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ABSTRACT

The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts
represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional
smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate.
Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static
relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining
feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature
extraction mode for different vulnerabilities, which are used to extract feature graphs from the source code of
smart contracts. Then, the node features in feature graphs are fed into a graph convolutional neural network for
training, and the edge features are processed using a method that combines attention mechanism with gated units.
Ultimately, the revised node features and edge features are concatenated through a multi-head attention mechanism.
The result of the splicing is a global representation of the entire feature graph. Our method was tested on three types
of data: Timestamp vulnerabilities, reentrancy vulnerabilities, and access control vulnerabilities, where the F1 score
of our method reaches 84.63%, 92.55%, and 61.36%. The results indicate that our method surpasses most others in
detecting smart contract vulnerabilities.
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1 Introduction

Zuckerberg, the founder of Facebook, had forecasted that humanity would progress into a new
era of Web 3.0, indicating blockchain technology’s central position in the modern Internet field.
Essentially, blockchain technology is a distributed ledger technology. Miners on the blockchain use
computational power to verify and record transactions, which ensures data integrity and security.
Furthermore, blockchain technology is widely used in digital transactions and cryptocurrency due to
its decentralized and tamper-proof nature. As the value of cryptocurrencies and digital assets continues
to rise, blockchain technology has become the cornerstone of a vast commercial bridge. According to
statistics, the market value of cryptocurrencies is about $835 billion as of 2023 [1]. Thus, protecting the
security of blockchain technology has become a focal point of attention for many experts and scholars.
Exploiting security vulnerabilities in smart contracts is the main threat to blockchain technology.
Smart contracts are segments of code that can execute automatically on the blockchain. Since multiple
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users jointly develop these codes, many contracts have potential security vulnerabilities during their
composition. Additionally, due to the tamper-proof nature of blockchain, contracts that have already
been deployed are challenging to modify. Moreover, smart contracts usually require interaction with
external contracts; attackers commonly exploit it to attack smart contracts. Nowadays, many smart
contracts are deployed on various blockchain platforms, such as virtual currencies, the Internet of
Things, healthcare, logistics, etc. Nearly 100 million smart contracts have been successfully deployed on
Ethereum, participating in over 2 billion transactions. However, frequent contract vulnerabilities have
posed a massive challenge to the blockchain, and recurrent security incidents also reduce people’s trust
in Internet finance. The existing detection methods primarily focus on specific keywords in vulnerable
contracts, which is insufficient to address the ever-changing tactics of attacks. The method proposed
in this paper further tracks vulnerabilities based on control flow, considers tracking the “edges” in
the feature graph, and employs graph neural networks to detect latent vulnerabilities within contracts
effectively.

Conventional methods of detecting vulnerabilities in smart contracts significantly depend on
experts devising feature-matching modes for static analysis tools, drawing from their previous experi-
ences. Many representative smart contract analysis tools have emerged, which performed exceptionally
well in the early stages of smart contracts. However, as the scale of blockchain continues to expand,
attackers can skillfully exploit the vulnerabilities of these tools to commit crimes against smart con-
tracts. Consequently, researchers have applied deep learning to smart contract vulnerability detection.
Reference [2] converts the contract’s bytecode into a grayscale image and then uses a convolutional
neural network to extract features from these images. Yet, the convolution and pooling processes in
convolutional neural networks can blur the inherent logical relationships in contracts, which will ignore
crucial information. Aiming to concentrate on the internal logical relations within the code, researchers
refer to the method in which the compiler processes the code into an Abstract Syntax Tree (AST); they
have suggested abstracting the contract’s source code into a non-Euclidean graph before processing [3].
On this foundation, Zhuang et al. [4] proposed a smart contract vulnerability detection method based
on graph neural networks. This method employs Degree-free Graph Convolutional Neural Networks
(DR-GCN) and Temporal Message Propagation Networks (TMP) to learn the features of the graph.
Reference [5] proposed a fully automatic method for smart contract vulnerability detection at the
function level, which focuses on functions and variables that directly contribute to the vulnerability
of a contract. A limitation of these approaches is their excessive emphasis on the features of nodes
within the graph while neglecting the significance of edge features. However, edge features often play a
crucial role in expressing complex relationships and interaction behaviors; effectively aggregating edge
features can reveal potential vulnerabilities and abnormal patterns in smart contracts.

To further respond to current attack methods. This paper improves the feature extraction
mode proposed by Qian [5] and proposes a feature extraction mode specifically for access control
vulnerabilities. To more effectively extract the information contained in the feature graph. This paper
proposes the Multi-Head Node and Edge Combine Model (MH-NEC), which fully utilizes both
node and edge features. It employs a degree-free graph neural network to extract node features and
combines attention mechanisms with gated units for updating edge features. Attention mechanisms
and gated units can finely regulate the flow of information, which ensures the effective utilization
of edge information during the aggregation process. In addition, the multi-head attention layer of
the MH-NEC model enhances the model’s ability to capture interactions between nodes and edges.
During this process, the attention weights produced by each head dictate the method of combining
node features and edge features, which achieves a complete representation of the information within
the graph. According to experiments on timestamp vulnerabilities, reentrancy vulnerabilities, and
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access control vulnerabilities, this method has good results. The main contributions of this paper are
as follows:

1. Regarding timestamp vulnerabilities, based on the original research, we further focused on
operations involving relational operators. Miners comparing time. stamp with unreasonable time
values is a method of manipulating timestamps.

2. For reentrancy vulnerabilities, this paper further checks whether the contract contains
spender.call. spender.call allows for calling any function of the target contract (as long as it matches
its signature) and has no gas restrictions, which leads to reentrancy vulnerabilities in the contract.

