3 Experimental Phase

Before the experiment, participants chose a target to focus on. During the sample collection phase,
they fixated their gaze on various objects displayed on the screen, such as a cola can, a water glass,
and a banana with stickers. Throughout the experiment, staff continuously adjusted the positions of
these objects or added and removed them, as depicted in Fig. 9.

Figure 9: Item sequence adjustment

The object positions were changed to simulate real-world interference and human activities. Using
the operational mechanism of the IS-P300 selector, staff relocated objects; however, these objects could
still trigger stimuli. This observation emphasizes that object movement has a minimal effect on the
functionality of the IS-P300 selector. The stimuli produced during the movement of different objects
are illustrated in Fig. 10.

During the movement of objects, the limbs of staff members may have entered the environment
and served as objects of identification. In such cases, participants needed to maintain their focus on
the target object to mitigate disruption caused by such movements. Although the relevant stimuli were
generated during object movement, due to the program mechanism and hardware environment of
the IS-P300 selector, the calculation time for the mask exceeded the video capture interval. To ensure
smooth video display, the position triggering object stimuli were the location where the object existed in
the previous frame, which might not coincide with the actual position of the object in the current frame.
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However, even with this limitation, when the object moved at a slower speed, the placement of the mask
could cover the majority of the object’s area, thereby minimizing the effect on the functionality of the
IS-P300 selector.

Figure 10: Dynamic movement of items

2.4 Classification Model

Based on the principles of P300 generation, a Butterworth filter (Eq. (3)) was employed to perform
bandpass filtering on the EEG signals collected from various channels of the electrode cap in the
frequency range of 0.1–20 Hz.

|H(ω)|2 = 1

1 + (ω/ωc)
2n = 1

1 + ε2
(
ω/ωp

)2n (3)

where n represents the filter order, wc denotes the cutoff frequency, wp is the passband edge frequency,
and |H(ω)|2 corresponds to the numerical value of the passband edge. Extensive research has been
conducted on P300 classification methods. After a thorough comparison, the EEGNet approach was
employed for sample processing in this study.

Based on the sample data obtained using the IS-P300 selector, positive samples of subjects receiv-
ing stimulation and negative samples of those not receiving stimulation were derived. In accordance
with the P300 paradigm principles, the sample dataset was divided into positive and negative samples
for training. A modified version of the EEGNet model, Model 1, was used to detect the presence of
P300 signals; its architecture is illustrated in Fig. 11.

Figure 11: The EEGNet model after adaptive modifications
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EEGNet is a compact, multiparadigm convolutional neural network (CNN) classification net-
work that demonstrates excellent performance in multiclass EEG classification and maintains high
accuracy for different subjects. In addition, it requires less computational power, thus avoiding
excessive strain on hardware that could lead to abnormal execution during image display. Upon the
activation of an object-triggered stimulus, the EEG data captured in the next 1000 ms are input into
the classification network. The resulting output is used to determine whether subjects received the
pertinent stimulus during that period and whether it generated a P300 signal.

The IS-P300 selector operates in a real-world environment. The mask engendered by the stimulus
is pure white; as such, chromatic variations during the stimulus mechanism are less pronounced
compared to the conventional P300 speller. Detecting subject concentration on a target with only
a single stimulus signal is challenging and affects accuracy. To address this issue, P300 responses
induced by stimuli at multiple time points for a given object are superimposed. The effects of EEG
superposition for different numbers of instances are shown in Fig. 12.

0 300 600 900
−20

−15

−10

−5

0

5

10

15

Vµ/edutilp
ma

G
E

E

time series/ms

stacking fold 1 stacking fold 4 stacking fold 7 stacking fold 10 stacking fold 13
stacking fold 16 stacking fold 19 stacking fold 22 stacking fold 25 stacking fold 28
stacking fold 31 stacking fold 34 stacking fold 37 stacking fold 40

Figure 12: EEG superposition of signals for different numbers of instances

As P300 accumulates, differences in signals between positive and negative samples become
increasingly apparent. However, distinguishing between positive and negative EEG samples may lead
to the identification of two or more positive samples simultaneously, contrary to the principles of the
P300 paradigm. This discrepancy indicates a misjudgment, wherein data from objects that did not
evoke a P300 response in subjects are incorrectly classified as positive samples. In the traditional P300
speller with fixed target stimuli, statistical analysis can be performed on samples across one or several
cycles. In this process, the letters or shapes fixated upon by subjects are assigned a value of 1, and
the rest are assigned a value of 0; this results in the formation of a tensor that serves as the label.
However, the IS-P300 selector, with its fluctuating target count, cannot guarantee that the objects
the subjects focus on are indeed selectable during practical use. Therefore, only data deemed positive
samples undergo binary classification training, and negative samples are obtained from the aberrant
classification results of EEGNet. The structure of Model 2 used for training is illustrated in Fig. 13.

