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ABSTRACT

The Internet of Things (IoT) has characteristics such as node mobility, node heterogeneity, link heterogeneity,
and topology heterogeneity. In the face of the IoT characteristics and the explosive growth of IoT nodes, which
brings about large-scale data processing requirements, edge computing architecture has become an emerging
network architecture to support IoT applications due to its ability to provide powerful computing capabilities
and good service functions. However, the defense mechanism of Edge Computing-enabled IoT Nodes (ECIoTNs)
is still weak due to their limited resources, so that they are susceptible to malicious software spread, which
can compromise data confidentiality and network service availability. Facing this situation, we put forward an
epidemiology-based susceptible-curb-infectious-removed-dead (SCIRD) model. Then, we analyze the dynamics
of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential
equations. Additionally, we establish the presence of equilibrium states in the SCIRD model. Furthermore, we
conduct an analysis of the model’s stability and examine the conditions under which malicious software will
either spread or disappear within Edge Computing-enabled IoT (ECIoT) networks. Lastly, we validate the efficacy
and superiority of the SCIRD model through MATLAB simulations. These research findings offer a theoretical
foundation for suppressing the propagation of malicious software in ECIoT networks. The experimental results
indicate that the theoretical SCIRD model has instructive significance, deeply revealing the principles of malicious
software propagation in ECIoT networks. This study solves a challenging security problem of ECIoT networks by
determining the malicious software propagation threshold, which lays the foundation for building more secure and
reliable ECIoT networks.
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1 Introduction

Internet of Things (IoT) networks have experienced rapid development in areas such as smart
cities, smart health, and smart transportation. Such networks have characteristics such as node
mobility, node heterogeneity, link heterogeneity, and topology diversity [1]. Facing these characteristics
and the large data processing demands brought by the explosive growth of IoT nodes, edge computing
has become an emerging network architecture that provides powerful computing capabilities and
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good service functions to support IoT applications [2–4]. In this manner, Edge Computing-enabled
IoT (ECIoT) architecture brings computation, storage, and analytic capabilities closer to the data
source, enabling real-time decision-making and reducing the latency of data transmission to cloud-
based systems [5]. However, ECIoT nodes (ECIoTNs) with distributed and interconnected nature
involve security vulnerabilities [6] introduced by malicious software such as Trojans, spyware, viruses,
worms, rootkits, etc. Each type of malicious software has certain characteristics and infiltrates the
ECIoT through different methods [7]. Incidents of significant losses caused by the spread of malicious
software are not uncommon in society [8]. In November 2022, a new type of ransomware attacked
the Australian insurance giant Medibank, which affected the personal information of 9.7 million
customers, involving multiple sectors such as healthcare institutions and government departments [9].
The attackers typically spread malicious software to victims’ systems through email attachments or
network vulnerabilities, and then demanded ransom to decrypt the infected files. The ransomware
attack has caused significant financial losses and leads to data breaches and system paralysis. In the
same year, the Bank of Zambia was hit by ransomware attacks, causing disruptions in some systems,
threatening crucial financial data and impacting its normal operations and financial system stability,
and resulting in certain negative effects on the country’s economy. These two attacks resulted in many
organizations facing the risks of data loss, business disruptions, and substantial financial losses [10].

Recent research shows that malicious software in ECIoT is capable of spreading itself and has
become a major factor affecting ECIoT security [11]. Once malicious software exploits vulnerabilities
in ECIoTNs and spreads widely in the ECIoT, it can eavesdrop on ECIoTNs data and even cause
ECIoTNs to completely lose their functionality by depleting their energy sources [12,13]. This seriously
affects the availability, confidentiality, and stability of ECIoT services. Therefore, it is urgent to study
the infection behavior and influencing factors of malicious software in ECIoT and provide methods
for analyzing the stability of the infection model of malicious software in ECIoT [14].

The goal of the current work is to explore the spread rule of malicious software within ECIoTNs
and propose strategies to prevent and inhibit its spread. It also proposes a malicious software infection
model that integrates the expected probability of malicious software infection behavior by extending
epidemic theory [15]. Subsequently, we study the stability of this model and finally obtain results
that can reveal the infection mechanism of malicious software in ECIoT. By integrating insights from
previous research, this study makes an effort to provide a comprehensive analysis of malicious software
spreading dynamics in ECIoT networks and offer valuable insights for designing effective security
countermeasures.

Here are our contributions:

(1) An epidemiology-based Susceptible-Curb-Infectious-Removed-Dead (SCIRD) model is pro-
posed, which studies the characteristics of malicious software propagation in ECIoT networks by
considering node heterogeneity, link heterogeneity, and topology structure heterogeneity. The model
extends the Markov chain to study the state transition of ECIoTNs.

(2) The differential equations of the SCIRD model are derived, which represent the proportion
dynamics of different compartments, namely S, C, I , R, and D, in the SCIRD model at various extents.

(3) Equilibrium states in the SCIRD model are demonstrated. Therefore, the conditions to
determine whether malicious software will spread or die out in ECIoT networks can be obtained to
guide the security mechanism defending malicious software propagation.

The key contributions of this paper are as follows. The application of the proposed SCIRD
model can help researchers gain a deeper understanding of the propagation mechanism of malicious
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software in ECIoT networks, including characteristics such as propagation speed, range, and pathways,
which will provide a more systematic and comprehensive perspective for the analysis, prediction,
and formulation of strategies to combat malicious software propagation. Such a model can facilitate
a better understanding and control of malicious software propagation behavior, contributing to
enhancing security alertness and preventive capabilities of ECIoT networks. Moreover, our model can
be extended to one considering different types of network topologies such as random, small-world, and
scale-free networks to study the dynamics and patterns of malicious software propagation in different
network structures.

The remaining sections of this paper are structured as follows. In Section 2, we examine the current
state of research and put forth several issues that need to be addressed regarding the propagation of
malicious software in ECIoT networks. In Section 3, we build a state graph for ECIoTNs infected
by malicious software, taking into consideration the distinctive characteristics of current malicious
software propagation, and propose the SCIRD model. Section 4 is dedicated to demonstrating
equilibrium states of the SCIRD model, calculating the fundamental reproduction number, and
affirming the model stability. Moving forward, in Section 5, we propose an algorithm using Matlab,
and conduct experiments to validate the stability of equilibrium points. Finally, in Section 6, we
provide a summary of the paper. Fig. 1 shows the paper workflow providing sufficient visual aids
to guide readers through the various phases and steps of the work.

