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ABSTRACT

In the process of constructing domain-specific knowledge graphs, the task of relational triple extraction plays a
critical role in transforming unstructured text into structured information. Existing relational triple extraction
models face multiple challenges when processing domain-specific data, including insufficient utilization of seman-
tic interaction information between entities and relations, difficulties in handling challenging samples, and the
scarcity of domain-specific datasets. To address these issues, our study introduces three innovative components:
Relation semantic enhancement, data augmentation, and a voting strategy, all designed to significantly improve the
model’s performance in tackling domain-specific relational triple extraction tasks. We first propose an innovative
attention interaction module. This method significantly enhances the semantic interaction capabilities between
entities and relations by integrating semantic information from relation labels. Second, we propose a voting strategy
that effectively combines the strengths of large language models (LLMs) and fine-tuned small pre-trained language
models (SLMs) to reevaluate challenging samples, thereby improving the model’s adaptability in specific domains.
Additionally, we explore the use of LLMs for data augmentation, aiming to generate domain-specific datasets to
alleviate the scarcity of domain data. Experiments conducted on three domain-specific datasets demonstrate that
our model outperforms existing comparative models in several aspects, with F1 scores exceeding the State of the
Art models by 2%, 1.6%, and 0.6%, respectively, validating the effectiveness and generalizability of our approach.
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1 Introduction

Relational triples, essential to knowledge graphs, are formatted as (subject, relation, object) and
are key to converting unstructured natural language texts into structured information [1]. In building
domain-specific knowledge graphs, the extraction of these triples is critically important.

However, extracting relational triples for specific domains remains challenging. These tasks
require highly accurate and domain-relevant triples. The uniqueness and complexity of texts in
professional domains, such as extensive use of technical terms and specific semantic structures, make
data processing in these areas particularly difficult [2]. Furthermore, the scarcity and difficulty in

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050005
https://www.techscience.com/doi/10.32604/cmc.2024.050005
mailto:mr@sues.edu.cn


2482 CMC, 2024, vol.79, no.2

obtaining specialized data limit the application of existing methods in these domains [3]. This situation
calls for new approaches that not only make efficient use of limited data but also improve the model’s
adaptability and accuracy for domain-specific texts.

In our research, we have analyzed specific examples from domain-specific datasets like SciERC
and CCL2022 to highlight the challenges in relational triple extraction. The SciERC dataset, consisting
of scientific abstracts, includes triples like (“data structure”, “USED-FOR”, “phrase-based statistical
machine translation”), demonstrating the nuanced relationships within academic discourse. Similarly,
an example from the CCL2022 automotive industry fault dataset, “Before troubleshooting, there was
a welding defect at the front beam welding point G101. The fault has been rectified.”, features the
triple: (“front beam welding point”, “part_failure”, “welding defect”), reflecting the specific nature
of automotive faults. In this context, ‘front beam welding point’ refers to a critical component in the
structure of a vehicle, indicating a specific welding spot on the vehicle’s front frame. ‘Welding defect’
denotes issues that occur during the welding process, such as cracks or holes, which can compromise
the structural integrity of the vehicle. ‘part_failure’ describes the malfunction of a component due to
welding defects, potentially affecting the vehicle’s operation and safety. These examples highlight the
challenges of extracting accurate triples from texts filled with technical jargon and complex sentence
structures, further complicated by domain-specific contextual dependencies.

In the domain of relational triple extraction, initial studies mainly utilized a pipeline approach.
A pipeline method refers to a technical approach where different processing steps are executed in
sequence, such as first identifying entities in the text and then recognizing relationships between
entities. For instance, the works of Zelenko et al. [4] and Chan et al. [5] are notable examples of this
methodology, which faced challenges like error propagation and insufficient use of mutual information
between entities and relations. Subsequently, there was a shift towards joint extraction methods, as
exemplified by the works of Li et al. [6] and Zheng et al. [7]. Joint extraction methods process entities
and their relationships simultaneously, aiming to reduce error propagation and increase accuracy. In
recent years, the works of Xu et al. [8], Ren et al. [9] and Ning et al. [10] have set new standards in the
field of relational triple extraction by integrating their innovative joint extraction methodologies.

Existing models have made progress in some areas, but they still face significant limitations
in domain-specific triple extraction. Particularly, they often overlook the interdependencies and
interactions between entities and relations [11,12]. In our study, we use a specially designed Attention
Interaction Module, with key extensions integrating semantic information of relation labels, effectively
enhancing text representation. This integration not only improves the interaction representation
between entities and relations but also boosts the model’s performance in domain-specific triple
extraction tasks.

In addition, large language models (LLMs) have shown their power in various Natural Language
Processing (NLP) tasks, such as summary [13] and recommender systems [14], but their use in
information extraction is limited by large data requirements and high training costs. Still, LLMs are
uniquely advantageous in handling complex or ambiguous sentences [15]. Based on this, we propose a
hybrid method using both large language models (LLMs) and fine-tuned small pre-trained language
models (SLMs) specifically for reprocessing uncertain samples in domain triple extraction identified by
SLMs. In our framework, SLMs handle initial sample classification and extraction, while LLMs focus
on in-depth analysis and reevaluation of challenging samples identified by SLMs. This collaborative
work allows our model to more accurately identify and process complex domain-specific triples,
effectively overcoming the limitations of traditional methods.
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To further leverage the potential of LLMs, our study harnesses their powerful capabilities in data
augmentation to address the issue of domain data scarcity. We designed a novel process, utilizing LLMs
to create a diverse training dataset by specifying personalized attributes like subdomains and context
generated by LLMs. This method not only breaks the constraints of traditional data augmentation
approaches but also provides broader and more varied data support for triple tasks, potentially
enhancing model performance in specific domains.

Innovations in Relational Triple Extraction include: (1) We developed an Attention Interaction
Module Enhanced by Relational Semantics, significantly enhancing semantic interaction efficiency
between entities and between entities and relations by integrating relational semantic information.
(2) We introduced a “voting strategy” for handling uncertain triples predicted by fine-tuned small
pre-trained language models, leveraging large language models for reevaluation, which enhances
prediction accuracy by utilizing their superior comprehension of complex contexts. (3) To address
the scarcity of domain-specific data, we explored training data augmentation using large language
models, creating a richer and more diverse dataset by introducing random attributes during the data
augmentation process.