Instead of simply classifying positive and negative samples, EEGNet processes input signals by
concatenating 1000 ms of EEG data following stimuli from different targets and outputs a pointer
to the target object most likely to generate the P300 signal. According to the EEGNet classification
results, if P300 signals are detected in three or more targets within a specific time frame, Model 2 is
cyclically employed. Targets are compared in pairs, and scores are assigned to the object IDs identified
as targets. Following the binary classification of all relevant objects, the object with the highest score
is selected as the indicated target, that is, the object with the most distinct P300 signal. This result is
then communicated to the image display program, which retrieves the object based on the queried ID
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number and highlights the identified target in semi-transparent green to allow others to determine the
object that the subject is fixating upon. Alternatively, it can employ recorded audio to read out the
name of the object category that the subject is fixating upon to assist others.

Figure 13: The binary classification model

3 Results

In the experimental setup, subjects were presented with six distinct items: Two bananas, a book,
a water glass, a coke, and an apple. We meticulously counted the occurrences of each item within 10-s
intervals to confirm the stimulus frequency for each specific object. The outcomes are systematically
illustrated in Fig. 14.
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Figure 14: Frequency of dynamic appearances for each object

To more clearly indicate the position of the object and its movement over time, the position
information of the object in one of the experiments is visualized, as shown in Fig. 15. The horizontal
and vertical coordinates in the figure represent the position of the object’s centroid on the screen, the
depth coordinate represents the progression of time, different colors correspond to different objects,
the displacement of the centroid represents the trajectory of the object, and the appearance and
disappearance of the polyline represent the addition or removal of the object on the display screen.

Due to these constraints, objects generate stimuli randomly, and the frequency is not fixed. This
variability can serve to differentiate the P300 information of subjects. During data processing, we
applied bandpass filtering to the EEG signals. To capture P300 information contained within the
samples, we opted for a single-sample duration of 1000 ms. Subsequently, we superposed the EEG
data generated by subjects and conducted a comparative analysis between EEG datasets containing
P300 signals and those without. The IS-P300 selector exhibited a more pronounced P300 response in
subjects, as validated by the EEG comparison shown in Fig. 16.
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Figure 15: The trajectory of each object in the experiment
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Figure 16: Comparison of superimposed P300 signals in subjects

After confirming that the IS-P300 selector distinctly exhibited a significant P300 component, we
utilized Model 1 to discriminate between the EEG signals generated by subjects at different times. This
process relies on object ID numbers to verify whether the object is the focal point of the subject’s gaze,
which, in turn, generates the corresponding P300 signal. First, EEG samples resulting from a single
stimulus event were analyzed. Subsequently, individual samples from each subject were utilized for
training. The achieved accuracy rates are depicted in Table 1.

Table 1: Classification accuracy for different subjects

Subject number Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Recognition accuracy 83.02% 77.11% 83.33% 86.36% 80.11% 80.00%

To measure the impact of accuracy and recognition speed on BCIs, the commonly used evaluation
metric in BCI, the information transfer rate (ITR), is used to evaluate the model. This allows for a
comprehensive quantification of the amount of information transmitted per unit of time by the HCI
system. The formula is as follows:

ITR = (
log2Nf + Aclog2Ac + (1 − Ac) log2

(
(1 − Ac)/(Nf − 1)

)) × fd (4)

where Nf is the number of target recognition types, Ac is the target recognition accuracy, and fd is
the target selection time. Since the number of target recognition types in the study is not fixed and
is affected by the types of targets appearing on the screen, objects are classified only as targets and
nontargets, i.e., Nf = 2. According to the design rules of the paradigm, a flash is completed every
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475 ms on average, so fd = (60/(0.475 × Nf )). The ITR of different subjects was compared, and the
results are shown in Table 2.

Table 2: The ITR of different subjects

Subject number Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average

ITR (bits/min) 21.65 14.14 22.09 26.85 17.70 17.56 20.00

For the majority of participants, Model 1 successfully distinguished between positive and negative
samples generated by the IS-P300 selector. Although faster temporal resolution was found to be
beneficial when using EEG data generated from a single stimulus for target identification, it was unable
to consistently maintain high classification accuracy across all participants. In this study, the single-
trial recognition accuracy ranged from 77.1% to 86.4%, which is less than satisfactory. To address this,
we superposed 1000-ms EEG signals generated in response to stimuli for objects with consistent ID
numbers and obtained the classification accuracy for n superimposed instances by averaging the EEG
signals corresponding to a particular item over N consecutive trials. The variations in accuracy are
illustrated in Fig. 17.
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Figure 17: Relationship between signal superposition and accuracy

Increasing the value of N yielded a notable enhancement in classification accuracy but reduced the
temporal resolution of EEG. The highest accuracy rate reached 100%. Thus, determining the optimal
balance between the superposition count n and accuracy necessitates careful consideration of the
specific context. Using Model 2, a binary classification assessment of EEGs from different objects
at proximate time intervals (n = 5) was performed. The results are shown in Table 3.