Analyzing characteristics
of malicious software
propagation

Simulating 
experiments with 
Matlab

Analyzing model stability 
and equilibrium pointsDrawing conclusions

Constructing a state  
transition graph and 
proposing the 
SCIRD model

Constructing differential 
equations based on 
propagation dynamics

Figure 1: Paper workflow diagram

2 Related Work

The propagation of malicious software in the context of ECIoT bears certain similarity to
infectious diseases to some extent [16]. Common epidemic models are classified based on the type of
infectious diseases, such as the Susceptible-Infectious (SI) [17] and Susceptible-Infectious-Susceptible
(SIS) [18] models. They can also be categorized based on the transmission mechanisms, includ-
ing Partial Differential Equations (PDEs), Ordinary Differential Equations (ODEs), and network
dynamics. For examples, the model STSIR (Social Internet of Things Susceptible-Infectious-Removed)
was proposed to illustrate malicious software propagation among IoT nodes considering people
behavior [19], however, the application of the model may require adjustments and validation in specific
scenarios. By adding the state E (exposed), an SEIR (Susceptible-Exposed-Infectious-Removed)
model was proposed to analyze the interval of logging, the number of friends in the list, and the
influence of the malicious software’s initial spreading rate [20], but the fixed immunity assumption
in the SEIR model may not accurately describe factors in the propagation of malicious software.
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Some researchers have studied the spread of malicious software from different perspectives.
Guo et al. [21] put forward a method to represent the impact of different network structures on
virus transmission using growth curves. Li et al. [22] began to study the impact model of information
dissemination in mobile social networks from a multi-role perspective. Li et al. [23] used structural
optimization to control information diffusion in social networks. Wang et al. [24] proposed a
new data-driven approach, based on intuitive assumptions, to enhance the detection of zombie
networks. They utilized honeypots to simulate zombie network attacks on medical devices and
assets connected to the IoT with healthcare settings. In addition to the above models, others include
models twin-SIR (twin Susceptible-Infectious-Removed) [25], SLBRS (Susceptible-Latent-Breaking-
out-Recovered-Susceptible) [26], SEIRS-QV (Susceptible-Exposed-Infected-Recovered-Susceptible
with Quarantine and Vaccination) [27], SEIQ-VS (Susceptible-Exposed-Infected-Quarantine with
Vaccination-Susceptible) [28], and SIQR (Susceptible-Infected-Quarantine-Removed) [29]. Wherein,
the twin-SIR model lacks of consideration for real-world factors such as changes of node behavior and
network structure. The SLBRS model is indeed novel when proposed, but, due to considering multiple
factors, its complexity increases, its interpretability decreases, and it requires higher requirements for
actual data. Both the SEIRS-QV and SEIQ-VS models consider a wide range of influencing factors,
but they both require accurate parameter estimation and extensive data support. The SIQR model
neglects some complex propagation dynamics, such as latency and immune details.

These models all add certain states to the original classical SIR (Susceptible-Infectious-Removed)
or SI model, while considering the communication radius and node distribution density. Besides,
worm viruses are also highly contagious in the IoT, so people have proposed various propaga-
tion models based on compartmental populations [30], specifically designed for heterogeneous and
hierarchical networks incorporating human behaviors. At the same time, the dynamics of worm
propagation in complex networks have been extensively modeled and studied, and it has been
confirmed that the network topology has a significant impact on the worm propagation in such
networks [31,32]. The researchers also proposed a propagation model for the defense of PLC-PC (Pro-
grammable Logic Controller-Personal Computer) worms in industrial networks [33]. In the meanwhile,
Yang et al. presented a new VEIQS (Vaccination-Exposed-Infected-Quarantine-Susceptible) worm
propagation model [34]. But the model typically assumes that propagation is unobstructed and does
not take into account the impact of defensive measures. Table 1 summarizes some representative papers
on the propagation of malicious software, and compares with our work to provide a brief overview for
better understanding in terms of the model name, main contributions, projecting point, and weakness.

Table 1: List some representative papers on the spread of malware on computers

Paper Proposed
model

Main contributions Projecting point Weakness

Lazfi et al. [17] SI Describing
interactions
between infectious
and susceptible
nodes

Classical model Not considering the
recovery and death
states

Gómez-
Corral et al. [18]

SIS Dynamic
description of an
extended SI model

Classical model Not considering the
recovery and death
states

(Continued)
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Table 1 (continued)

Paper Proposed
model

Main contributions Projecting point Weakness

Wu et al. [19] STSIR Reasonable
description of the
propagation of
malicious software

Improved and
innovative model

Unable to fully
consider security
measures and the
complexity of the
actual network
environment

Coronel et al. [20] SEIR Considering the
impact of latency
on the propagation
of malicious
software

Classical model Difficulty in
accurately modeling
the complexity and
heterogeneity of nodes

Yi et al. [25] twin-SIR Introducing a
rumor clarification
node with
spreading ability

Improved and
innovative model

Lack of consideration
for real-world factors
such as changes of
node behavior and
network structure

Tang et al. [26] SLBRS Considering the
outbreak situation
of malicious
software

Improved and
innovative model

Existing multiple
factors that increase
complexity and
require high actual
data

Hosseini et al. [27] SEIRS-QV Introducing
immune
attenuation and
vaccine
effectiveness

Improved and
innovative model

Requiring accurate
parameter estimation
and extensive data
support

Tran Le et al. [28] SEIQ-VS Providing the
dynamics of
infectious disease
transmission

Improved and
innovative model

Requiring accurate
parameter estimation
and extensive data
support

Dong et al. [29] SIQR Considering the
isolation state of
nodes

Improved and
innovative model

Neglecting complex
propagation dynamics

This paper SCIRD Considering the
heterogeneity of
communication
connectivity
among ECIoTNs

Improved and
innovative model

Special for ECIoTNs



2748 CMC, 2024, vol.79, no.2

However, the above research still fails to address some problems related to the spread of ECIoT
malicious software. One problem is how to describe the actual situation where an ECIoTN becomes
ineffectual due to energy depletion, physical degradation, or malicious software attacks. The other
problem is how to ascertain the conditions under which malicious software will spread or disappear
in wireless hardware. Herein, considering the heterogeneity of communication connectivity among
ECIoTNs, we address the first problem by adding two states, namely, the dead state and the suppressed
state, to the traditional SIR model. Furthermore, we address the second problem by studying
the equilibrium point stability of our non-homogeneous model and mathematically verifying the
correctness of our theoretic results.