3. This paper establishes a complete feature extraction mode for access control vulnerabilities.
This method checks whether the contract contains tx.origin and permission change operations, and we
examine whether essential functions have stringent access restrictions. The above methods compensate
for the limited means of access control vulnerability detection.

4. This paper adopts a method combining attention mechanism and gate control unit in terms of
processing edge features. This method precisely controls information flow and ensures the effective
use of side information in the aggregation process.

5. This paper comprehensively integrates updated node and edge features through a multi-head
attention mechanism, effectively enhancing the depth and breadth of feature processing.

In the paper’s Section 2, we introduce the related work of smart contract vulnerability detection;
Section 3 mentions some preparations required for the experiment; Section 4 introduces the complete
experimental method; and Section 5 compares the experimental results. The results are analyzed in
detail, and Section 6 concludes the paper.

2 Related Work

Effectively preventing smart contract vulnerabilities is an important part of ensuring the security
of blockchain technology. This section introduces six representative static analysis tools for early smart
contract vulnerability detection tasks. Next, we discussed three methods and their main advantages
when applying deep learning to smart contract detection.

2.1 Static Analysis Tool

Static analysis tools are an important approach in the early stage of smart contract vulnerability
detection. Experts develop these tools based on past contract detection experience. These tools detect
contract vulnerabilities by analyzing the source code of contracts without executing the program.
They mainly rely on understanding and insight into potential execution paths to identify known
contract vulnerabilities. The most representative static analysis tools include Oyente [6], one of the
early static analysis tools for smart contract vulnerabilities. It is based on the control flow graph of
the contract and uses symbolic execution technology to detect potential problems in smart contracts.
Oyente can identify multiple vulnerability types, such as reentrancy attacks, exception handling issues,
and dependency flaws based on transaction order. Security [7] is a tool with scalability, fully automated
operation, and high accuracy. Security examines a contract’s dependency graph and extracts precise
semantic data from the code, which enables an assessment of a contract’s compliance and potential
security vulnerabilities. Mythril [8] is a static analyzer for smart contracts. It combines conceptual
analysis, taint tracking, and control flow verification to identify typical vulnerabilities in Ethereum
smart contracts. Mythril can detect various problems, including reentrancy attacks, integer overflow
problems, and exception management flaws. Slither [9] is a static analysis framework for Ethereum
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smart contracts. Slither simplifies the contract analysis process using a static single assignment form
and a reduced instruction set while retaining the semantic information lost when Solidity source code
is converted to Ethereum Virtual Machine (EVM) bytecode. Manticore [10] is a dynamic analysis tool
dedicated to binary analysis, especially suitable for smart contracts and complex software systems.
It offers high flexibility, automation capabilities, and in-depth analytical precision. SmartCheck
[11] is a static analysis tool that deeply supports the Solidity language. It automatically identifies
common programming errors and security vulnerabilities through in-depth scanning and analysis of
smart contract codes. A primary problem of these conventional tools is the increased computational
complexity as the execution paths deepen. Additionally, due to their heavy reliance on predefined rules,
these tools have limited semantic analysis capabilities, which may lead to false positives and negatives.

2.2 The Methods of Deep Learning

As deep learning models evolve, researchers are applying these techniques to smart contract
vulnerability detection [12–14]. Compared to traditional static analysis tools, deep learning approaches
are not dependent on predefined detection rules. Instead, they learn the features of vulnerabilities
through the training process. This approach demonstrates greater flexibility and adaptability when
addressing new vulnerabilities. Smart contract vulnerability detection methods based on deep learning
can be divided into three categories. The first type refers to the natural language processing method
used to analyze the contract content. These approaches transform the vulnerability detection task into
a multi-classification or multi-label problem. Specifically, this involves converting the source code or
opcodes into AST [15] or Javascript Object Notation (JSON) files [16]. Subsequently, text processing
methods such as N-gram [17] are used for feature extraction, followed by classification using models
like Support Vector Machine (SVM) and Logistic Regression (LR). The second method focuses on
the binary bytecode within contracts [18]. According to the RGB principle, this method transforms
binary files into coded images of equal size. It uses a convolutional neural network to extract and
classify the features of the image. This type of method solves the problem of poor scalability in
traditional tools. The limitations of these two approaches stem from their inadequate consideration
of the inherent logical relationships in the code. When analyzing contracts, it is important to deeply
understand the program’s internal logical relationships. In-depth dependency analysis can accurately
assess the functionality of a contract and its potential risks. The work of Allamanis et al. has proven
that graphics can be used to represent source code; this method can preserve the syntactic and semantic
information of the code [19]. Based on this, researchers have proposed a third type of smart contract
detection method, which abstracts the smart contract source code into a non-Euclidean graph, such
as a Program Dependency Graph (PDG) [20] or Function Call Graph (FCG) [21]. Then, features are
extracted using graph neural networks for classification. Researchers use DR-GCN or Bidirectional
Graph Neural Network (BGNN) [22] for training.