The remainder of this article is structured as follows: Section 2 delves into related works,
summarizing significant studies and their contributions to the field. Section 3 begins with the problem
definition of triple extraction, followed by an introduction to three key innovations designed to
address these challenges. Section 4 details the experimental setup, including outcomes, hyperparameter
experiments, and analysis. Finally, Section 5 concludes the article, summarizing the main findings and
contributions.

2 Related Works
2.1 Relational Triple Extraction

The field of relational triple extraction has witnessed a significant evolution from rule-based meth-
ods to modern deep learning techniques. Recent research has focused on enhancing task performance
and efficiency through various innovative strategies.

Early works, such as the Table Filling Multi-Task Recursive Neural Network (TF-MTRNN)
model by Gupta et al. [16], utilized a tabular structure to model the interdependencies of entity
recognition and relation classification, reducing the reliance on heuristic search methods. Effective
as it was, this approach had computational efficiency limitations. Following this, Katiyar et al. [17]
introduced an attention-based LSTM model that overcame the dependency tree limitation but faced
challenges in handling large-scale, complex data. Zeng et al. [18] improved the handling of overlapping
triples with their Seq2Seq model incorporating a copy mechanism, but it still had limitations in
processing large-scale data and complex contexts.

With technological advancements, more innovative methods have been proposed to address
complex issues in triple extraction. For example, the method by Wei et al. [19] and Li et al. [20]
effectively handled multiple relation triple overlaps with a cascading binary framework. Wang et al. [21]
innovatively transformed the extraction task into a token-pair linking problem, enhancing task
performance. Studies by Zhong et al. [22] and Eberts et al. [23] improved model efficiency and
implementation ease, using Transformer-based pretrained models for span-based extraction, further
advancing the field.

Similar to our study’s approach, recent works have also focused on integrating different strategies
to enhance triple extraction performance. For instance, the framework by Zheng et al. [24] guided
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entity extraction by predicting potential relations, while the model by Wang et al. [25] processed entity
detection and relation classification tasks simultaneously in a unified label space. Huang et al. [26]
designed a pair-aware representation module and an entity-enhanced representation module to predict
and combine directed entity pairs. Additionally, the model by Shang et al. [27] and the study by
Tang et al. [28] focused on optimizing entity overlap handling and enhancing the accuracy of entity-
relation interactions, respectively. Lastly, Yang et al. [29] incorporated label knowledge in entity
extraction, achieving significant progress in enhancing text representation.

2.2 Applications of LLMs in Information Extraction

Recently, large pretrained language models (LLMs) like GPT-3 [30] and InstructGPT [31] have
demonstrated exceptional performance in various downstream tasks, particularly in the information
extraction (IE) domain. Studies by Martínez-Cruz et al. [32] and Sun et al. [33] verified the advanced
capabilities of ChatGPT in keyword generation and information retrieval. Notably, Wei et al. [34]
transformed zero-sample IE tasks into multi-turn Q&A problems with a two-stage framework.
Similarly, Tang et al. [35] showcased LLMs’ powerful ability to extract structured information from
unstructured domain texts, highlighting their application prospects in domain-specific information
extraction tasks. Chiang et al. [36] evaluated LLMs in content generation and editing tasks, finding
their performance in text quality assessment comparable to human expert editors. Ma et al. [15]
discovered that while LLMs are not efficient few-shot learners, they effectively complement SLMs
in reprocessing difficult samples.

2.3 Applications of LLMs in Data Augmentation

As NLP continues to evolve, an increasing number of tasks and domains demand exploration.
Many of these are resource-scarce and lack sufficient training examples, creating numerous vital
applications that necessitate data augmentation [37]. Beyond their application in IE tasks, LLMs have
also shown immense potential in data augmentation and annotation. Ding et al.’s study [38] explored
the capabilities of GPT-3 as a data annotator, providing insights into GPT-3’s role as a universal
data annotator in NLP tasks. Yu et al. [39] focused on using LLMs as generators of training data
with specific attributes, showcasing the potential of generating diverse and bias-reduced training data
through LLMs. Additionally, Chung et al. [40] explored combining LLMs with human intervention
to increase diversity in text data generation, achieving a balance between data quality and diversity
while maintaining accuracy.

3 Proposed Method
3.1 Problem Definition of Triple Extraction

In the task of relational triple extraction, given a text sentence S, the objective is to identify all
possible triples from S. Each triple can be formally represented as (E1, R, E2), where E1 and E2 are
entities within the sentence, and R is the relation connecting these two entities. Specifically, if we define
sentence S as composed of a sequence of words w1, w2, . . . , wn, where n is the length of the sentence, the
goal is to find all sets of triples T that satisfy the following conditions: (1) Entities E1 and E2 are words
or sequences of words within sentence S. (2) The relation R is one from a predefined set of relations,
representing the semantic relationship between E1 and E2. (3) Each triple (E1, R, E2) is semantically
coherent and accurately reflects the meaning of sentence S.

The challenge of this task lies in accurately identifying and categorizing entities within the sentence
and precisely determining the relationships between them. This becomes particularly difficult in
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domain-specific texts due to the widespread use of specialized terminology and complex linguistic
expressions.

3.2 Attention Interaction Module Enhanced by Relational Semantics

3.2.1 Encoder

In this research, we employ the BERT (Bidirectional Encoder Representations from Transformers)
[41] pre-trained model as the core encoder to process and understand the input text. BERT is an
advanced machine learning model that understands the context of language by learning from extensive
text data. BERT utilizes a Transformer-based architecture to generate deep semantic representations
through bidirectional contextual learning. Specifically, for a given input sentence S, we initially convert
it into a series of tokens T = {t1, t2, . . . , tn}, where n represents the number of tokens. This process
employs the WordPiece tokenization method. Each token ti is mapped to a high-dimensional vector
space, producing embedding representations E = {e1, e2, . . . , en}. This means the model converts each
word into a mathematical vector, capturing the word’s meaning and its relationships with other words.

In our triple extraction task, relational labels are appended to the end of the input sentence as part
of it and are inputted into the BERT model together. The BERT model processes these embeddings
through a multi-layered Transformer network, each layer consisting of multiple self-attention heads to
capture the interrelationships between tokens. For each token ti within the sentence, the Transformer
layer calculates an attention score Aij, indicating the relevance of ti with all other tokens tj. These
attention scores are represented as:

Aij = softmax

(
QiK

T
j√

dimk

)
(1)

Here, Qi and Kj are the query and key vectors for tokens ti and tj, respectively, and dimk is
the dimension of the key vectors. Through this mechanism, BERT captures the complex interplay
of contextual relationships among tokens in the sentence, thereby facilitating a comprehensive and
nuanced understanding of the text for effective triple extraction.