3 Designing a State Diagram for ECIoT with Malicious Software Infection

Viewed in terms of the network’s topology, we assume that the malicious software-infected ECIoT
consists of M stationary ECIoTNs that are uniformly distributed across a two-dimensional region.
Each ECIoTN is equipped with an omnidirectional antenna available for signal transmission. When
an ECIoTN detects local data, it can forward this data to neighboring ECIoTNs located within its
transmission range. These neighboring ECIoTNs then relay the data to their respective neighbors in
an ongoing fashion.

Based on the characteristics of ECIoTNs, we develop a state diagram to represent the behavior of
an ECIoTN within the malicious software-infected ECIoT. This can be analogized to an epidemiology-
based model for malicious software propagation. In the state diagram, an ECIoTN is assigned to a
single state that reflects its manner. We categorize an ECIoTN as state S if it exhibits its vulnerabilities
but remains uninfected. When an ECIoTN is infected with malicious software but there exists security
software that can contain the propagation of malicious software, it is classified as state C. When an
ECIoTN becomes infected by malicious software and can transmit malicious software to neighboring
nodes through data or control information, it transitions to state I . Upon applying security patches
and achieving immunity to the current malicious software, an ECIoTN enters state R. An ECIoTN is
assigned to state D when it becomes non-functional, either due to complete energy depletion or damage
caused by malicious software. Thus, we extend the traditional SIR model to establish the SCIRD
model, encompassing all the states of ECIoTNs within the malicious software-infected ECIoT.

As illustrated in Fig. 2, any ECIoTN within the network has the potential to undergo a state
transition in reaction to external factors. This means that the current state of an ECIoTN can be altered
due to external influences. When susceptible ECIoTNs become infected through the propagation
of malicious software, not all nodes are necessarily affected, as a portion of nodes can successfully
thwart the infection due to the presence of security software. This results in a transition of their state
from S to C. However, security software is incapable of completely impeding the spread of malicious
software. Furthermore, when infected ECIoTNs have the ability to transmit malicious software, their
state transitions from S to I . Once a complete infection occurs, we employ patching of the security
programs to treat the infected ECIoTNs, granting them immunity against known malicious software.
This action leads to a state transition from I to R. Additionally, considering the mechanical nature
of computers, any ECIoTN has the potential to transition to state D due to hardware malfunction or
power depletion.
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Figure 2: State diagram for an ECIoTN

We categorize the ECIoTNs based on their heterogeneous communication connectivity. Within
the ECIoT, all ECIoTNs can be classified into L clusters, each characterized by the same degree of
connectivity. For simplicity, we adopt a unified notation to represent both the cluster and its degree,
where i ∈ {1, 2, . . . , L} is used to denote the degree of cluster i. To simplify the description, we use Si(t),
Ci(t), Ii(t), Ri(t), and Di(t) to represent the proportions of ECIoTNs in cluster i at time t that are in
states S, C, I , R, and D, respectively. Clearly, we can derive alternative expressions for these quantities
as

Si(t) + Ci(t) + Ii(t) + Ri(t) + Di(t) = 1, (1)

Ii(0) = α, 0 < α < 1, (2)

Ci(0) = Ri(t) = Di(t) = 0, (3)

Si(0) = 1 − α, (4)

where α means the initial proportion of ECIoTNs assigned to cluster i in state I .

Let Fi
fg denote the feasibility of an ECIoTN in cluster i ∈ {1, 2, . . . , L} transforming its state from

f ∈ {S, C, I , R, D} to g ∈ {S, C, I , R, D}. At time t, an ECIoTN assigned to cluster i ∈ {1, 2, . . . , L} in
state S meets one or more infectious ECIoTNs with feasibility Ei(t):

Ei(t) = 1
〈ad〉

∑L

i=1
δiϑiIi(t). (5)

Here, 〈ad〉 represents the average degree of the ECIoTNs, δi represents the feasibility that an
ECIoTN involves degree i, and ϑi represents the spread capability of an ECIoTN. These variables
have the following conditions:∑L

i=1
δi = 1, (6)

and

< ad >=
∑L

i=1
iδi. (7)

Various equations for the spread capability that may be borrowed to ECIoTNs have been
presented. Representative examples contain (1) ϑi = i [35]; (2) ϑi = AC [36], where AC is a fixed
value; and (3) ϑi = ϕir/(1 + φir) [37], with three variables: ϕ, r, and φ.
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Up to this point, we have established the dynamics of all states. At time t, an ECIoTN assigned to
cluster i ∈ {1, 2, . . . , L} in state C becomes I , R, and D at proportions Fi

CICi(t), Fi
CRCi(t), and Fi

CDCi(t),
respectively. An ECIoTN assigned to cluster i ∈ {1, 2, . . . , L} in state I becomes D at the proportion
Fi

IDIi(t). An ECIoTN assigned to cluster i ∈ {1, 2, . . . , L} in state R becomes D at the proportion
Fi

RDRi(t). Furthermore, certain malfunctioning ECIoTNs that are irreparable need to be substituted
with new ones to ensure the proper functioning of the entire ECIoTN. This manner leads to increasing
the proportion τ to the proportion Si(t). As a result, we can achieve our SCIRD model characterizing
the proportions of ECIoTNs assigned to cluster i ∈ {1, 2, . . . , L} in states S, C, I , R, D using differential
equations, as follows:⎧⎨
⎩

dSi(t)
dt

= τ + Fi
RSRi(t) + Fi

CSCi(t) − Fi
SIEi(t)Si(t) − Fi

SDSi(t)

Si(0) = 1 − α
, (8)

⎧⎨
⎩

dCi(t)
dt

= Fi
ICIi(t) − Fi

CSCi(t) − Fi
CRCi(t) − Fi

CDCi(t)

Ci(0) = 0
, (9)

⎧⎨
⎩

dIi(t)
dt

= Fi
SIEi(t)Si(t) − Fi

ICIi(t) − Fi
IDIi(t)

Ii(0) = α
, (10)

⎧⎨
⎩

dRi(t)
dt

= Fi
CRCi(t) − Fi

RSRi(t) − Fi
RDRi(t)

Ri(0) = 0
, (11)

⎧⎨
⎩

dDi(t)
dt

= Fi
SDSi(t) + Fi

IDIi(t) + Fi
CRCi(t) + Fi

RDRi(t) − τ

Di(0) = 0
, (12)

satisfying equations

∀t, Si (t) , Ii (t) , Ci (t) , Ri (t) , Di (t) ≥ 0,

Si(t) + Ci(t) + Ii(t) + Ri(t) + Di(t) = 1, (13)

0 < α < 1.