2.3 Motivation

Methods of using graph neural networks to analyze contracts still have limitations. Firstly, these
studies [20–22] mainly focus on the node features of contract graphs; they pay less attention to
edge features. This suggests that the internal dependency relationships in the code still offer limited
assistance in vulnerability detection tasks. Secondly, the original feature extraction mode can no
longer deal with newly emerging contract vulnerabilities. To address these issues, we updated the
existing feature extraction mode. More importantly, we innovate an edge feature aggregation model.
This model can effectively utilize the dependencies in the contract. We also incorporate a multi-head
attention mechanism, which can focus on multiple features.
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3 Prepared Work
3.1 Ethereum

Understanding the related technologies of Ethereum holds considerable significance for our
subsequent research into vulnerability detection in smart contracts on Ethereum. Deploying an
Ethereum node is a fundamental step in accessing and participating in the Ethereum. A node not
only stores the data of the entire blockchain but also participates in the verification and broadcast of
transactions. Based on the node’s configuration, it can serve as a full node, which preserves the full
blockchain data and history, or as a lightweight node that only retrieves block header information
to lessen resource usage. Participants can directly access Ethereum, send transactions, deploy smart
contracts, and interact with other nodes by running a node. Regarding consensus mechanisms,
Ethereum initially used the Proof of Work (PoW) algorithm, which secures the network and maintains
decentralization by resolving complex mathematical puzzles. Nevertheless, due to the significant
energy demands of PoW, Ethereum intends to shift towards the more efficient and eco-friendly Proof
of Stake (PoS) algorithm. PoS algorithm selects nodes to create new blocks based on factors such as
the amount of coins held and the duration of holding. This aims to reduce energy consumption and
increase transaction processing speed.

3.2 Smart Contract Security Vulnerability

Among the hundreds of millions of smart contracts successfully deployed, there are approximately
a dozen known types of smart contract vulnerabilities. Timestamp and reentrancy vulnerabilities are
the most common and threaten blockchain security [23]. Given the diversity of blockchain platforms,
smart contracts increasingly interact with external contracts in the current environment. Access control
vulnerabilities in contracts will directly threaten the security of interactive contracts and trigger chain
effects. Digging deeper into access control vulnerabilities is critical to understanding and preventing
security risks across contracts, which helps ensure the robustness of the entire system. Current methods
for detecting access control vulnerabilities still rely on traditional tools, and few studies have adopted
deep learning technology for access control vulnerability detection. Therefore, this paper will focus on
timestamp vulnerabilities, reentrancy vulnerabilities, and access control vulnerabilities. This section
will briefly introduce these vulnerabilities.

3.2.1 Timestamp Vulnerability

The timestamp of each block usually represents the time miners mined the block. However, these
timestamps are unreliable, as blockchain protocols allow miners to adjust the timestamps within a
certain range (about 15 s in Ethereum). This means that if the logic of a smart contract overly relies on
timestamps, miners might exploit this to manipulate the outcomes of the contract. A typical case of
timestamp vulnerabilities is the “Rubixi” smart contract in 2016. This contract is a Ponzi scheme based
on Ethereum. It contains a major timestamp dependency vulnerability, and this contract’s revenue
distribution mechanism relies on timestamps to determine when payments are made. Miners achieve
unfair revenue distribution by manipulating timestamps, allowing some participants to gain undue
benefits.

3.2.2 Reentrancy Vulnerability

Reentrancy vulnerability is among smart contracts’ most common security vulnerabilities, espe-
cially on EVM-based platforms such as Ethereum. This vulnerability is because the smart contract
executes calls to external contracts after performing critical operations (such as updating balances,
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changing ownership, etc.) and before state changes. Attackers use this mechanism to interrupt the
execution of the contract and repeatedly call the contract’s functions to steal Ethereum. Reentrancy
vulnerability is the most famous vulnerability among smart contract vulnerabilities because it directly
led to the most significant security incident since the establishment of Ethereum-“The DAO.” The
attacker exploited the reentrancy vulnerability in the DAO contract to repeatedly withdraw funds,
resulting in the illegal transfer of approximately $50 million worth of Ethereum. This incident caused
huge economic losses and led to the split between Ethereum and Ethereum Classic, which seriously
affected the development of the Ethereum community.

3.2.3 Access Control Vulnerability

Access control vulnerabilities are a common security issue in smart contracts, primarily occurring
when the contract’s permission management is improperly set up. This type of vulnerability permits
users to carry out actions they are not authorized, like withdrawing funds, modifying crucial settings,
or conducting important transactions. A famous case is the multi-signature contract vulnerability
of Parity Wallet. In this case, the contract allows an ordinary user to become the contract owner
and perform destructive operations on the contract. This user inadvertently triggered a self-destruct
function, resulting in numerous wallets being frozen and unable to access their funds. The damage
caused by this breach is estimated to be as high as 150 million US dollars.

3.3 Graph Convolutional Neural Network

In recent years, neural networks have experienced rapid development and have been widely applied
to graph data structures, which achieves significant accomplishments in image classification problems
[24]. In traditional convolutional neural networks, convolution operations require sliding windows on
structured grid data (such as images). This approach is inapplicable to non-Euclidean structures since
the nodes in a graph lack a fixed count of neighbors, and their arrangement lacks a predetermined
sequence. Handling non-Euclidean structures in real life has become an important subject of study.
In 2013, Bruna introduced two classification methods for graph convolutional neural networks, one
based on the spectral domain and the other on the spatial domain. Kipf et al. [25] proposed a message
propagation network:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(1)

In the formula, H(l+1) represents the node at the lth layer, Ã = A + IN is the adjacency matrix
plus the identity matrix to enhance self-loops, D̃ in the equation is a diagonal node degree matrix,
which D̃ii = ∑

j Ãij is used for normalization, W(l) represents the weight matrix of the lth layer, and σ

represents a nonlinear activation function.