3.2.2 Relation Semantic Enhancement Module

In our model, the core of relation semantic enhancement is fortified through a specially designed
attention interaction module, which strengthens the semantic linkage between the relation labels and
their natural language descriptions. For this, we construct a natural language description D0 for each
relation type and obtain its representation D through the BERT encoder. For instance, the description
“Identify sentences describing malfunctions in product components, i.e., part failure. Such issues often
involve hardware, software, elements, or other components of the product being faulty or damaged”
serves as the natural language description for the “part_failure” relation. During the encoding phase,
relation labels, along with the sentence, pass through the BERT model to obtain their embedding
representation. We separate the embedding of the relation label part L from the overall sentence
embedding and input it into the relation semantic enhancement module alongside the embedding of
the natural language description D. The subsequent step involves mapping L and D to the same feature
space and enhancing their semantic connection through an attention mechanism:

L′ = W1L + b1 (2)

D′ = W2D + b2 (3)
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Here, W1, W2 are weight matrices, and b1, b2 are bias terms. Then, we compute the attention scores
between each token l

′
i ∈ L′ in the relation label L and each token d

′
j ∈ D′ in the relation description D0:

aij =
exp

(
l
′
i · d

′
j

)
∑

k exp
(
l
′
i · d

′
k

) (4)

This score signifies the relevance between l
′
i and d

′
j . Subsequently, for each token in the relation

label, we aggregate fine-grained features from the relation description:

ci =
∑

j

aijd
′
j (5)

Finally, these aggregated features are combined with the original token representations and
processed through a nonlinear activation function to yield the enhanced relation label embeddings:

hi = tanh
(

V
(

l
′
i + ci

)
+ b

)
(6)

Here, hi represents the embedding vector of the ith token in the relation label after semantic
enhancement. V is a weight matrix, and b is a bias term. Through this method, our model generates
embeddings closely related to the semantics of each relation type, thereby enhancing the model’s
semantic understanding capabilities in processing triple extraction tasks.

By directly appending the relation labels to the end of the sentence and encoding them together,
followed by relation semantic enhancement (as shown on the left side of Fig. 1), we capture not only the
semantic links between entities but also the interactions between entities and their potential relations.
This approach provides a solid foundation for our objective-to identify semantically valid connected
entity pairs and differentiate their roles in relations.
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Figure 1: The structure of our model. The lower boxed area highlights the relation semantic enhance-
ment module, while the matrix on the right side is the attention-driven semantic connection matrix.
The green blocks within the matrix depict the model’s predicted outcomes. Through the analysis of
semantic connections between entities and relations, relational triples can be intuitively extracted from
these results
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3.2.3 Attention-Driven Semantic Connection Matrix

After the relation semantic enhancement module has been processed, we obtain the enhanced
relation label embeddings hi. These embeddings are concatenated with the last hidden state embeddings
ei from the BERT model’s output of the sentence, forming a unified representation. This concatenated
representation H is defined as:

H = {e1, e2, . . . , en} ⊕ {h1, h2, . . . , hm} (7)

Here, ⊕ denotes the concatenation operation, {e1, e2, . . . , en} represents the embedding of the
sentence, and {h1, h2, . . . , hm} represents the enhanced embeddings of the relation labels. This merged
representation H encapsulates the sentence’s inherent semantic information along with a deeper
understanding of the relationship gleaned from the relation semantic enhancement module.

To capture these complex semantic connections, we defined an attention-driven semantic con-
nection matrix M, which enables us to conduct an in-depth analysis of the semantic interactions
between entities, potential semantic connections, and their roles within relations. The matrix M is
further processed using a self-attention mechanism as follows:

M = σ

(
1
H

∑H

h=1

UhV
T
h√

dH

)
(8)

In this formula, Uh and Vh respectively represent the embedding vectors derived from the entities
and relations, H is the number of heads in the Transformer layer, and dH is the dimensionality of
each head. When the values of M exceed a specific threshold, we consider the corresponding semantic
connection between the entity pair or between an entity and a relation to be valid.

The attention-driven semantic connection matrix M we construct is essentially based on the
merged embedding representations of sentences and relation labels (as shown on the right side of
Fig. 1). Specifically, each element Mij of the matrix M reflects the strength of the semantic connection
between the ith element (possibly an entity within the sentence or part of a relation label) and the jth

element in the merged representation. In this manner, M can capture both the semantic connections
between entities and the dynamic interactions between entities and relation labels.

3.2.4 Semantic Connections between Entities and Relations

Building upon the semantic connection matrix M introduced earlier, this study explores the intri-
cate interactions between entity-entity pairs and entity-relation pairs within sentences as represented
in matrix M. Our objective is to identify pairs of entities and their associated relations that can form
semantically valid connections, analyzing these connections through the lens of matrix M.

We have defined a function Fee to analyze whether two entities E1 and E2 in a sentence can form a
meaningful semantic connection. This analysis is based on the hypothesis that if there exists a relation
R that can connect these two entities, then their connection is meaningful. It is formalized as:

Fee (E1, E2) = ∃R [(E1, R, E2) ∨ (E2, R, E1)] (9)

Here, E1 and E2 represent two entities in the sentence, and R represents a relation. If these two
entities can be connected through relation R, then Fee returns a truth value.

Another critical aspect is determining the role of an entity within a specific relation. We introduce
the function Fer, which checks whether the entity E participates as a subject or object in relation R.
The definition of this function is:
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Fer(E, R) = ∃E [(E, R,− ) ∨ (−, R, E)] (10)

where E is an entity, R is a relation, and the underscore (−) represents any entity. If there exists a valid
triple with E as either a subject or an object, then Fer returns a truth value.

Through this comprehensive analysis, our model can not only understand the semantic connec-
tions between entities but also determine the roles of entities within specific relations. This provides a
precise foundation for triple extraction.

3.2.5 Decoder

In this study, to train our model and assess the performance of relational triple extraction tasks,
we employed the binary cross-entropy loss function. The formula is as follows [42]:

L = − 1
(n + m)2

∑n+m

i=1

∑n+m

j=1

(
Tij log

(
Mij

) + (
1 − Tij

)
log

(
1 − Mij

))
(11)

where T represents the actual label matrix of the semantic connection matrix M, indicating the
true semantic connections between elements in the sentence. In this formula, n denotes the number
of tokens in the sentence, m represents the number of relation types, M is the predicted semantic
connection matrix, and Tij and Mij respectively are the elements at the i th row and j th column of the
actual label matrix and the predicted matrix.