Table 3: Binary classification accuracy for different objects at similar time intervals

Subject number Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Recognition accuracy 91.53% 96.15% 92.77% 98.36% 91.67% 94.44%

As can be observed from Table 2, although the selected objects generated stimuli at similar times,
there were differences in the timing of signal superposition. This generally makes the recognition
accuracy rate above 91.5%. This variation in the information contained in EEG corresponding to
different objects demonstrates that Model 2 can accurately distinguish objects of interest at close time
intervals.
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For those who are using the IS-P300 selector for the first time, they can use the data from other
subjects as samples. For example, we assessed the accuracy of S6 by using samples from S1 to S5, that
is, cross-subject training. As the subject’s usage time increases and data gradually accumulate, their
EEG can be mixed with the samples of other subjects and gradually completely replaced. The results
of cross-subject training, full data training, and self-training are shown in Table 4.

Table 4: Cross-subject target recognition accuracy

Subject number Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Cross-Subject accuracy 85.34% 83.65% 92.11% 91.27% 83.65% 87.91%
Mixed-Subject accuracy 87.93% 86.15% 92.81% 98.12% 83.75% 87.95%
Self-Subject accuracy 93.55% 91.94% 94.94% 100.00% 86.54% 92.31%

The research results show that during the initial cross-subject training, the recognition accuracy
rate is not as good as the self-training results, but the average accuracy rate can still be maintained
above 86.6%. With the introduction of the subject’s own data, the recognition accuracy rate improved
until it was completely replaced by self-training data. This shows that the IS-P300 selector has good
reference value for the recognition results of the target, proving the feasibility of this method.

4 Discussion

The use of P300 as a control input in BCI has reached a relatively advanced stage; P300 can be
used for tasks such as text spelling with the P300 speller or as a button trigger for subjects’ P300
signals. With the past limitations where static images were required to assist subjects in generating
P300 signals, real-time image segmentation for dynamic objects presented a challenge. Consequently,
dynamic objects were used to generate P300 signals. With progress in artificial intelligence, real-time
image processing has become achievable. Compared to the majority of past P300 paradigms that could
only recognize specific targets and integrate real-time image segmentation into P300 applications, the
proposed system relieves patients from the burden of mastering complex control methods. This allows
patients to dynamically select targets. Advising patients with the phrase “Do not worry, simply focus
on what you desire” enables them to express their goals relatively accurately without causing fatigue
or unnecessary stress to the patients. For caregivers, the placement of items in front of the camera
is needed without the need for elaborate guidance or procedures, thus reducing learning pressure for
both patients and caregivers and reducing system usage prerequisites. The IS-P300 system designed
in this study is not limited to EEGNet; any P300 classification-capable method can be employed,
thus expanding the applicability of P300 and promoting the development of more practical BCI
applications.

Although the IS-P300 can help patients express their own intentions, there are certain limitations.
For example, when there are too many selectable objects in the video, the stimulus generation cycle for
the same object will significantly lengthen, meaning that the system needs more time to understand
the patient’s intention; YOLOv7 can identify objects with a high accuracy rate, but there may be
situations where it cannot recognize, affecting the use effect of the IS-P300 selector; DeepSORT, as
an object tracking method, however, rapid object deformation may also cause loss of tracking and
reassignment of ID, which has a negative impact on the IS-P300 selector. These existing problems will,
to some extent, reduce the use effect of the IS-P300 selector. In further research, we can try to use more
advanced networks to improve object recognition accuracy and tracking effects, perhaps breaking
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through the use limitations of the IS-P300 selector and better helping patients express their intentions.
In addition, at the patient personal information level, there is a lack of direct use of the IS-P300 selector.
Since patients cannot accurately express their intentions in the initial state, biological information
leakage about EEG signals may occur when collecting patient EEG [30], and it is also possible that in
the final stage, the intrusion of other people’s EEG samples may lead to being exploited by hackers,
causing serious consequences. These AI security issues need to be considered in the application of the
IS-P300 selector, and methods such as the Friend-Guard adversarial noise design [31] can be used to
effectively identify the patient’s own EEG, prevent it from being used by others, effectively maintain
the patient’s biological information security, and provide security for the widespread application of
BCI. These security precautions are also issues that the IS-P300 selector should consider during its
future application.

5 Conclusion

The IS-P300 selector developed in this study employs YOLOv7-mask for the recognition and
real-time segmentation of video images. It employs the DeepSORT algorithm to track and assign
matching IDs to various objects. Following the research-defined rules, stimulus signals are promptly
generated to cover targeted objects, evoking P300 responses when subjects fixate on them. Using deep
learning networks and timestamps, the proposed system accurately identifies targets of interest and
overlays them with a semi-transparent green shade. The data analysis revealed that it can yield a
recognition precision of 92%–100% and a cross-subject P300 recognition precision of 81.9%–92.1%. In
addition, we demonstrated that overlay-based P300 stimulation of images can be effectively recognized,
irrespective of the number or type of target, motion status, or appearance and disappearance. Through
this study, the application scope of P300 has been expanded, providing new research directions for
future research.
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