Qian uses A2 to enhance normalization and remove the degree matrix D from the original
equation. It is represented as:

H(l+1) = σ
((

A2 + I
)

H(l)W(l)
)

(2)

3.4 Gated Recurrent Unit

Gated Recurrent Unit (GRU) [26] is a variant of Recurrent Neural Network (RNN) used to
model and process sequence data. It has a gating mechanism that can effectively capture long-term
dependencies and has fewer parameters. The main components of GRU include the Update Gate,
Reset Gate, and Candidate Hidden State.
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The update gate controls the extent to which the previous moment’s hidden state is retained. It
calculates a vector with values between 0 and 1 based on the input sequence data and the hidden state
from the previous moment.

zt = σ (Wz · [xt, ht−1] + bz) (3)

Among them, xt is the input of the current moment, ht−1 is the hidden state of the previous moment,
Wz and bz is the learnable weight matrix and bias term, σ is the sigmoid function.

The reset gate is used to decide whether to include the hidden state of the previous moment in the
calculation of the current moment.

rt = σ (Wr · [xt, ht−1] + br) (4)

Through the control of update gates and reset gates, GRU can decide the degree of retention and
forgetting of information, thereby better handling long-term dependencies.

3.5 Attention Mechanism

Attention mechanisms allow neural network models to concentrate on the most significant
segments of input data. This mechanism enables the model to prioritize processing the most critical
information for the current task, thereby enhancing efficiency and effectiveness.

The multi-head attention mechanism extends the self-attention mechanism [27]. Researchers
aspire for models to learn diverse behaviors through the same attention mechanism, subsequently
amalgamating these behaviors as knowledge to capture a wide range of dependencies within a
sequence. Specifically, this model distributes attention across multiple “heads,” enabling the model to
focus on the input data from several different perspectives or subspaces simultaneously. This approach
enhances the model’s flexibility and complexity, which allows it to better capture the diversity and
complex relationships within the data. Its working principle is shown in Fig. 1.

Figure 1: Multi-head attention mechanism
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4 Our Method

This paper designs a feature extraction mode for timestamp, reentrancy, and access control vul-
nerabilities, aiming to extract the corresponding feature maps from the contract source code. During
the construction of the feature graph, key functions and variables that may lead to vulnerabilities
are considered nodes, and edges are constructed based on control dependencies. One-hot encoding
converts The feature graph into the model’s input data. The overall workflow of our experiment is
shown in Fig. 2.

Figure 2: Smart contract vulnerability detection process

4.1 Feature Extraction Mode

In response to the following three types of vulnerabilities, we have innovated and improved upon
the existing feature extraction mode [28,29].

Timestamp: Transactions on Ethereum often use timestamps as conditions for performing critical
operations, which often leads to timestamp vulnerabilities. Static analysis tools typically examine the
presence of block.timestamp to assess whether a contract contains a timestamp vulnerability. This
paper adopts the following three methods to check for contract timestamp vulnerabilities.

• We check whether there exists block.timestamp in the contract. This is the basic step in
determining timestamp vulnerabilities.

• From the perspectives of data flow and control flow, we check the value of block.timestamp is
assigned to other variables or passed as a parameter to other functions. Such a situation indicates that
the contract is at risk of being manipulated by miners.

• If block.timestamp is compared with time units (either directly with specific time values or with
variables representing time), the contract may be at risk of being manipulated by miners’ time.

The last one is the new mode proposed in this paper. Fig. 3 is the source code of an auction
contract. The core logic of the auction contract is that if the timestamp of the current block exceeds the
set auction end time, the contract will no longer accept new bids. However, this design is susceptible to
timestamp manipulation attacks due to the manipulability of block timestamps. For example, a miner
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wants to bid after the auction ends. They could mine a block and intentionally set the timestamp
slightly below the end of the auction, even though, in reality, that point has already passed. Checking
whether block.timestamp in the contract is compared with variables, which is an effective means to
check timestamp vulnerabilities.

Figure 3: Example of auction contract

Reentrancy: Static analysis tools determine the existence of reentrancy vulnerabilities in a contract
by checking for calls.value. Because call.value is a key operation in the transaction, but no gas limit is
set. Based on this, we used the following three methods to check whether the contract had reentrancy
vulnerabilities.

• In addition to inspecting call.value within functions, we also verify whether the functions invoke
call.value enforces stringent access controls, like onlyOwner, private, and others.

• We examine the position of call.value. Appropriately reducing the user’s balance before transac-
tions is crucial in averting reentrancy vulnerabilities.

• In this paper, we examine whether there is a spender.call within the contract. We found many
contracts use spender.call to execute transactions, which is unsafe. Similar to call.value, invoking
external contracts through spender.call poses a risk of reentrancy vulnerabilities since it allows calling
any function of the target contract (as long as it matches the function’s signature) and is not limited
by gas.

The last is the reentrancy vulnerability feature extraction mode proposed in this paper. In the
CVE-2018-12703 event, the approveAndCallcode function in the smart contract is called an unverified
spender.call method, which allowed attackers to transfer the entire balance of the contract to their
accounts.

Access Control: Access control vulnerabilities occur due to inadequate management of permis-
sions and access levels. Since access control vulnerabilities do not have key statements like call.value
and block.timestamp, previous studies rarely developed feature extraction modes for access control
vulnerabilities. This paper examines whether the contract has access control vulnerabilities from
multiple angles.

• Check the origin function and Tx.origin method in the contract. Tx.origin means that the
authority belongs to the original initiator of the transaction call stack. Using msg.sender instead of
Tx.origin can effectively avoid this attack.
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• We check whether functions with key operations have strictly applied access restriction modifiers.

• We need to consider whether the function allows changing the contract owner. Many functions
can add or remove administrators, change user access levels, etc.

• Fallback function lacks access control, and external contracts easily influence operations. We
need to examine the interactions between the fallback function and external contracts.