In our model, the decoding process extracts triples from sentences by utilizing the previously
constructed attention matrix M as a scoring matrix. This matrix evaluates all possible entity pairs
and relation labels for semantic consistency. Entity pairs that exceed a certain threshold score are
selected as valid triples and combined with their corresponding relation labels. This process enables
the model to effectively extract key structured information from sentences, enhancing the accuracy of
triple extraction and the ability to handle complex sentences.

3.3 ‘Voting Strategy’ for Reevaluation

Traditional threshold methods are commonly employed in triple extraction tasks to decide
whether to accept the model’s predicted outcomes. Such methods set a fixed threshold, for example,
τ , and then compare each prediction’s confidence or probability p against it. If p > τ , the prediction is
considered definitive; otherwise, it is disregarded. However, this approach may not adequately address
ambiguities in predictions, especially when the predicted values are close to the threshold. In such
cases, even minor variations can lead to a change in the result from acceptance to rejection, or vice
versa, a phenomenon particularly common with complex or ambiguous texts. Furthermore, a fixed
threshold does not consider the complexity of the context and the specificity of the relations, which
can be overly stringent or lenient in certain scenarios.

In response, LLMs such as GPT-3.5, with their deep semantic understanding and powerful
contextual reasoning capabilities, offer an attractive solution. Trained on massive amounts of data,
these models can capture subtle nuances and complex structures in language, making them ideally
suited for evaluating and addressing uncertainties in predictions. By integrating LLMs into a “voting
strategy,” we can reassess and confirm predictions made by SLMs that are near the threshold.

In our previous semantic enhancement attention interaction module, the model generated inde-
pendent confidence scores for each potential triple, specifically targeting the head entity Es, relation
R, and tail entity Eo. These scores are respectively represented as confidence values, and we typically
set a fixed threshold τ to determine whether to accept the model’s prediction. However, for predictions
close to the threshold, the model’s judgment might be ambiguous, which we refer to as the confidence
boundary interval.
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Specifically, the confidence boundary interval refers to a small range [τ − δ, τ + δ] around
the threshold τ (The default setting is 0.5), where δ is a positive value representing the permitted
uncertainty interval. When the score of any part of the triple −shead, sR, or stail− falls within this interval,
we consider the prediction of the triple to be uncertain. This is because they are close to the boundary
determined by the model as valid or invalid, and minor changes or additional information might alter
the final judgment.

In this study, we introduce a “voting strategy” based on LLM, specifically designed to address
difficult samples predicted by SLM in triple extraction tasks. This strategy enhances prediction
accuracy by having large models re-evaluate predictions close to the threshold, namely within
the previously mentioned confidence boundary interval. Unlike traditional confidence assessment
methods, we adopt a multiple-choice question format prompt to directly query the large model, thus
leveraging its advantage in understanding complex contexts.

Specifically, for triples with uncertain relations, we design a series of carefully constructed
questions, presenting them as multiple-choice questions, each revolving around a specific subject Es

and object Eo in the sentence. These questions aim to inquire about the most appropriate relation R
to form a valid triple (Es, R, Eo). The template for the prompt is as follows, as shown in Table 1.

Table 1: The template for the prompts

Triples with uncertain relations Triples with uncertain entities

Prompt Given a text from the domain of
[insert domain] and sub-domain of
[insert sub-domain]: “...”.
When performing an NLP task for
text analysis, please make a simple
judgment on the subject: Es, and the
object: Eo in the following sentences.
Please select the correct answer:
A. Belongs to relation R1.
B. Belongs to relation R2.
C. Belongs to relation R3.
D. None of the above.

Given a text from the domain of [insert
domain] and sub-domain of [insert
subdomain]: “...”.
When performing an NLP task for text
analysis, consider the subject: Es and
object: Eo in the sentence, as well as the
potential triple sentence they form.
For the following statement, please make a
judgment: “Eo” is a type of (insert entity
type) entity. “The relationship EsEo”
belongs to relation “R”. Please select:
A. The statement above is correct.
B. There are incorrect elements in the
statement above.

In this template, Es and Eo represent specific entities in the sentence, while R1, R2, and R3 represent
possible relationship options. To assist the large model in making more accurate judgments, we also
provide a simple explanation and rationale for each type of relationship in the prompt.

For triples with uncertain entities, we employ a similar method to design prompts, asking the large
model for judgments about entity boundaries and types. The template for the prompt is as shown in
Table 1.

In these prompts, we leverage the capabilities of large models like GPT3.5 to parse and answer
these questions, thereby obtaining definitive judgments about uncertain triples. Each returned option
is equivalent to a vote, and we have set a specific threshold θ , when the number of votes for an option
reaches θ (typically set at 5 votes), we accept that option as the final judgment. This method not
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only fully utilizes the large model’s ability to understand complex texts and perform reasoning but
also ensures the reliability and accuracy of the results by setting a threshold. The process flowchart is
shown in Fig. 2.

Figure 2: Flowchart of the ‘voting strategy’

Through this “voting strategy,”we can more effectively handle the uncertain predictions of SLM in
triple extraction, and with the advanced semantic understanding capabilities of large-scale language
models, we enhance the overall accuracy of predictions. The introduction of this strategy not only
improves the performance of triple extraction but also provides a new perspective and tool for dealing
with complex and ambiguous situations.

3.4 LLMs Driven Data Augmentation for Training

Data augmentation is a technique commonly used to enhance the performance of machine
learning models by generating new training samples to expand the dataset. This approach is partic-
ularly useful in domains where data is scarce, helping the model better understand and handle the
complexities of specific fields.

In this study, we address the prevalent issue of insufficient domain-specific data by proposing an
innovative data augmentation approach. The scarcity of domain data often limits the performance of
models in specific fields, especially in triple extraction tasks that require a large amount of fine-grained
knowledge. To mitigate this deficiency, we harness the deep semantic understanding and generative
capabilities of LLMs to construct richer and more diverse domain-specific datasets.

