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ABSTRACT

Images are the most important carrier of human information. Moreover, how to safely transmit digital images
through public channels has become an urgent problem. In this paper, we propose a novel image encryption
algorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiency
of image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSE
can fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,
such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext image
and then use the Arnold transform to perturb the image pixels. After that, we elaborate a Chebyshev Toeplitz chaotic
sensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reduce
the transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryption
operator are used to perturb and expand the image pixels to change the pixel position and value of the compressed
image, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant to
various attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
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1 Introduction

With the advancement of technology and the continuous development of society, modern individ-
uals are increasingly concerned about the security of information and data. As the primary medium
for conveying information, the security of digital images is of paramount importance, encompassing
not only personal data but also sensitive areas such as military, political, medical, and commercial
domains. Consequently, the encrypted transmission of image information has emerged as a rapidly
growing and intriguing field, garnering significant attention within the realms of image processing,
data transmission, and computer science [1–4].

Unlike text encryption technology, image encryption techniques often possess unique char-
acteristics, such as high pixel correlation and substantial data storage requirements. Traditional
encryption methods typically encompass the advanced encryption standard (AES) [5], international
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data encryption algorithm (IDEA) [6], and data encryption standard (DES) [7]. However, due to
the distinctive features of images, these methods are generally unsuitable for image encryption.
Consequently, numerous researchers have proposed various methods to mitigate redundancy in image
content during encryption, such as chaos-based encryption methods.

Chaos theory is a method that involves both qualitative discussion and quantitative analysis to
examine the characteristics of dynamic systems, such as chemical reactions, weather changes, and
social behaviors. It was initially proposed by the meteorologist Lorenz and later rigorously defined
mathematically by Li et al. in 1975 [8]. Subsequently, Feigenbaum summarized the universality of
common characteristics of chaotic mapping systems, such as the ergodic theorem [9]. Following these
developments, chaos theory began to be applied in various fields, including weather forecasting and
the study of social behavior. Since then, researchers in diverse disciplines have sought to uncover
correlations among internal elements from various irregular phenomena [10,11]. Consequently, chaos
has become a prominent research topic.

It is well-known that chaotic systems exhibit several characteristic properties, including pseudo-
randomness, ergodicity, unpredictability, and sensitivity to initial conditions and system parameters.
These attributes make chaotic systems a promising alternative to traditional image encryption algo-
rithms [12]. Additionally, chaotic systems offer a large key space and can be efficiently implemented in
parallel using hardware. Motivated by these advantages, researchers have introduced several chaos-
based approaches for image encryption [13–17]. For instance, Talhaoui et al. proposed a real-
time image encryption framework utilizing their fractional one-dimensional chaotic map, which
significantly enhances both the security and speed of encryption [13]. Tamang et al. utilized chaotic
ion-acoustic waves in space plasma to develop a robust image encryption method. By incorporating
SHA-512 hash computation and DNA coding, the proposed encryption method demonstrates high
resistance against various decryption techniques [18].

While chaotic-based encryption algorithms often exhibit strong encryption performance, it is
important to acknowledge that the image encryption process typically involves compression operations
for image transmission or storage [19]. Additionally, the order of encryption and compression directly
impacts the overall efficiency of digital image performance. For example, encrypted image data may
not be compressible [20], posing a challenge in balancing security and compression performance.
Common image compression techniques, such as discrete wavelet transform, Fourier transform,
and the joint photographic experts group (JPEG) standard, may affect encryption effectiveness.
For instance, the size of encrypted bitstreams may vary in JPEG-based compression-encryption
approaches due to the removal of JPEG marker codes [21]. To address this challenge, many researchers
have proposed encryption-then-compression (ETC) frameworks that aim to satisfy both requirements.
However, compared to state-of-the-art image coders without encryption, existing ETC methods often
exhibit lower performance [22]. Furthermore, the security of these approaches is susceptible to attacks
from jigsaw puzzle solvers when dealing with large images. This issue may arise from the perception
of compression and encryption as distinct operations.