The above four points are all the access control vulnerability feature extraction modes proposed
in this paper. Fig. 4 is a case of a contract containing an access control vulnerability. In the
isOriginalOwner modifier, the contract uses tx.origin for access control checking. Tx.origin identifies
the originator of the entire transaction call stack rather than the immediate predecessor caller. This
approach makes the contract vulnerable to “phishing” attacks.

Figure 4: Part of the contract containing access control vulnerabilities

4.2 Feature Map

Based on the feature extraction mode proposed in this paper, we construct corresponding feature
maps for the three vulnerabilities. The first step is to traverse all functions within the contract and
retrieve key variables and key calls that may lead to vulnerabilities. We create nodes “S” and “W”
for the filtered function. The second step is to check the access restrictions of the function and add
corresponding attributes to it according to its access restrictions. When critical variables and calls
involve dangerous operations, we create a node “VAR”. For timestamp vulnerabilities, the key variable
is considered to be “block.timestamp”. Assigning “block.timestamp” to other variables or comparing
it with time units is dangerous. For reentrancy vulnerabilities, “call.value” and “spender.call” are
considered critical calls. We determine the vulnerability’s risk level by judging the sequence of these
operations relative to transaction actions. For access control vulnerabilities, functions involving origin,
translation, and fallback are considered dangerous and likely to cause contract vulnerabilities. The
code statements and symbols that appear above and in the above figure are explained in Table 1.

Table 1: Notation table

Variable or symbol Definition

call.value Function calling operation
spender.call Function calling operation
block.timestamp Representing the timestamp of the current block
Tx.origin Returns the address where the current transaction was initiated
msg.sender The address of the sender of the current function call
S Create this node for functions involving key operations
W Create this node for functions involving key operations
VAR Create this node for functions involving dangerous operations
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To reflect the degree of dependence between nodes, we use control flow as the starting point to
abstract various conditional control statements into different types of edges, which can reflect the
impact of control dependence on key variables in the contract. The corresponding representation of
each control flow in the feature map is presented in Table 2.

Table 2: Edge representation of different control dependencies in the feature graph

Type Control sentence

FW normal
IF if
GB if else
GN if then
FOR while do
RE return
AH assert
RG require
RH if revert
IT if throw

The feature tuples of node “S” and node “W” are (the starting node, access restrictions, ending
node, execution sequence, and calling address). Since the node “VAR” involves dangerous operations,
the feature tuple is represented as (start node, end node, execution order, degree of danger). The tuple
of edge features is represented as (start node, end node, execution order, edge type). Fig. 5 shows a
smart contract source code and its corresponding feature map.

Figure 5: Smart contract source code and its corresponding feature graph

4.3 Model

4.3.1 Degree-Free Graph Convolutional Neural Network

In processing node features, this paper uses the improved graph convolutional neural net-
work model. Based on the standard graph convolutional network, this model introduces several
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improvements to enhance its performance and adaptability. Its core structure includes multiple graph
convolution layers. In the convolutional layer, we enhance the graph’s connectivity by squaring the
adjacency matrix (adj_sq parameter). It allows the model to consider neighbor information within
two steps, thereby capturing a wider range of node relationships. This paper uses a self-connection
(scale_identity parameter) operation to strengthen the influence of each node and improve the
robustness of node feature representation. In addition, this paper uses a masking mechanism to
distinguish valid and invalid nodes, which enables the model to process multiple graphs of different
sizes in batch mode. The Rectified Linear Unit (ReLU) activation function after the convolutional
layer introduces nonlinearity to the model, which can improve the model’s ability to capture the
characteristics of complex graph structures. A series of fully connected layers in the model process
and refine the features outputted by the graph convolutional layers. Furthermore, the fully connected
layers employ a Dropout regularization strategy to mitigate overfitting and augment the model’s
generalization capacity with varied data. Overall, the model is suitable for dealing with complex
relationships between nodes.

DR-GCN does not rely on the degree of nodes when aggregating features, which gives it stronger
generalization capabilities. DR-GCN is more effective for graphs with irregular degree distribution,
and it does not rely on the degree matrix, which reduces the computational complexity. Fig. 6 shows
the processing of node features in the experiment.

Figure 6: Node feature processing

4.3.2 Edge Aggregation Net

In previous experiments, the importance of edge features was often ignored when processing
contract graph features based on deep learning. This paper develops an Edge Aggregation Net (EAN)
to process edge features in contract graphs. This model refers to the logic of the graph attention neural
network to more effectively aggregate neighbor information. When aggregating adjacent edge features,
the attention mechanism assigns weights to edges of different importance. We have introduced gated
units to strengthen the model’s capability to handle edges of differing significance. Reset gates and
update gates allow the model to dynamically adjust the information flow, which can update edge
features more efficiently. During edge feature processing, if the reset gate is close to 0, it means that
the model focuses more on the current edge feature. On the contrary, if the reset gate is close to 1,
the model retains more previous information. The value of the update gate dictates the proportion of
original features and current features that make up the new features. A higher value of the update gate
means that more of the original features are retained, while a lower value of the update gate means
that more current features are allowed to be added.

The processed edge features are sent to MultiLayer Perceptron (MLP) for further feature conver-
sion. This step not only adds nonlinearity, but also further refines the edge features, which makes
edge features more suitable for subsequent tasks. To prevent overfitting and enhance the model’s
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generalization capabilities across various graph data types, we added a Dropout layer to the MLP.
This strategy can improve the stability and reliability of the model. Fig. 7 shows the processing of edge
features in the experiment.