Our method begins by querying LLMs to identify the most representative and crucial elements
or attributes for a specific domain. This is done to ensure our augmented datasets can cover the core
topics and concepts within the domain. Taking scientific literature as an example, we first pose the
following question to the LLMs: “What do you consider the most important elements or attributes
for texts in scientific literature?” Such open-ended inquiries allow LLMs to return a series of high-
quality and relevant attributes, such as background, objective, method, and results, based on their
extensive knowledge and understanding.

Next, we delve deeper into each attribute by asking the LLMs for a range of possible values suitable
for the dataset of each attribute. For instance, in the domain of car malfunctions, for the attribute of
faulty components, LLMs might return options like “engine,” “exhaust pipe,” and “power system;”
for the context of the malfunction, it might return scenarios like “during heavy rain” or “after driving
through a muddy stretch.” To ensure that the generated data is both diverse and consistent with real-
world domain specifics, we typically obtain no fewer than 200 possible values for each attribute.
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In the process of delving into each attribute and its possible values, we particularly noted the strong
correlation between certain attributes, a factor crucial for generating domain data that is both plausible
and realistic. Take, for instance, the dataset of scientific papers, where the field and sub-field of a paper
represent a pair of attributes with a strong correlation. In such cases, simple random combinations may
lead to unrealistic or illogical attribute relationships, prompting us to adopt a specialized approach.

For attribute pairs with strong correlations, such as domain and sub-domain, we consider the
sub-domain as a sub-attribute of the domain. This means that, rather than considering each attribute
independently, we first determine the value of the primary attribute (like the domain) and then generate
a series of related sub-attribute (such as sub-domain) values for each specific primary attribute value.
This method ensures that in the subsequent combination process, the sub-domain always maintains a
reasonable and consistent correlation with its respective domain.

For example, if ‘Artificial Intelligence’ is identified as a domain, its sub-domains might include
‘Machine Learning,’ ‘Natural Language Processing,’ and ‘Computer Vision.’ In this way, we ensure
that each generated domain-sub-domain pair is inherently coherent and interrelated. This meticulous
attribute generation strategy significantly reduces the irrationality caused by random combinations
while enhancing the overall quality and practicality of the data augmentation process.

The final step is to augment the dataset by randomly combining these attributes and their values
through templates to form prompts, akin to generating domain-specific “data scripts,” each script
being a possible simulation of real-world scenarios. Through this method, we can create a vast array
of domain data with varying styles and scenarios, significantly expanding the coverage and diversity
of the original dataset.

Fig. 3 is a specific example demonstrating how our data augmentation method can be used to
expand the automotive industry’s fault dataset. In the domain of automotive industry fault datasets,
our method is particularly suitable for generating data with practical domain value and authenticity.

4 Experiment
4.1 Purpose of the Experiment

In this study, the experimental section is dedicated to thoroughly validating the effectiveness of
our proposed approach in handling domain-specific relational triple extraction tasks. Specifically,
the objectives of the experiments include validation of effectiveness: We aim to demonstrate that the
relation semantic enhancement module, ‘voting strategy,’ and the data augmentation method proposed
by us can significantly enhance the performance of models on specific domain datasets in relational
triple extraction. This involves comparing our approach with existing techniques to showcase its
advantages in dealing with scarce domain data, enhancing semantic understanding of relationships,
and processing uncertainties.

4.2 Evaluation Metrics

To comprehensively evaluate the performance of our approach, we employ the following metrics:

Accuracy: This direct performance metric signifies the proportion of triples correctly extracted by
the model. High accuracy means the model can accurately identify and categorize entities and relations
in the text.

Recall: Recall measures the model’s capability to identify all true triples. In relational triple
extraction tasks, a high recall is particularly critical as missing key information could lead to
incomplete or erroneous understanding of the text.
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Chat Chat (attribute 1: faulty component) Chat (sub-attribute: fault phenomena)

Chat

Chat with LLMs to determine the key elements or 
attributes specific to a domain

Obtain possible values for each attribute, ensuring 
diversity and practical relevance.

What do you consider the most 
important elements or attributes for 
texts in automotive industry fault 
dataset

...

...(attribute2: context)

...

Has
Sub-attributes

?

Generating Values for Sub-attributes

Data Augmentation by randomly combining attributes and their values

For the faulty component in 
automotive industry’s dataset, 
could you provide several 
specific examples?

For the fault phenomena of engine
in automotive industry’s dataset, 
could you provide several specific 
examples?

You are an domain automotive industry’s expert. Your task is to write data for the 
automotive industry fault dataset (for a training set for relation extraction), please 
follow these requirements:
The data should be aimed at sub-domain in the automotive industry fault.
The faulty component of the text is engine.
The fault phenomena of the text is overheating.
The context of the text is extreme temperature effects.
……
The text length should be ……
Here are some examples:
……

engine

Overheating
Misfiring
Knocking

Figure 3: An example of data augmentation with flowchart

F1 score: This harmonic mean of precision and recall is a vital indicator for assessing the model’s
accuracy and comprehensiveness. The F1 score provides a singular measure reflecting the model’s
overall performance in precisely identifying triples while not omitting crucial information.

4.3 Datasets

In this study, to rigorously train our model and evaluate its performance in relational triple
extraction tasks, we delve into a variety of datasets, each with its unique characteristics and challenges.

The contents of Table 2 display the details of three datasets. The datasets we selected are
characterized by the following features:

Table 2: Details of the datasets

Dataset name Entity types Relation types Dataset size

CCL2022 3 2 3 k triples
SciERC 6 7 4.7 k triples
CoNLL04 4 5 2 k triples

(1) Limited Training Data: Particularly for domain-specific datasets, the limited amount of data
presents challenges for the model’s learning and generalization capabilities. (2) Domain Datasets
Contain Specialized Terminology: Domain-specific datasets often encompass an extensive range of
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specialized terms and specific knowledge, increasing the difficulty for models to comprehend and
process these terms.

4.3.1 CCL2022 Automotive Fault Domain Case Text dataset

This dataset consists of records written by repair professionals, detailing instances of car mal-
functions, diagnostic steps, and resolutions. These records intricately describe the fault phenomena,
the reasons behind the malfunctions, and the processes undertaken to rectify the issues.

4.3.2 SciERC Dataset

The SciERC [43] dataset is a collection of 500 scientific abstracts extracted from conference/work-
shop papers across 12 AI domains, sourced from the Semantic Scholar Corpus. These abstracts are
annotated with scientific entities, their relations, and coreference chains. SciERC builds upon prior
scientific paper datasets from SemEval 2017 Task 10 and SemEval 2018 Task 7 by expanding entity
and relation types, enhancing relation coverage, and incorporating cross-sentence relations.