As a result, integrating compression into image encryption has become an intriguing topic.
Building upon this foundation, several methods based on number theory and chaotic theory have
been proposed for image encryption [23,24]. However, these encryption algorithms may be susceptible
to plaintext and differential attacks, and the achievable compression may be marginal or even negative
[25]. Recently, Candes et al. introduced a sampling and compression framework known as compressive
sensing (CS), which overcomes the limitations of the Nyquist sampling theorem [26]. Given the high
correlation among adjacent pixels and the strong redundancy in images, several CS-based image
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encryption methods have emerged [27,28], enabling encryption and compression during the image
sampling process. Moreover, the choice of sensing matrix plays a crucial role in these encryption
schemes. For instance, Chai et al. proposed an efficient image encryption method based on CS
using chaotic principles [27]. Although this encryption algorithm demonstrates effective encryption,
it may increase transmission costs due to the utilization of Gaussian random sampling matrices. More
recently, some researchers have demonstrated that chaotic sensing matrices can not only ensure the
sampling efficiency of CS but also reduce memory complexity, making them easily implementable in
software and hardware [29–31]. Consequently, a natural question arises: Can we develop an efficient
image encryption algorithm directly based on chaotic systems and CS?

To address this query, we propose a novel image encryption algorithm named chaotic CS
encryption (CCSE) in this paper, which combines the strengths of the Chebyshev chaotic system
and CS. Our proposed CCSE exhibits resilience against various attacks, including statistical and
noise attacks, and outperforms current competitors in terms of performance. Additionally, CCSE
can be readily implemented in both software and hardware. The proposed CCSE algorithm first
employs a sparse transform to sparsify the plaintext image, followed by applying the Arnold transform
to perturb the image pixels. Subsequently, we design a Chebyshev Toeplitz chaotic sensing matrix,
which significantly reduces memory and computational complexity and can be easily implemented
in hardware. Utilizing the customized Chebyshev Toeplitz sensing matrix, we sample and compress
the perturbed image to reduce transmission bandwidth and data volume. Finally, a bilateral diffusion
operator and a chaotic encryption operator are utilized to perturb and expand the image pixels, altering
both the pixel position and value of the compressed image, thereby producing the encrypted image.
The main contributions of this paper are summarized as follows:

(1) We propose a novel image encryption algorithm based on Chebyshev chaotic system and CS,
which can not only improve the efficiency of image transmission, but also introduce the high
security.

(2) We introduce a Chebyshev Toeplitz chaotic sensing matrix to sample and compress the per-
turbed image for image encryption, which can obtain considerable encryption and compression
performance in the proposed CCSE framework.

(3) We verify that the proposed CCSE algorithm is highly secure and effective through abundant
numerical tests, including histogram, robustness, correlation analysis, and statistical attack.

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3
designs the proposed CCSE framework. Section 4 shows the experimental evaluation. Section 5
concludes the work.

2 Related Work
2.1 Chebyshev Chaotic Systems

Chebyshev chaotic system of degree μ is defined as:

zi+1 = τ(zi) = cos(μ · arccos(zi)), (1)

where zi = τi(z0) (i ∈ N), z0 is a seed and −1 ≤ z0 ≤ 1, 1 < μ ∈ N+.

By iterating Eq. (1), we can obtain a set of Chebyshev chaotic sequence {zi}∞
i=0. It is well-known

that {zi}∞
i=0 has the following characteristic: Mean E(z) = 0 and variance δ2(z) = 0.5. Let d ∈ N+

denote the sampling step size of {zi}∞
i=0. Then the ith(i ∈ N+) moment zi and (i + d)th moment zi+d of the
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Chebyshev chaotic sequence {zi}∞
i=0 can be treated as approximately independent. Fig. 1 illustrates the

joint probability function for {zi}∞
i=0 with d = 6.

Figure 1: Joint probability function for Chebyshev chaotic sequence {zi}∞
i=0, where d = 6 denotes the

sampling step size

Moreover, Gan et al. have verified that the Chebyshev map’s transient time is zero, which indicates
that the Chebyshev’s sequence {zi}∞

i=0 can better build the chaotic sensing matrix [29]. Note that other
chaotic systems may exhibit transient time, which can affect the speed at which the chaotic system
reaches a stable state, consequently rendering the chaotic sequence unsuitable for constructing a
sensing matrix, such as Tent and Logistic chaotic systems. In addition, the Chebyshev chaotic sequence
possesses several advantages, including its excellent ergodicity, low sensitivity to initial conditions,
superior statistical properties, and wide chaotic range, making it well-suited for applications in various
fields, such as secure communications and pseudo-random number generation. As a result, we can
use the Chebyshev chaotic sequence {zi}∞

i=0 to customize the Toeplitz Chebyshev chaotic sensing
matrix for our proposed CCSE framework, which can not only obtain considerable encryption and
compression performance during the image sampling process, but also reduce memory consumption in
hardware and software implementation due to the Toeplitz Chebyshev chaotic matrix has the following
advantages: 1) efficient multiplication support using the FFT algorithm, leading to accelerated image
acquisition and recovery; 2) a well-structured Toeplitz architecture that aligns with practical hardware
implementation; and 3) a notable reduction in memory requirements.