Figure 7: Edge feature processing

4.3.3 MH-NEC

This paper uses a multi-head attention mechanism to integrate the processed node and edge
features better. First, we directly splice the node embedding processed by DR-GCN and the edge
embedding processed by EAN. This splicing method can retain their original features to the greatest
extent. The spliced features are input to the multi-head attention layer. The multi-head attention
layer constructs four independent attention heads, each consisting of two fully connected layers and a
Tanh activation function. The first fully connected layer maps the concatenated embedding to smaller
dimensions, and the second fully connected layer further maps the features processed by the activation
function for generating attention scores. The Tanh activation function ensures that the network can
capture complex and nonlinear patterns in the input features, crucial for processing the complex
relationships of nodes and edges in graph structures. The softmax function normalizes the computed
attention scores into final attention weights. Attention weights are applied to the four heads to obtain
their respective outputs. These outputs are concatenated and mapped back to the dimensions of the
original input space through a fully connected layer. By learning various representations of input data
in parallel, the model improves its comprehension and handling of input features. Since each head
may focus on different aspects, the model can provide richer information for subsequent classification
tasks. Fig. 8 shows how the processed node embedding and edge embedding are combined to form a
global graph representation.

Figure 8: Using multi-attention mechanism to splice node embedding and edge embedding
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5 Experiment
5.1 Dataset

Due to the current immaturity of smart contract vulnerability detection research, there are no
official datasets or universally recognized reliable third-party datasets available at present. This paper
combines the results of several literatures. A total of 5525 smart contracts containing 19363 functions
were collected as the experimental data of this paper. To collect smart contracts without vulnerabilities,
we utilized the wild dataset. They use nine static analysis tools to detect 47587 contracts on Ethereum.
To guarantee the precision and dependability of the vulnerability-free dataset, we consider contracts
identified as free of vulnerabilities by all nine tools mentioned in the literature as the preliminary
vulnerability-free data for this experiment. However, relying solely on the tools’ detection results
cannot eliminate the possibility of false positives, so we manually verified a random sample of one-
third of the contracts. Detailed analysis of the contract samples confirmed that these contracts did
not contain any known security vulnerabilities, thereby enhancing the credibility of the dataset. The
vulnerability-free dataset includes a total of 2741 smart contracts; it covers 7548 unique functions.
To prove that the method proposed in this paper has good generalization ability, we combined the
wild dataset and the Ethereum Smart Contracts (ESC) dataset to form the vulnerable data in the
experiment. This part covers three common vulnerability types: Timestamp, reentrancy, and access
control, with 2784 contracts and 11815 functions.

In addition, we deliberately introduced about 1120 pieces of noise data (vulnerable contracts
containing critical calls) into the dataset to verify the robustness of our method. These experimental
data consist solely of the source code of smart contracts genuinely deployed on Ethereum. Since these
data are directly derived from the real world, this guarantees that our research and conclusions have
substantial practical applicability and will contribute meaningfully to subsequent studies in smart
contract vulnerability detection.

5.2 Experimental Environment

The experimental environment is shown in Table 3.

Table 3: Experimental environment

Hardware/environment Description

GPU Nvidia 1050Ti
CPU Intel (R) Core (TM) i7-8750H CPU @ 2.20 GHz 2.21 GHz
RAM 16.0 GB
Framework PyTorch 1.10.2

5.3 Evaluation Metrics

Since smart contract vulnerability detection is a two-classification problem, Accuracy, Recall,
Precision, and F1 score are used as indicators to evaluate model performance.

Accuracy: The percentage of correct predictions in the total sample:

ACC = TP + TN
TP + TN + FP + FN

(5)
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Precision refers to the predictive result, which means the probability that a sample is positive
among all those predicted to be positive:

P = TP
TP + FP

(6)

The recall is for the original sample, and its meaning is the probability of being predicted as a
positive sample among the actual positive samples:

R = TP
TP + FN

(7)

To be able to consider both precision and recall, the F1 score is usually used as an overall measure
of model performance:

F1 = 2 ∗ P ∗ R
P + R

(8)

5.4 Results and Analysis

In this section, we compare MH-NEC with ten other detection methods on three vulnerabilities:
Timestamp, reentrancy, and access control, and analyze the experimental results. These include four
static analysis tools: Manticore, Smartcheck, Oyente, and Mythril; two analysis methods, Long Short-
Term Memory (LSTM) and Convolutional Neural Network (CNN) based on traditional neural
networks; and four analysis methods using graph neural networks: DR-GCN, TMP, Smart Contract
Vulnerability Detection Mechanism (DM) [30], and Combining Graph feature and Expert patterns
(CGE). DR-GCN and TMP are the earliest models that use graph neural networks for smart contract
vulnerability detection tasks. On this basis, DM and CGE combined expert knowledge to further
analyze the key functions that lead to vulnerabilities in the contract.

In addition, we performed ablation experiments on the MH-NEC model using the existing feature
extraction mode and the improved feature extraction mode in this paper and analyzed the experimental
results. Since the vulnerability-free data in this experiment all come from the results of tool detection,
we focus on the recall rate and F1 score when compared with traditional tools [31]. The results from
Table 4 indicate that traditional tools perform poorly in detecting timestamp vulnerabilities. As the
tool with the best performance, Mythril’s recall rate only reached 51.07%. The recall rates of LSTM
and CNN reached 65.44% and 78.25%, which are significantly improved compared to traditional tools.
The detection method that converts source code into a contract graph has an excellent performance
in recall rate and F1 score, which fully confirms the huge potential of graph neural networks in the
field of smart contract vulnerability detection. Thanks to its unique message propagation mechanism,
the TMP model can effectively capture long dependencies, and its F1 score reached 82.04%. DM
and CGE perform better due to expert mode and improved neural networks. This paper’s method
more effectively aggregates edge features and enhances the ability to analyze and track abnormal
timestamps. The recall rate of this method in the timestamp vulnerability detection task reached
98.35%, far exceeding that of other smart contract vulnerability detection methods. The F1 score also
reached 84.63%, which is 1.24% higher than the best existing method.
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Table 4: Detection capabilities of different methods for timestamp vulnerabilities