4.3.3 CoNLL04 Dataset

The CoNLL04 [44] dataset comprises news articles from The Wall Street Journal and the
Associated Press. It defines four entity types and five relation categories, covering a variety of news
reporting scenarios.

4.4 Baseline Models

CasRel [19]: Introduced a cascading binary tagging framework that naturally addresses the over-
lapping issue by considering relations as functions mapping subjects to objects. It has demonstrated
outstanding performance across multiple datasets.

TPLinker [21]: As a one-stage joint extraction model, it incorporates a handshaking tagging
scheme effectively discovering overlapping relations sharing one or two entities, immune to exposure
bias issues.

Spert [23]: Presented an attention-based span-style joint entity and relation extraction model that
efficiently performs entity recognition and relation classification through lightweight inference and
robust negative sample training.

PURE [22]: Utilizes a straightforward pipeline approach for entity and relation extraction,
establishing new best practices on standard benchmarks and showing advantages over shared-
representation multitask learning approaches.

OneRel [27]: Proposes treating joint extraction as a fine-grained triple classification problem,
effectively addressing cascading errors and information redundancy through score-based classifiers
and relation-specific tagging strategies.

UniRel [28]: Enhances extraction effects while boosting computational efficiency by unifying
the representations of entities and relations and constructing interaction graphs to comprehensively
capture the rich associations between entities and between entities and relations.

PL-marker [45]: Introduces a novel span representation method considering the interrelationships
between spans (pairs) and designs a subject-oriented packing strategy for complex span-pair classifi-
cation tasks to better simulate the interrelationships among the same subject’s span pairs.
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TriMF [46]: The paper presents a framework that uses a memory flow attention mechanism and
a trigger sensor to improve entity and relation extraction by enhancing bidirectional interaction and
relation trigger detection.

PRGC [24]: The paper proposes the PRGC framework, which decomposes entity and relation
extraction into three subtasks to enhance accuracy and efficiency by focusing on potential relations
and solving overlap and alignment challenges.

EmRel [8]: This paper introduces a novel framework for relation extraction that enhances entity
and relation representation through an attention-based fusion module and tucker decomposition,
demonstrating superior multi-triple extraction performance.

BiRTE [9]: This paper introduces a bidirectional extraction framework with a shared-aware
learning mechanism, significantly enhancing relational triple extraction accuracy.

OD-RTE [10]: The study presents a one-stage object detection framework for relational triple
extraction, enhancing efficiency and accuracy through innovative decoding and negative sampling
strategies.

4.5 Parameter Configuration

We set the following unified parameter configurations, as detailed in Table 3.

Table 3: Parameter configuration

Parameter name Value Description

Learning rate 5e-5 Ensuring stable learning throughout the training process
Batch size 16 Balancing computational resource efficiency and

gradient estimation accuracy
Number of epochs 100 Providing sufficient iterations for the model to

thoroughly learn and converge
Length of natural language
description of relation type

50 Ensuring it contains ample information

Confidence boundary interval (δ) 0.2 Determining the sensitivity for identifying uncertain
predictions

Data augmentation multiplier 1 Controlling the scale and diversity of data augmentation

In Table 3, the last three items are hyperparameters. In the subsequent experimental section, we
will elaborate on the selection of these hyperparameters and their impact on model performance.
Through these settings, we aim to comprehensively evaluate the performance of different models in
handling specific tasks and validate the effectiveness and superiority of our proposed approach.

4.6 Results

In our experiments, all pre-trained models utilized the bert-base. For the Voting Strategy and Data
Augmentation parts, the LLM employed was GPT-3.5. Here is a performance comparison of various
models on different datasets, represented by Precision (P), Recall (R), and F1 score (F1), as shown in
Tables 4 and 5.
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Table 4: Experimental results of classical models (before 2022)

Model CCL2022 SciERC CoNLL04

P% R% F1% P% R% F1% P% R% F1%

Casrel 69.3 55.0 61.3 41.9 41.3 41.6 69.9 69.4 69.6
TPlinker 62.6 63.3 63.0 42.6 42.9 42.8 66.6 67.2 66.9
Spert 65.2 63.5 64.3 49.8 43.5 46.4 74.8 71.5 72.9
PURE 67.6 62.1 64.7 49.0 47.9 48.4 70.2 69.2 69.7
TriMF 66.8 65.9 66.3 51.8 50.7 51.2 73.0 71.6 72.3
PRGC 66.7 65.8 66.2 49.1 47.5 48.3 69.0 68.4 68.7
Ours 69.3 67.8 68.6 54.1 52.1 53.1 74.3 72.8 73.5

Table 5: Experimental results of new models (2022 and 2023)

Model CCL2022 SciERC CoNLL04

P% R% F1% P% R% F1% P% R% F1%

Onerel 66.3 65.6 65.9 46.1 46.8 46.4 69.0 68.1 68.6
Unirel 66.6 63.9 65.2 48.5 48.2 48.4 69.8 69.4 69.6
PL-marker – – – – – 50.8 – – 71.3
EmRel 65.1 63.9 64.5 48.0 46.6 47.3 71.3 70.2 70.7
BiRTE 66.4 65.2 65.8 49.7 50.1 49.9 70.7 70.0 70.4
OD-RTE 67.2 66.0 66.6 51.8 51.2 51.5 72.9 72.3 72.6
Ours 69.3 67.8 68.6 54.1 52.1 53.1 74.3 72.8 73.5

The experimental results from three distinct datasets (CCL2022 Automotive Fault Domain,
SciERC Scientific Literature, and CoNLL04 News Articles) showcase the comparative analysis of our
method against other state-of-the-art models. The results indicate that our approach demonstrates
significant performance advantages in multiple aspects.

On the CCL2022 Automotive Fault Domain dataset: Our method (“Ours”) exhibits robust
performance in Precision (P), Recall (R), and F1 score, reaching 69.31%, 67.83%, and 68.56%,
respectively. This indicates that our approach effectively captures domain-specific fault phenomena,
causes, and processes, maintaining high recognition accuracy even amidst specialized terminology
and complex contexts. Compared to other models, our method stands out in balancing accuracy and
comprehensiveness, thanks to our unique data augmentation strategy and the “voting strategy” for
uncertain predictions.