4 Stability Analysis of the SCIRD Model for ECIoT with Malicious Software Infection
4.1 Steady States

Our main focus is to determine the steady states of our SCIRD model for ECIoT with malicious
software infection, enabling us to identify the critical thresholds at which malicious software will either
spread or die out within the ECIoTNs.

Theorem 1. There exist steady states in the SCIRD model including Eqs. (8)–(13) for ECIoT with
malicious software infection.

Proof. Once the SCIRD attains its steady states, the proportional changes in all state variables
cease. This indicates that all differential Eqs. (8)–(12) equal to zero. Therefore we obtain
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ + Fi
RSRi(t) + Fi

CSCi(t) − Fi
SIEi(t)Si(t) − Fi

SDSi(t) = 0
Fi

ICIi(t) − Fi
CSCi(t) − Fi

CRCi(t) − Fi
CDCi(t) = 0

Fi
SIEi(t)Si(t) − Fi

ICIi(t) − Fi
IDIi(t) = 0

Fi
CRCi(t) − Fi

RSRi(t) − Fi
RDRi(t) = 0

Fi
SDSi(t) + Fi

IDIi(t) + Fi
CRCi(t) + Fi

RDRi(t) − τ = 0

(14)

At the same time, we can define two steady states: Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
and Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
.

Here,

S1
i = τ

Fi
SD

, (15)

C1
i = 0, (16)

I 1
i = 0, (17)

R1
i = 0, (18)

D1
i = 1 − τ

Fi
SD

, (19)

S2
i = Fi

IC + Fi
ID

Fi
SIZi(t)

, (20)

I2
i =

(Fi
RS + Fi

RD)(Fi
IC + Fi

CR + Fi
CD)(Fi

SD(Fi
IC + Fi

ID) − τFi
SI Zi

[Fi
SI Zi((Fi

CS + Fi
CR + Fi

CD)(Fi
RS − (Fi

RS + Fi
RD)(Fi

IC + Fi
CR + Fi

CD)(Fi
IC + Fi

ID)) + Fi
RSFi

CRFi
ID + (Fi

RS + Fi
RD)Fi

CSFi
ID)]

,

(21)

C2
i = Fi

IC

Fi
CS + Fi

CR + Fi
CD

∗ I 2
i , (22)

R2
i = Fi

CR

Fi
RS + Fi

RD

∗ Fi
IC

Fi
CS + Fi

CR + Fi
CD

∗ I 2
i , (23)

D2
i = 1 − S2

i − C2
i − I 2

i − R2
i , (24)

where

Zi = 1
〈ad〉

∑L

i=1
δiϑi. (25)

This completes the proof.

According to epidemiological theory, steady state Γ1 obtained from Theorem 1 is referred to the
malicious software-free equilibrium, while Γ2 is denoted as the endemic equilibrium. These equilibria
serve as analytical tools to examine the dynamics of the SCIRD model of ECIoTNs exposed to
malicious software infection. At steady state Γ1, the value of the proportion I 1

i is zero, indicating
the disappearance of malicious software. Conversely, when an ECIoT reaches Γ2, the value of the
proportion I 2

i is greater than zero, representing the spread of malicious software.
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In summary, at steady state Γ1, malicious software within the ECIoT would eventually vanish.
However, if the ECIoT is in Γ2, malicious software would continue to propagate, leading to a persistent
infection ratio within the ECIoTNs, and eventually reaching a steady level of contagion. In the context
of practical defense and control processes of malicious software in IoT networks, administrators
should strive for the steady state Γ1. The continuous patching of security programs by administrators
helps suppress the spread of malicious software. Moreover, it is crucial to avoid the steady state Γ2,
which represents the proliferation of malicious software. As malicious software ultimately infects a
proportion of ECIoTNs, it imposes significant damage on the usual functioning of ECIoT networks.

4.2 Fundamental Reproduction Number

In order to explore dynamical characteristics of the proposed SCIRD model, our current focus is
on determining the fundamental reproduction number denoted by ω using the next-generation matrix
method [38], which guides the steady state. This number serves as a measure to quantify the proportion
of vulnerable ECIoTNs that are susceptible to the impact of malicious software throughout their
lifecycle. Generally, when ω < 1, there exists a steady state indicating the eventual disappearance
of malicious software. In other words, within all susceptible ECIoTNs, each infectious ECIoTN fails
to infect more than a single new individual. However, when ω > 1, an endemic steady state persists,
signifying the continuous existence of malicious software in the infected ECIoTNs, as each infectious
ECIoTN infects more than one susceptible ECIoTN.

Subsequently, we proceed to calculate the fundamental reproduction number ω, utilizing the next-
generation matrix technique. Let

[fI ] = [
Fi

SIEi(t)Si(t)
]

(26)

and

[vI ] = [
Fi

ICIi(t) + Fi
IDIi(t)

]
. (27)

We achieve

F =
[

∂fI

∂Ii(t)

]
Γ1

= [
Fi

SIS
1
i Zi

]
(28)

and

V =
[

∂vI

∂Ii(t)

]
Γ1

= [
Fi

IC + Fi
ID

]
. (29)

Then, we can obtain the fundamental reproduction number ω as

ω = ρ
(
FV−1

) = Fi
SIτZi

Fi
SD(Fi

IC + Fi
ID)

. (30)

4.3 Analysis of Equilibrium Point Stability

Now we will perform stability analysis on the equilibrium points in the model to investigate
whether the model displays the characteristics of viral contagion. Assessing the stability of an
equilibrium point involves determining whether the system’s key conditions associated with that point
lead trajectories to converge towards it over time, indicating stability. Conversely, if an equilibrium
point is deemed unstable, the trajectories will diverge away from it as time progresses.



CMC, 2024, vol.79, no.2 2753

The SCIRD model, which includes Eqs. (8)–(13) for malicious software-infected ECIoTNs, can be
simplified to a set of differential equations containing Eqs. (8)–(11). Besides, Eq. (12) can be replaced
by Di(t) = 1 − Si(t) − Ci(t) − Ii(t) − Ri(t) and can be neglected. Therefore, our focus will be on
examining the stability characteristics of the SCIRD model, which encompasses Eqs. (8)–(11).