2.2 Chaotic-Based Image Encryption Methods

As mentioned in the introduction, strengthening security and enforcing authorized access to
sensitive data is the major challenge for digital image services. A straightforward solution to this
problem is to make the image less intuitive. To this end, different chaotic-based image encryption
methods have been introduced for image security in recent years [13–17,32–34].

For example, Enayatifar et al. designed a chaos-based image encryption by using a hybrid model
based on a Logistic chaotic system and deoxyribonucleic acid (DNA) masking [17]. Similar to this
work, Zhen et al. proposed a secure image encryption method based on Logistic and spatiotemporal
chaotic systems [33]. Due to the extreme sensitivity of chaotic system, the proposed approach can
greatly increase the complexity of the cracking algorithm. Motivated by this work, Wang et al. then
introduced an image encryption algorithm using cycle shift and chaotic system. The proposed method
is proven to be capable of defending against attacks [16]. Following this work, Talhaoui and Wang
introduced a real-time image encryption scheme by using their fractional one-dimensional chaotic
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map, which can significantly improve the security and speed of encryption [13]. To increase the security
performance, Alawida et al. designed a hybrid chaotic system, and then applied this chaotic system to
image encryption, which is verified to be highly resistant to different attacks [15]. In addition, different
researchers have also proposed various image encryption schemes based on one or multiple chaotic
systems [32,34].

Although the above chaotic-based encryption methods often have good encryption performance,
modern communication systems typically own dual requirements of encryption and compression
[26–28]. As a result, it is necessary to embed compression into image encryption in order to satisfy
the double requirements. In this work, our proposed CCSE method is such a scheme, which can not
only retain the high security of chaotic-based image encryption, but also introduce the advantages of
compressive sensing.

2.3 Compressive Sensing

Mathematically, let x ∈ Rn denote the signal of interest. As prior information, x is typically k-
sparse or compressible in a transform domain, i.e., x = Bc, where B ∈ Rn×n is an orthonormal basis
or a frame, and c ∈ Rn is the corresponding k-sparse vector. Let A ∈ Rm×n(m � n) and τ = (m/n) be
the sensing matrix and measurement rate, respectively. Then, CS can be modeled as:

y = Ax, (2)

where y ∈ Rm denotes the measurement vector, which can be treated as the linear projection of x.

Because of m � n, Eq. (2) has infinite solutions. Fortunately, if the sensing matrix A satisfies
restricted isometry property (RIP), one can exactly recover x from y via some optimization problems,
such as l1-optimization problem:

x̃ = arg min ||x||l1
subject to Ax = y. (3)

To solve the problem of Eq. (3), there exist many CS optimization algorithms, such as basis pursuit
[35], deep optimization-inspired network [36,37]. The RIP offers a distinct geometrical explanation and
gives an exactly united architecture to deal with signal recovery. For images, it is a typical compressed
signal and can be directly applied to CS theory.

3 The Proposed CCSE Framework

In this section, we first design the Chebyshev Toeplitz chaotic sensing matrix that meets the RIP,
and then introduce the proposed CCSE framework.

3.1 Chebyshev Toeplitz Chaotic Sensing Matrix

We first use Eq. (1) to generate a Chebyshev chaotic sequence {zi}∞
i=0. And then, similar to random

matrix, we can obtain the Chebyshev Toeplitz chaotic sensing matrix (CTsM), A ∈ Rm×n, via {zi}∞
i=0 by

column and column, i.e.,
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A = 1

δ
√

m

⎛
⎜⎜⎜⎝

z0 zmd

zd z0

· · ·
· · ·

z(m+n−2)d

z(m+n−3)d

...
...

. . .
...

z(m−1)d z(m−2)d · · · z(n−1)d

⎞
⎟⎟⎟⎠ , (4)

where δ2 represents the variance of {zi}∞
i=0 and d is the sampling step size of {zi}∞

i=0. Note that the
CTsM’s correlation is greatly reduced as the adjacent elements in each row of CTsM are separated
by a distance of m × d. According to that the ith moment zi and (i + d)th moment zi+d of {zi}∞

i=0 are
approximately independent, thus CTsM can be treated as a sub-Gaussian-like matrix. Following the
work of [38,39], we can easily obtain the following theorem for CTsM, i.e., CTsM satisfies the RIP
with high probability.

Theorem 1. The CTsM, A ∈ Rm×n, with the form of Eq. (4), generated by {zi}∞
i=0, satisfies restricted

isometry property with probability Pro ≥ 1 − e−g1 ·m for any m ≥ (g2 · k · log(n/k)), where g1 and g2 rely
only on σk, respectively.