On the SciERC Scientific Literature dataset: When dealing with scientific literature abstracts that
contain a multitude of entity and relation types, our approach also demonstrates superiority, reflected
in a 54.13% Precision, 52.06% Recall, and 53.07% F1 score. This result highlights our method’s
capability in handling complex, cross-sentence, and coreference relations. Particularly, compared to
other models, our approach better comprehends the deep semantic relationships and terminologies in
scientific literature, credited to our strategy of employing LLM for deep semantic understanding and
attribute association.
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On the CoNLL04 News Articles dataset: Our method also achieved notable results on the
CoNLL04 dataset, attaining a Precision of 74.34%, a Recall of 72.75%, and an F1 score of 73.53%. This
demonstrates the effectiveness of our approach in handling the specific domain of news, particularly
in dealing with its diverse text structures. Compared to other models, our method more accurately
extracts relational triples across various news texts.

4.7 Ablation Experiments

We conducted ablation experiments by individually adding a module to the baseline model (w/) or
removing a module from the complete model (w/o). The results of these ablation studies are presented
in Table 6.

Table 6: Results of the ablation study. In the table, ‘RSEM’ stands for ‘relation semantic enhancement
module’, ‘VS’ represents ‘voting strategy’, and ‘DA’ denotes ‘data augmentation’

Model CCL2022 SciERC

P% R% F1% P% R% F1%

Baseline model 66.0 62.7 64.3 46.2 44.1 45.1
w/RSEM 66.3 64.3 65.3 48.9 46.8 47.8
w/VS 68.7 64.4 66.5 50.5 48.4 49.4
w/DA 67.3 63.8 65.5 49.6 46.4 47.9
w/o RSEM 69.6 66.3 67.9 52.1 48.9 50.4
w/o VS 68.2 64.3 66.2 49.5 48.9 49.2
w/o DA 69.8 64.3 67.0 51.6 49.8 50.1
Complete model 69.3 67.8 68.6 54.1 52.1 53.1

Following detailed ablation experiments, we arrived at the following conclusions: Firstly, the
introduction of the Relation Semantic Enhancement Module proved critically important in enhancing
the semantic interaction efficiency both between entities and between entities and relations. On the
CCL2022 dataset, the inclusion of this module improved the F1 score from 64.3% in the baseline
model to 65.3% (+1.0%), while on the SciERC dataset, the improvement was even more significant,
rising from 45.1% to 47.8% (+2.7%). Secondly, the voting strategy we proposed effectively enhanced
the model’s capabilities, especially on the CCL2022 dataset, where the F1 score increased from 64.3% in
the baseline model to 66.5% (+2.2%). Additionally, our data augmentation strategy, while significantly
improving model performance with F1 score increases of +1.2% and +2.8% on the two datasets
respectively, played a positive role in alleviating the issue of domain data scarcity.

We further validated the unique contributions of each innovation by comparing the performance
of the complete model with and without individual innovative components. Notably, the removal of
the voting strategy led to a significant decrease in model performance, with F1 scores dropping by
2.4% and 3.9% on the CCL2022 and SciERC datasets, respectively. This highlights the importance
of these components in enhancing the model’s accuracy and robustness. Ultimately, the complete
model outperformed all other configurations on the CCL2022 and SciERC datasets, with F1 scores
reaching 68.6% and 53.1%, respectively. This further demonstrates the effectiveness of our approach
in enhancing the performance of domain-specific relational triple extraction tasks.
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4.8 Hyperparameter Experiment Analysis

We conducted three sets of hyperparameter experiments on the CCL2022 dataset to assess the
impact of hyperparameters on model performance.

4.8.1 Hyperparameter Experiment 1: Length of Natural Language Description of Relation Types

In our hyperparameter experiment focused on the length of the natural language description
of relation types (D0), we investigated the impact of varying lengths on the model’s performance,
specifically in terms of Precision (P), Recall (R), and F1 score. The results are summarized as shown
in Table 7.

Table 7: Results of the hyperparameter experiment 1

Length P% R% F1%

10 68.45 67.41 67.92
25 69.69 66.93 68.28
50 69.31 67.83 68.56
75 69.35 66.84 68.07

The Table 8 below provides examples of natural language descriptions of relation “part_failure”
at varying lengths.

Table 8: Examples of natural language descriptions of relation types at various lengths

Length Description

10 Part error/failure, indicating malfunctions in product components.
25 Identify sentences with part failure, where part failure refers to malfunctions of product

components.
50 Identify sentences describing malfunctions in product components, i.e., part failure. Such

issues often involve hardware, software, elements, or other components of the product being
faulty or damaged.

75 Identify sentences highlighting malfunctions in product components, termed part failure.
This includes faults or damages in hardware, software, electrical elements, or other essential
parts affecting the product’s integrity, usability, or safety. Failures may present as
operational inconsistencies, breakdowns, or subtle signs of component quality degradation,
impacting the product’s functionality and reliability.

The experiment indicates that the model achieved the optimal F1 score at a description length
of 50 words, suggesting that a moderately detailed relation description aids the model in better
understanding and extracting triples. Both shorter and longer descriptions appear to slightly diminish
performance, potentially due to insufficient information or information overload, which could hinder
the model’s ability to capture key semantics effectively. Therefore, selecting an appropriate length for
the description is crucial for optimizing model performance.
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4.8.2 Hyperparameter Experiment 2: Confidence Boundary Interval

The size of the confidence boundary interval directly affects the model’s range of handling
uncertain predictions. We tested different interval sizes and observed their impact on the model’s
Precision (P), Recall (R), and F1 score, as presented in Table 9 and Fig. 4.

Table 9: Results of the hyperparameter experiment 2

The size of the confidence boundary interval P% R% F1%

±0.1 69.63 66.18 67.86
±0.15 69.31 67.83 68.56
±0.2 68.71 68.12 68.41
±0.25 66.67 68.02 67.34

Figure 4: Results of the hyperparameter experiment 2

With the interval set to ±0.1, the model’s F1 score peaked at 67.86%, suggesting a tighter
interval may not encompass a sufficient number of uncertain predictions. This conservative approach,
while potentially increasing the precision of the predictions, risks overlooking viable triples that fall
marginally beyond this narrow margin, thereby potentially curtailing the comprehensive application
of the voting strategy.