Method Accuracy Recall Precision F1

Manticore 89.74 35.15 100.0 52.01
Smartcheck 90.63 40.78 100.0 57.93
Oyente 90.85 42.14 100.0 59.29
Mythril 92.26 51.07 100.0 67.61
LSTM 89.77 65.44 68.50 66.93
CNN 92.51 78.25 75.33 76.76
DR-GCN 93.55 88.74 75.04 81.32
TMP 93.73 90.49 75.04 82.04
DM 93.67 94.37 73.30 82.51
CGE 94.39 91.65 76.50 83.39
OURS 95.00 98.35 76.21 84.63

Table 5 shows the performance comparison of ten representative detection methods and our
method on the reentrancy vulnerability detection task. Unlike timestamp vulnerability detection,
individual traditional tools perform better than conventional neural networks in detecting reentrancy
vulnerabilities. Among them, the recall rate of Mythril reached 59.73%, which is higher than 52.64%
and 54.89% of LSTM and CNN. In reentrancy vulnerability detection, relying solely on checking
the presence of call.value greatly increases the likelihood of false positives. Analyzing the sequence
of reentrancy operations and transaction operations is the basis for determining whether a contract
has a reentrancy vulnerability. During their processing, LSTM and CNN neglected this issue, whereas
Mythril employed a control flow verification method. This method focuses more on the semantic
relations between programs and has yielded impressive outcomes. DR-GCN only focuses on node
characteristics in the contract graph, so its performance is biased. TMP, DM, and CGE retain
the semantic relationship between programs, so they perform better on the reentrancy vulnerability
detection task. Compared with previous methods, our method pays more attention to the semantic
and logical relationships within the function and pays special attention to the potential threats
of spender.call. Therefore, this paper’s method has significantly improved reentrancy vulnerability
detection. Compared with existing methods, our method improves the recall rate by 9.29% and the
F1 score by 6.03%.

Table 5: Detection capabilities of different methods for reentrancy vulnerabilities

Method Accuracy Recall Precision F1

Manticore 68.09 18.90 100.0 31.79
Smartcheck 73.42 32.45 100.0 49.00
Oyente 78.73 45.95 100.0 62.97
Mythril 84.16 59.73 100.0 74.79
LSTM 75.86 52.64 78.99 63.18
CNN 79.75 54.89 89.62 68.09

(Continued)
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Table 5 (continued)

Method Accuracy Recall Precision F1

DR-GCN 83.97 59.81 95.93 71.73
TMP 83.56 62.04 94.19 74.81
DM 90.35 78.68 96.09 86.52
CGE 90.88 79.92 96.27 87.33
OURS 94.84 87.97 98.23 92.55

The method of static analysis tools to detect this vulnerability by detecting function access
restrictions is not rigorous, which can also be reflected in the results in Table 6. Since the methods
using graph neural networks did not address the detection of access control vulnerabilities, we applied
the feature extraction mode proposed in this paper to the DR-GCN, TMP, DM, and CGE neural
networks. Compared with previous detection methods, our method reached 59.65%, 70.52%, and
61.36% in recall, precision, and F1 score, which can prove that our work has made up for the
shortcomings in the field of access control vulnerability detection.

Table 6: Detection capabilities of different methods for access control vulnerabilities

Method Accuracy Recall Precision F1

Manticore 88.68 25.46 100.0 40.58
Smartcheck 85.88 34.83 100.0 51.66
Oyente 88.50 24.24 100.0 39.02
Mythril 91.21 42.16 100.0 59.31
LSTM 76.42 44.20 30.78 36.29
CNN 87.39 46.59 59.95 52.43
DR-GCN 86.88 51.93 57.56 54.60
TMP 87.62 52.74 58.60 55.52
DM 87.95 55.80 61.30 58.42
CGE 88.12 55.60 62.19 58.71
OURS 89.78 59.65 70.52 61.36

The experimental results of the above methods on the three vulnerabilities of timestamp, reen-
trancy, and access control show us that the detection capabilities of most static analysis tools are
very poor. In vulnerability detection tasks, the performance of traditional neural networks is still
mediocre, even inferior to that of static analysis tools. In contrast, graph neural networks achieve
better results on all three types of vulnerabilities. It can be proved that graph neural network is very
effective in smart contract vulnerability detection. Our method combines the advantages of previous
methods and makes up for the shortcomings of previous methods. Compared with other graph neural
network methods, our method has improved accuracy, recall, precision, and F1 score. Compared with
previous methods, our method emphasizes the utilization of edge features, which can better capture
the logical structure of the code and accurately identify potential vulnerabilities. Effective edge feature
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aggregation can capture the complex relationships between codes; it includes indirect relationships
and longer dependency chains, which is highly effective in detecting complex vulnerabilities involving
interactions among multiple components. The three figures (a), (b), and (c) in Fig. 9 further visually
present the results of seven neural network methods on timestamp, reentrancy, and access control
vulnerability detection tasks. Methods 1 to 7, respectively, represent LSTM, CNN, DR-GCN, TMP,
DM, CGE, and methods of this paper. It can be seen that our method is better than other methods.