Theorem 2. If ω < 1, steady equilibrium state Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
is locally stable in the long run,

however, if ω > 1, it is unstable.

Proof. In accordance with the stability theory for ordinary differential equations, we begin by
calculating Jacobian matrix J [39] associated with the SCIRD model, which is represented by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ṡi(t)
∂Si(t)

∂Ṡi(t)
∂Ci(t)

∂Ṡi(t)
∂Ii(t)

∂Ṡi(t)
∂Ri(t)

∂Ċi(t)
∂Si(t)

∂Ċi(t)
∂Ci(t)

∂Ċi(t)
∂Ii(t)

∂Ċi(t)
∂Ri(t)

∂ İi(t)
∂Si(t)

∂ İi(t)
∂Ci(t)

∂ İi(t)
∂Ii(t)

∂ İi(t)
∂Ri(t)

∂Ṙi(t)
∂Si(t)

∂Ṙi(t)
∂Ci(t)

∂Ṙi(t)
∂Ii(t)

∂Ṙi(t)
∂Ri(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

=

⎡
⎢⎢⎣

−Fi
SIEi(t) − Fi

SD Fi
CS −Fi

SI(t)ZiSi(t) Fi
RS

0 −(Fi
CS + Fi

CR + Fi
CD) Fi

IC 0
Fi

SIEi(t) 0 Fi
SIZiSi(t) − Fi

IC − Fi
ID 0

0 Fi
CR 0 −Fi

RS − Fi
RD

⎤
⎥⎥⎦ .

Furthermore, we compute the Jacobian matrix at the equilibrium point representing the absence
of malicious software Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
as

J (Γ1) =

⎡
⎢⎢⎣

−Fi
SD Fi

CS −Fi
SIZiS1

i F i
RS

0 −(Fi
CS + Fi

CR + Fi
CD) Fi

IC 0
0 0 Fi

SIZiS1
i − Fi

ID − Fi
IC 0

0 Fi
CR 0 −Fi

RS − Fi
RD

⎤
⎥⎥⎦ . (32)

Let λ represent an eigenvalue and H denote the identity matrix. We can compute the eigenfunction
of matrix J (Γ1) using the following calculation:

|λH − J (Γ1)| =

⎡
⎢⎢⎣

λ + Fi
SD −Fi

CS Fi
SIZiS1

i −Fi
RS

0 λ + Fi
CS + Fi

CR + Fi
CD −Fi

IC 0
0 0 λ − Fi

SIZiS1
i + Fi

ID + Fi
IC 0

0 −Fi
CR 0 λ + Fi

RS + Fi
RD

⎤
⎥⎥⎦ . (33)

Therefore, we can obtain all the eigenvalues:

λ1 = −Fi
SD, (34)

λ2 = −Fi
CS − Fi

CR − Fi
CD, (35)

λ3 = Fi
SIZiS1

i − Fi
ID − Fi

IC = (Fi
ID + Fi

IC)(ω − 1), (36)

λ4 = −Fi
RS − Fi

RD. (37)
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From the above formula derivation, we can deduce that λ1 < 0 and λ4 < 0 only if ω < 1. Thus, if
ω < 1, steady equilibrium state Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
is locally asymptotically stable, however, if ω > 1,

it is unstable. At this point, we have completed the proof.

According to Theorem 2, when ω < 1, the proportions of ECIoTN cluster i ∈ {1, 2, . . . , L} in
state S, C, I , R, and D will evolve over time to approach S1

i , 0, 0, 0, and D1
i , respectively.

Theorem 3. If ω > 1, steady equilibrium state Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
is locally asymptotically stable.

Proof. We rescript C2
i , I 2

i and R2
i as

C2
i =

(
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)
Fi

SD[
Fi

SI Zi
((

Fi
CS + Fi

CR + Fi
CD

) (
Fi

RS − (
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)) + Fi
RSFi

CRFi
ID + (

Fi
RS + Fi

RD

)
Fi

CSFi
ID

)]

∗ Fi
IC

Fi
CS + Fi

CR + Fi
CD

∗ (ω − 1), (38)

I2
i =

(
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)
Fi

SD[
Fi

SI Zi
((

Fi
CS + Fi

CR + Fi
CD

) (
Fi

RS − (
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)) + Fi
RSFi

CRFi
ID + (

Fi
RS + Fi

RD

)
Fi

CSFi
ID

)]

∗ (ω − 1), (39)

R2
i =

(
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)
Fi

SD[
Fi

SI Zi
((

Fi
CS + Fi

CR + Fi
CD

) (
Fi

RS − (
Fi

RS + Fi
RD

) (
Fi

IC + Fi
CR + Fi

CD

) (
Fi

IC + Fi
ID

)) + Fi
RSFi

CRFi
ID + (

Fi
RS + Fi

RD

)
Fi

CSFi
ID

)]

∗ Fi
IC

Fi
CS + Fi

CR + Fi
CD

∗ Fi
CR

Fi
RS + Fi

RD

∗ (ω − 1). (40)

As a matter of course, S2
i , I 2

i and R2
i are all greater than 0 when ω > 1. This implies that if ω > 1,

a local equilibrium Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
exists. Using Eq. (30), it can be concluded that the Jacobian

matrix at the endemic equilibrium Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
as

J (Γ2) =

⎡
⎢⎢⎣

−Fi
SIZiI 2

i − Fi
SD Fi

CS −Fi
SI(t)ZiS2

i F i
RS

0 −(Fi
CS + Fi

CR + Fi
CD) Fi

IC 0
Fi

SIZiI 2
i 0 Fi

SIZiS2
i − Fi

IC − Fi
ID 0

0 Fi
CR 0 −Fi

RS − Fi
RD

⎤
⎥⎥⎦ . (41)

It can be obtained in the same way that the eigenfunction of matrix J (Γ2) as
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|λH − J (Γ2)| =