At an optimal interval of ±0.15, the model exhibited a superior F1 score of 68.56%, which under-
scores the efficacy of this interval size in accurately delineating uncertain predictions from their certain
counterparts. This balance allows for a more nuanced application of the voting strategy, enhancing
the model’s ability to judiciously evaluate and incorporate ambiguous triples, thus optimizing overall
performance.

Expanding the interval to ±0.2 and further to ±0.25 resulted in a gradual decline in F1 scores to
68.41% and 67.34%, respectively. This observation reveals a pivotal trade-off: While a broader interval
incorporates a larger pool of uncertain predictions, it simultaneously increases the likelihood of
misclassifying certain predictions as uncertain. Such an expansive approach may inadvertently inflate
the volume of false positives, as the model begins to question predictions that would otherwise be
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confidently accepted. This reduction in precision, aiming to encompass a wide range of uncertainties,
highlights the essential need for a carefully calibrated interval. Such calibration must strike a balance
between being inclusive of uncertain predictions and maintaining high accuracy in the results.

4.8.3 Hyperparameter Experiment 3: Data Augmentation Multiplier

We tested different values of the data augmentation multiplier, which determines the quantity of
generated data, directly affecting the diversity and generalization capability of model training. The
results are presented in Table 10.

Table 10: Results of the hyperparameter experiment 3

Multiplier P% R% F1%

0.5 68.69 67.0 67.83
0.75 68.62 67.89 68.25
1 69.31 67.83 68.56
1.25 68.07 67.87 67.97
1.5 66.84 66.15 66.49

When the multiplier was 0.5 and 0.75, the F1 scores were 67.83% and 68.25%, respectively.
This indicates that moderate data augmentation can provide additional training samples, thereby
contributing to an improvement in model performance.

At a multiplier of 1, the model achieved the optimal F1 score of 68.56%, showing that at this
level of data augmentation, the model received enough training samples to enhance its generalization
capability.

However, as the multiplier increased to 1.25 and 1.5, the F1 scores began to decline to 67.97%
and 66.49%. Particularly at 1.5 times, the performance sharply decreased, which might be due to
excessive data augmentation introducing more noise into the training data or the model overfitting
to the generated data while neglecting the characteristics of the original dataset.

Regarding the potential issue of noise, it is a challenge that is difficult to completely avoid in the
process of data augmentation. To minimize the occurrence of noise, we have implemented several
strategies, including leveraging the strong correlation between attributes and sub-attributes, and
designing specific prompts to restrict LLM from introducing new triples in the generated background
text. Despite these measures, due to the high degree of freedom inherent in generative models, the
emergence of some noise is inevitable. For instance, in the case where “the vehicle engine makes a
noise when driving for a long time on rough terrain, leading to a transmission shaft malfunction,”
our provided background was merely “when driving for a long time on rough terrain.” However, the
LLM autonomously added “vehicle engine” and “noise,” thereby introducing a new, unannotated
fault triple. Consequently, as the Data Augmentation Multiplier increases, the amount of noise
correspondingly rises, which may diminish the accuracy of model predictions.

Regarding the aspect of overfitting leading to the neglect of subtle differences in the original
dataset, let’s consider an example of a missed prediction in the text: “Observing this plug, it was found
that two pins were inserted into the same socket,” which contains a triple (“two pins”, “part_failure”,
“inserted into the same socket”). The failure entity “inserted into the same socket” does not belong to
the common failure entities. Excessive augmentation may cause the model to generate a large volume
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of data on common types of failures, such as mechanical failures, damage, wear and tear, etc., while
overlooking these complex and instructive rare cases.

4.9 Case Analysis

In this section, we delve into specific examples to illustrate the effectiveness of our model.

For the relation semantic enhancement module, consider the triple (“car window”, “part_failure”,
“occasionally auto-lowers”) which prior to the implementation of our innovative approach, the model
struggled to accurately classify. By integrating the natural language description emphasizing “being
faulty or damaged,” our model is now capable of understanding that the phenomenon of a “car
window occasionally auto-lowering” signifies a “part_failure”. This nuanced comprehension allows
the model to more effectively identify and categorize such anomalies as indicative of component mal-
functions. This example underscores the enhanced precision our method brings to the identification
of intricate relational contexts, thereby significantly improving the model’s ability to discern subtle
nuances in data, a testament to the method’s efficacy in enhancing relational understanding.

Following the introduction of our second innovative component, the “voting strategy” aimed at
reevaluating uncertain triples, we observed a marked improvement in the model’s ability to classify
complex relations accurately. For instance, after applying the voting strategy, the triple (“soft, binary
mattes”, “USED-FOR”, “partial scene segmentation”) from the sentence “We propose a novel step
toward the unsupervised segmentation of whole objects by combining hints of partial scene segmenta-
tion offered by multiple soft, binary mattes.” shifted from a moderate to low confidence level to being
correctly identified. This enhancement is attributed to the knowledge capability of LLMs, which can
bolster understanding not just through context but also by drawing upon their extensive knowledge
base. Consequently, “soft, binary mattes” became explicitly linked to the segmentation domain. This
example highlights how our voting strategy, by harnessing the contextual and knowledge-based
strengths of LLMs, significantly elevates the model’s proficiency in drawing nuanced connections,
thereby enriching its interpretative depth and accuracy in identifying relation-specific nuances.

5 Conclusion

In this paper, we introduce a novel method for domain-specific triple extraction that utilizes
relation semantic enhancement and fosters a tight collaboration between Large Language Models
(LLMs) and Small Language Models (SLMs). Firstly, by employing relation semantic enhancement
through a novel attention interaction module, our study deepens the understanding of semantic
linkages between entities and relations in domain-specific relational triple extraction tasks. Secondly,
our voting strategy innovatively harnesses LLMs to reevaluate predictions near confidence boundaries,
initially identified by smaller models, through meticulously crafted prompts that evoke multiple-
choice ‘votes’ for enhanced decision accuracy. Finally, data augmentation significantly contributes
to relational triple extraction by generating rich and diverse domain-specific training samples, thereby
expanding the model’s knowledge coverage and enhancing its generalization ability across complex
relational contexts. Experiments on three domain-specific datasets show that our method outperforms
baseline models in domain-specific relational triple extraction, demonstrating superior adaptability
and effectiveness in tackling the issues of challenging samples and data scarcity. As future work, we
aim to explore deeper collaboration between large and small models under domain-specific conditions,
fully leveraging the powerful knowledge capabilities of LLMs, and seeking ways to minimize the noise
issues arising from data augmentation.
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