Figure 9: Performance comparison of seven neural networks on (a) timestamp vulnerability, (b)
reentrancy vulnerability, and (c) access control vulnerability detection tasks

To better evaluate the model’s overall performance under the condition of limited data volume, we
used the 5-fold cross-validation method to conduct experiments in this paper. We divided the datasets
into five subsets of equal size. During the experiment, each subset is used as the test set once, with
the remaining k-1 subsets combined to form the training set. The average of 5 experimental results
is regarded as the final result. The 5-fold cross-validation method can reduce the risk of overfitting
and improve the accuracy of evaluating the model’s generalization ability [32]. Table 7 shows the
experimental results of 5-fold cross-validation on the timestamp vulnerability using this method. It
can be concluded from the data in the table that the model’s overall performance in this article is
strong on the timestamp vulnerability dataset. The standard deviation is 3.66, indicating fluctuations
in model performance.

Table 7: Experimental results using 5-fold cross-validation method in timestamp vulnerability

Accuracy Recall Precision F1

93.59 94.83 68.16 78.80
95.47 100.0 78.91 86.90
94.06 97.92 73.59 82.56
95.78 100.0 77.82 85.48
96.09 99.00 82.58 89.42

Table 8 shows the results of using the 5-fold cross-validation method for the reentrancy vulnerabil-
ity detection task. The table results show the model’s high consistency and strong overall performance
in the reentrancy vulnerability detection task. The performance variability of the model on different
data subsets is relatively small, and the performance is more stable and consistent.
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Table 8: Experimental results using 5-fold cross-validation method in reentrancy vulnerability

Accuracy Recall Precision F1

95.54 88.56 97.32 92.48
94.53 86.93 98.91 92.27
93.75 86.25 98.06 91.46
95.20 88.92 98.70 93.29
95.20 89.20 98.20 93.23

Table 9 shows the results of using the 5-fold cross-validation method on the access control vul-
nerability dataset. The data shows that the performance of our method in access control vulnerability
detection is relatively average and fluctuates greatly on different subsets. The detection methods for
access control vulnerabilities and the balance of their datasets still require improvement.

Table 9: Experimental results using a 5-fold cross-validation method in access control vulnerability

Accuracy Recall Precision F1

90.47 58.83 71.82 62.44
87.19 47.37 72.49 54.56
92.19 80.76 71.69 74.24
89.69 61.19 68.03 60.61
89.38 50.12 68.56 57.94

Timestamp and reentrancy vulnerabilities are two common security risks in smart contracts. To
detect these vulnerabilities more accurately, the paper presents enhancements to the original feature
extraction mode [33]. Specifically, we further check whether block.timestamp is used for comparison
operations in timestamp vulnerability detection. We found that many contracts use spender in the
reentrancy vulnerability detection task. call instead of call.value is a new potential risk point because
it also leads to reentrancy vulnerabilities. Subsequently, we conducted ablation experiments to verify
the effectiveness of the improvement methods proposed in this paper. Table 10 shows the performance
comparison between the original feature extraction mode and the improved feature extraction mode
in this paper on the timestamp vulnerability detection task and the reentrancy vulnerability detection
task. The experimental results show that the performance of the improved feature extraction mode
in the timestamp vulnerability detection task has slightly increased, with an F1 score improvement of
0.24% compared to before. The method presented in this paper has shown significant improvement
across all metrics in detecting reentrancy vulnerabilities. Compared to the feature extraction mode,
which focuses solely on calls and value, the method described in this paper has achieved an increase
of 5.50% in the F1 score.

These results show that the method proposed in this paper can more effectively complete the task
of detecting timestamp vulnerabilities and reentrancy vulnerabilities. Fig. 10 visually shows the role of
the improved feature extraction mode in the vulnerability detection task.
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Table 10: Improvement effect of feature extraction mode in this paper

Metrics Timestamp Reentrancy

Old mode New mode Old mode New mode

Accuracy 94.94 95.00 90.66 94.84
Recall 98.35 98.35 79.53 87.97
Precision 75.93 76.21 96.15 98.23
F1 84.39 84.63 87.05 92.55

Figure 10: Performance impact of the improved feature extraction mode on timestamp vulnerability
detection tasks and reentrancy vulnerability detection tasks

6 Conclusion

This paper proposes a smart contract vulnerability detection method based on feature graphs
and multi-head attention mechanisms, improving complex contract structures’ processing capabilities.
Our method optimizes existing feature extraction modes and proposes innovative feature extraction
modes for access control vulnerabilities. Additionally, the introduction of the multi-head attention
mechanism not only ensures the precise capture of node features but also adequately accounts for the
significance of edge features. It allows for a more detailed capture of the interactions among them,
thereby improving the accuracy of vulnerability detection. The methods proposed in this paper have
been validated for their effectiveness in detecting smart contract vulnerabilities through experiments
conducted on three primary types of vulnerabilities. These results provide a new perspective for smart
contract security research and a valuable methodological reference for future research and practice.

During the experiment, although we successfully demonstrated the effectiveness of our method
in dealing with timestamp vulnerabilities, reentrancy vulnerabilities, and access control vulnerabilities.
A key issue in our experiments is that we lack a diverse public dataset. Although the current dataset
supports our conclusions, its limited scope and diversity might affect the universality of our results. In
the future, we will mainly focus on collecting and constructing smart contract vulnerability datasets.
Considering the achievements of this study in identifying timestamp vulnerabilities, reentrancy
vulnerabilities, and access control vulnerabilities, we plan to develop a comprehensive smart contract
vulnerability detection system in the future. The system covers existing vulnerability types and can
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adapt to emerging security threats, thereby providing more comprehensive and dynamic security
protection.
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