⎡
⎢⎢⎣

λ + Fi
SI ZiI2

i + Fi
SD −Fi

CS Fi
SI ZiS2

i −Fi
RS

0 λ + Fi
CS + Fi

CR + Fi
CD −Fi

IC 0
−Fi

SI ZiI2
i 0 λ − Fi

SI ZiI2
i S2

i + Fi
ID + Fi

IC 0
0 −Fi

CR 0 λ + Fi
RS + Fi

RD

⎤
⎥⎥⎦

= λ4 + (
Fi

SI ZiI2
i + Fi

SD + Fi
CS + Fi

CR + Fi
CD − Fi

SI ZiI2
i S2

i + Fi
ID + Fi

IC + Fi
RS + Fi

RD

)
λ3

+ [(Fi
SI ZiI2

i + Fi
SD)(Fi

CS + Fi
CR + Fi

CD) + (Fi
SI ZiI2

i S2
i + Fi

ID + Fi
IC)(Fi

RS + Fi
RD) + (Fi

SI ZiI2
i + Fi

SD)

(−Fi
SI ZiI2

i S2
i + Fi

ID + Fi
IC) + (Fi

SI ZiI2
i + Fi

SD)(Fi
RS + Fi

RD) + (Fi
CS + Fi

CR + Fi
CD)(−Fi

SI ZiI2
i S2

i + Fi
ID + Fi

IC)

+ (Fi
CS + Fi

CR + Fi
CD)(Fi

RS + Fi
RD)]λ2 + [(Fi

SI ZiI2
i + Fi

SD)(Fi
CS + Fi

CR + Fi
CD)(−Fi

SI ZiI2
i S2

i + Fi
ID + Fi

IC)

+ (Fi
SI ZiI2

i + Fi
SD)(Fi

CS + Fi
CR + Fi

CD)(Fi
RS + Fi

RD) + (Fi
CS + Fi

CR + Fi
CD)(−Fi

SI ZiI2
i S2

i + Fi
ID + Fi

IC)

(Fi
RS + Fi

RD)]λ + (Fi
SI ZiI2

i + Fi
SD)(Fi

CS + Fi
CR + Fi

CD)(Fi
RS + Fi

RD)(−Fi
SI ZiI2

i S2
i + Fi

ID + Fi
IC) (42)

� λ4 + b3λ
3 + b2λ

2 + b1λ + b0.

Clearly, it is infeasible to determine all the eigenvalues of matrix J (Γ2) directly from Eq. (41). Thus,
the spread of malicious software within a compromised ECIoTN will be ongoing, and the proportion
of contagious ECIoTN nodes will ultimately stabilize. It is evident that we are supposed to strive to
avert this scenario by regulating the values of ECIoTN purview.

Given a quartic polynomial expression, we can determine its positivity by inspecting the discrim-
inant, denoted as Δ. Here we can obtain that

Δ = b2
3 − 4b2 = (Fi

SIZiI 2
i + Fi

SD + Fi
CS + Fi

CR + Fi
CD − Fi

SIZiI 2
i S2

i + Fi
ID + Fi

IC + Fi
RS + Fi

RD)2

− 4[(Fi
SIZiI 2

i + Fi
SD)(Fi

CS + Fi
CR + Fi

CD) + (Fi
SIZiI 2

i S2
i + Fi

ID + Fi
IC)(Fi

RS + Fi
RD) + (Fi

SIZiI 2
i + Fi

SD)

(−Fi
SIZiI 2

i S2
i + Fi

ID + Fi
IC) + (Fi

SIZiI 2
i + Fi

SD)(Fi
RS + Fi

RD) + (Fi
CS + Fi

CR + Fi
CD)

(−Fi
SIZiI 2

i S2
i + Fi

ID + Fi
IC) + (Fi

CS + Fi
CR + Fi

CD)(Fi
RS + Fi

RD)] (43)

Through simulation, we attain that the discriminant Δ is negative. This implies that the quadratic
term has no real roots, resulting in no intersections between the curve and the x-axis. Thus, the function
is either always positive or always negative, ensuring it is strictly positive. As the coefficient in front
of λ4 is 1, and based on the proof above, we can conclude that the entire polynomial is always greater
than 0. Therefore, we have successfully completed the proof.

According to Theorem 3, when ω > 1, the proportions of ECIoTN nodes i ∈ {1, 2, . . . , L} in states
S, C, I , R, and D will evolve over time to approach S2

i , C2
i , I 2

i , R2
i , and D2

i , respectively. As a result,
the propagation of malicious software within the infected ECIoTNs will be ongoing, and the ratio of
infected ECIoTNs will ultimately reach a steady state. It is apparent that we should strive to prevent
this scenario by manipulating the ECIoTN parameters’ values.

5 Experiments

To confirm the SCIRD model for malicious software-infected ECIoTNs, we implemented the
model using MATLAB R2022a. The computational algorithm, Algorithm 1, was utilized for this
purpose.
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Algorithm 1: The computational algorithm for verifying the SCIRD model
Inputs: N, α, τ , Fi

RS, Fi
SI , Fi

SD, Fi
SC, Fi

CI , Fi
ID, Fi

CR, Fi
RD

1: Initialize malicious software-infected ECIoTNs parameters containing N, α, τ , Fi
RS, Fi

SI , Fi
SD, Fi

SC,
Fi

CI , Fi
ID, Fi

CR, and Fi
RD;

2: Si←1 − α; Ci←0; Ii←a; Ri←0; Di←0;
3: t←0; Δt←1;
4: κ←200; //κ represents the range
5: DO WHILE t <= κ

6: Si(t + Δt)←τ + Fi
RSRi(t) + Fi

CSCi(t) − Fi
SIEi(t)Si(t) − Fi

SDSi(t);
7: Ci(t + Δt) ← Fi

ICIi(t) − Fi
CSCi(t) − Fi

CRCi(t) − Fi
CDCi(t);

8: Ii(t + Δt) ← Fi
SIEi(t)Si(t) − Fi

ICIi(t) − Fi
IDIi(t);

9: Ri(t + Δt) ← Fi
CRCi(t) − Fi

RSRi(t) − Fi
RDRi(t);

10: Di(t + Δt) ← Fi
SDSi(t) + Fi

IDIi(t) + Fi
CRCi(t) + Fi

RDRi(t) − τ ;
11: t←t + 1;
12: ENDDO
13: RETURN arrays Si, Ci, Ii, Ri, Di;

In the simulation program of MATLAB, the ECIoT network consists of 1500 static ECIoTNs.
The interval Δt is 1d. We establish the ECIoTN topology and determine the values of the remaining
parameters by consulting other research. In this case, we set the range of degrees to be between 2 and
20, with an average value of 4. Additionally, the infection rate is set as a function of the degree, denoted
as Fi

SI = ξ i, and ξ = 0.01.

5.1 Assessing Stability of the Equilibrium State in the Absence of Malicious Software

In this part, we verify the correctness of Theorem 2 by setting various infection capacities.

5.1.1 Equal Infectivity

Here, the infection capacity ϑi is configured as ϑi = ϕir/(1 + φir), where ϕ = 5, r = 0.5, and φ = 1
[40]. Therefore, we calculate the mean value of Fi

SIZi as ∼0.1727. The remaining values are adjusted
as follows: τ = 0.025, Fi

RS = 0.008, Fi
SD = 0.13, Fi

ID = 0.05, Fi
CR = 0.26, Fi

IC = 0.12, Fi
RD = Fi

SD = Fi
CD,

and Fi
RS = Fi

CS. Based on the calculations, we obtain the ω ≈ 0.1954 < 1. With the conditions of
Theorem 2 fulfilled, we can proceed to verify its correctness using Algorithm 1.

Fig. 3 describes the changing tendency of susceptible ECIoTNs under the circumstance of
Theorem 2 for α = 0.05, α = 0.15, and α = 0.2. In Fig. 2, the trajectory of the proportion of ECIoNs
in the susceptible state, Si(t), exhibits different trends for various values of α, specifically, 0.8, 0.85,
and 0.95. After ∼20d, all three curves decline rapidly and eventually stabilize at approximately 20%
reduction. In other words, Si(t) approaches a stable point, denoted as Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
, with an S1

i

value of 0.2.
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Figure 3: Changing tendency of susceptible ECIoTNs under the circumstance of Theorem 2 for α =
0.05, α = 0.15, and α = 0.2

Figs. 4–7 depict the changing tendency of curb, infectious, removed, and dead ECIoTNs under
the circumstance of Theorem 2 for α = 0.05, α = 0.15, and α = 0.2. The changing trends of the
proportions of ECIoTNs in states C, I , R, and D, denoted as Ci(t), Ii(t), Ri(t), and Di(t), respectively,
remain consistent across different values of α. In Fig. 4, the proportion of curb ECIoTNs exhibits
minor changes in the first ∼15d, followed by a gradual increase to 17%, 37%, and 48% in subsequent
periods. Afterwards, it gradually decreases and eventually approaches 5%. This is consistent with the
value of Ci(t) in the stable point Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
. In Fig. 5, its changing trend is similar to Fig. 3.

It remains constant for the first ∼20d and then gradually decreases, eventually approaching zero. This
is consistent with the value of Ii(t) in the stable point Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
. In Fig. 6, the proportion of

removed ECIoTNs exhibits minor changes in the first ∼20d, followed by a gradual increase to 13%,
25%, and 32% in subsequent periods. Afterwards, it gradually decreases and eventually approaches
5%. This is consistent with the value of Ri(t) in the stable point Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
. In Fig. 7, the

proportion of dead ECIoTNs exhibits minor changes in the first ∼15d, and then it gradually increases
and approaches 80%. This is consistent with the value of Di(t) in the stable point Γ1

(
S1

i , C1
i , I 1

i , R1
i , D1

i

)
.

5.1.2 Diverse Infectivity

Apart from the infectivity factor ϑi = ϕir/(1 + φir) in Section 5.1.1, we come up with different
infection capacities: ϑi = i and ϑi = AC, where AC is a fixed value. When keeping the values of other
parameters unchanged, for ϑi = i, we obtain Fi

SIZi ≈ 0.25 and ω ≈ 0.2828, and for ϑi = AC = 2, we
obtain Fi

SIZi ≈ 0.1 and ω ≈ 0.1131. Clearly, both of the fundamental reproduction numbers are less
than 1, demonstrating their compliance with the conditions outlined in Theorem 2.

In Figs. 8–12, while there are variations in the peak values of the curves, the proportions of
susceptible, curb, removed, and dead ECIoTNs ultimately converge to S1

i , C1
i , R1

i , and D1
i , respectively.

Furthermore, I 1
i → 0 irrespective of the diverse infection capabilities, it can be observed that the

malicious software within the ECIoTNs becomes extinct after ∼70 d.

By conducting experiments under the equal infection capacity as well as diverse infection capacity,
we have successfully validated Theorem 2. These experiments offer compelling evidence that the
malicious software residing in infected ECIoTNs will ultimately be eliminated.
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Figure 4: Changing tendency of curb ECIoTNs under the circumstance of Theorem 2 for α = 0.05,
α = 0.15, and α = 0.2

Figure 5: Changing tendency of infectious ECIoTNs under the circumstance of Theorem 2 for
α = 0.05, α = 0.15, and α = 0.2

When the conditions for Theorem 2 are satisfied, although malicious software infects a large
number of ECIoTNs from the beginning, it is crucial to strive for the stable conditions of an
equilibrium without malicious software. This phenomenon can be attributed to the stability of the
system, which guarantees that the infected ECIoTNs will be cleared of malicious software, even in the
presence of new outbreaks.

5.2 Confirming Stability of Endemic Equilibrium

In this case, we will employ a similar approach as in Section 5.1 to confirm the validity of
Theorem 3, utilizing two distinct scenarios: equal infectivity and diverse infectivity.
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Figure 6: Changing tendency of removed ECIoTNs under the circumstance of Theorem 2 for
α = 0.05, α = 0.15, and α = 0.2

Figure 7: Changing tendency of dead ECIoTNs under the circumstance of Theorem 2 for
α = 0.05, α = 0.15, and α = 0.2
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Figure 8: Changing tendency of susceptible ECIoTNs under the circumstance of Theorem 2 with
diverse infection capabilities

Figure 9: Changing tendency of curb ECIoTNs under the circumstance of Theorem 2 with diverse
infection capabilities

5.2.1 Equal Infectivity

During the verification process, all values except ϕ = 10 [41] are set to be the same as those in
Section 5.1. In this case, we can obtain Fi

SIZi as ∼0.3454. At the same time, we set τ = 0.05, Fi
SD = 0.02,

Fi
ID = 0.15, and Fi

RS = 0.01. At this point, ω ≈ 3.1981 > 1, which satisfies the experimental data
requirements of Theorem 3.
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Figure 10: Changing tendency of infectious ECIoTNs under the circumstance of Theorem 2 with
diverse infection capabilities

Figure 11: Changing tendency of removed ECIoTNs under the circumstance of Theorem 2 with diverse
infection capabilities

Figs. 13–17 depict the the changing tendency of susceptible, curb, infectious, removed and dead
ECIoTNs under the circumstance of Theorem 3 for α = 0.05, α = 0.15, and α = 0.2. In Fig. 13, the
changing tendency of the proportion of ECIoTNs in state S, denoted as Si(t), varies under different
values of α. When α is 0.05, Si(t) decreases slowly, reaching around 93% before gradually increasing
and approaching 100% to stabilize. On the other hand, when α is 0.15 and 0.2, Si(t) decreases to their
respective minimum values of approximately 82% and 76% before slowly increasing towards 100% and
stabilizing in its vicinity. In other words, Si(t) ultimately converges to the S2

i value of 1 in the stable
point Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
.
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Figure 12: Changing tendency of dead ECIoTNs under the circumstance of Theorem 2 with diverse
infection capabilities

Figure 13: Changing tendency of susceptible ECIoTNs under the circumstance of Theorem 3 or α =
0.05, α = 0.15, and α = 0.2

Figure 14: Changing tendency of curb ECIoTNs under the circumstance of Theorem 3 for or α =
0.05, α = 0.15, and α = 0.2
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Figure 15: Changing tendency of infectious ECIoTNs under the circumstance of Theorem 3 or α =
0.05, α = 0.15, and α = 0.2

Figure 16: Changing tendency of removed ECIoTNs under the circumstance of Theorem 3 for α =
0.05, α = 0.15, and α = 0.2

Figure 17: Changing tendency of dead ECIoTNs under the circumstance of Theorem 3 for α =
0.05, α = 0.15, and α = 0.2
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In Fig. 14, the proportion of curb ECIoTNs exhibits minor changes in the first ∼10d, fol-
lowed by a gradual increase to 14%, 32%, and 40% in subsequent periods. Afterwards, it gradually
decreases and eventually approaches 5%. This is consistent with the value of Ci(t) in the stable point
Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
. In Fig. 15, the proportion of infectious ECIoTNs remains constant for the first

∼10d and then gradually decreases, eventually approaching zero. This is consistent with the value
of Ii(t) in the stable point Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
. In Fig. 16, the proportion of removed ECIoTNs

exhibits minor changes in the first ∼15d, followed by a gradual increase to 13%, 26%, and 33%
in subsequent periods. Afterwards, it gradually decreases and eventually approaches 5%. This is
consistent with the value of Ri(t) in the stable point Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
. In Fig. 17, the proportion

of dead ECIoTNs exhibits minor changes in the first ∼10d, followed by a gradual increase to 3%,
8%, and 10% in subsequent periods. Afterwards, it gradually decreases and eventually approaches 0%.
This is consistent with the value of Ri(t) in the stable point Γ2

(
S2

i , C2
i , I 2

i , R2
i , D2

i

)
.

According to the simulation results, we obtain the conclusion that no matter what proportions of
infected ECIoTN there are, the ECIoTN cluster i ∈ {1, 2, . . . , L} in states S, C, I , R, and D would
eventually stabilize.

5.2.2 Diverse Infectivity

In this section, using the identical parameter values as those provided in Section 5.1.2, for ϑi = i,
we can obtain Fi

SIZi = 0.25 and ω ≈ 2.3148, and for ϑi = AC = 2, we obtain Fi
SIZi ≈ 0.5 and

ω ≈ 4.6296. At this point, the conditions of Theorem 3 are satisfied.

As depicted in Figs. 18–22, while there are variations in the peak values of the curves, the
proportions of susceptible, curb, removed, and dead ECIoTNs ultimately converge to S2

i , C2
i , R2

i , and
D2

i , respectively. In Fig. 20, when Fi
SIZi ≈ 0.5, after the changing tendency of infectious ECIoTN

stabilizes, it converges to 8%, and its convergence value is positive, which indicates that the malicious
software in ECIoTNs continues to spread.

Figure 18: Changing tendency of susceptible ECIoTNs under the circumstance of Theorem 3 with
diverse infection capabilities
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Figure 19: Changing tendency of curb ECIoTNs under the circumstance of Theorem 3 with diverse
infection capabilities

Figure 20: Changing tendency of infectious ECIoTNs under the circumstance of Theorem 3 with
diverse infection capabilities

Figure 21: Changing tendency of removed ECIoTNs under the circumstance of Theorem 3 with diverse
infection capabilities
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Figure 22: Changing tendency of dead ECIoTNs under the circumstance of Theorem 3 with diverse
infection capabilities

In the end, we have successfully verified that Theorem 3 possesses both homogeneous and
heterogeneous infection capabilities. The results of simulation experiments indicate that when the
conditions of Theorem 3 are met, the infected ECIoTNs will eventually stabilize at a consistent level.
As a result, during the defense process of ECIoT, it is of utmost importance to prevent the fulfillment
of the stability conditions of the local equilibrium., as these conditions greatly enhance the potential
for malicious software propagation.

6 Conclusion

Drawing inspiration from epidemiology, we have proposed an SCIRD model that takes into
account the heterogeneous nature of the ECIoTN ecosystem and the varying connectivity of ECIoTN
communication. By formulating a system of differential equations, we have described the dynamics
of different states and degrees of high-speed rail fractions. Based on computational and experimental
analysis, we have successfully demonstrated the existence of two equilibrium points within the SCIRD
model. One represents a state without any malicious software, where malicious software eventually
dissipates within ECIoTNs, while the other represents a localized equilibrium where malicious
software persists and continues to propagate. Using the next generation matrix approach, we have
calculated the fundamental reproduction number that governs the stability of these equilibrium points.
Through computations and simulation experiments, we have verified that by controlling ECIoTN
parameters, we can achieve stable conditions for a malicious software-free equilibrium and prevent
the occurrence of localized equilibria. In our future work, we will focus on further optimizing the
IoT security model by integrating the SCIRD infectious disease model to better reflect security issues
in actual systems. We may consider incorporating more factors and variables, such as user behavior,
interactions between IoT devices, to enhance the accuracy and applicability of the model, and provide
guidance for the security management of real systems. Besides, future research can focus on developing
new security mechanisms and technologies to enhance the security of IoT systems. This includes
technological innovations in areas such as security authentication, encrypted communication, and
intrusion detection and response, to address the constantly evolving security threats.
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