According to Theorem 1, we can easily obtain that CTsM meets the RIP, which can grantee the
sampling efficiency of CS. Moreover, due to the Toeplitz structure of CTsM, this Toeplitz-based matrix
A has the following advantages: 1) A only need store (m+n−2) elements that can significantly decrease
memory requirement, compared to Gaussian sensing matrix or other chaotic matrices (need (m × n)
elements); 2) A can support fast multiplication, such as FFT, and 3) CTsM is a deterministic sensing
matrix that corresponds to feasible hardware implementation, that is, linear time invariant systems.

3.2 Overall Framework of CCSE

Fig. 2 presents the framework of the proposed CCSE method. CCSE is composed of an encryption
process and a decryption process, and they present an inverse relationship. To be more specific, the
encryption process includes image sparse representation, an Arnold scrambling operator, a compres-
sive sensing operator, a bilateral diffusion operator, a chaotic scrambling operator. Correspondingly,
the decryption process consists of the reverse operation of the above steps.

Figure 2: The CCSE framework, which consists of an encryption process and a decryption process,
where the decryption process is the reverse of the encryption process

Moreover, the CS operator, bilateral diffusion operator, chaotic scrambling operator are based on
Chebyshev chaotic sequence generated by Eq. (1), as shown in Fig. 2. Let x be an image of size n×n. We
use the plaintext image x as the parameter to generate the key, and then adopt the secure hash algorithm
SHA-256 [40] to generate three sets of keys, i.e., (μ(1), d (1), z(1)

0 ), (μ(2), d (2), z(2)

0 ), and (μ(3), d (3), z(3)

0 ). After
that, the first three sets of parameters, regarded as stream cipher for CCSE, are used as the initial value
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and parameters of the Chebyshev chaotic system to generate the corresponding chaotic sequence, i.e.,
T1, T2, T3.

The secure hash algorithm is designed by National institute of standards and technology, and
has very high security. Therefore, this operation can increase the correlation between the key and the
plaintext image, which can better prevent plaintext attack.

3.2.1 The Encryption Process

Moreover, the encryption process of the proposed CCSE can be summarized as the following
steps:

Step 1 Sparse representation: We use a sparse basis B ∈ Rn×n, such as discrete wavelet transform
(DWT), to sparse the original image and then obtain the corresponding sparse coefficient matrix C ∈
Rn×n via:

B−1x = C. (5)

Note that B can be many sparse transforms, such as Fourier transform and discrete cosine domain.

The sparse coefficients of the image are predominantly comprised of numerous zeros, accompa-
nied by a limited number of larger coefficients. This characteristic results in a sparse representation
that effectively reduces the overall complexity associated with processing images. Note that the
sparsification defined by Eq. (5) is reversible.

Step 2 Arnold scrambling operator: We utilize the Arnold scrambling operator Fas on sparse
coefficient matrix C and then obtain the scrambled coefficient matrix. The Arnold scrambling operator
can be modeled as:

D = Fas(C), (6)

where D ∈ Rn×n is the scrambled coefficient matrix. The Arnold scrambling, i.e., cat face transfor-
mation, is used to uniformly distribute the energy of an image, which is widely applied in digital
watermarking. The two-dimensional Arnold transformation Fas for an image of order P is defined
as:(

r′

t′

)
= Fas (·) =

(
1 1
1 2

)(
r
t

)
mod P, (7)

where (r, t) and (r′, t′) are the pixels’ position of C and D, respectively, and r, t ∈ {0, 1, 2, . . . , P − 1}.
The Arnold scrambling operator plays a crucial role in evenly distributing the high-frequency

information of matrix C across the D space. This redistribution effectively mitigates the block effect,
leading to improved outcomes in image CS. Consequently, this operator contributes to a more
uniform distribution of information, thereby enhancing the effectiveness of the image compression
and reconstruction processes.

Step 3 Compressive sensing: Using (μ(1), d (1), z(1)

0 ) and the generated sequence T1, we first construct
a sensing matrix CTsM, A ∈ Rm×n. Then we use the CTsM to sample and compress the scrambled
coefficient matrix, which can be formalized as:

y = AD, (8)

where y ∈ Rm×n represents the measurements. The measurement rate is τ = (m/n). As the data
dimension can be reduced from Rn×n to R

m×n, thus the proposed CCSE scheme can obtain considerable
compression performance.
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Step 4 Bilateral diffusion operator: This operator consists of a forward diffusion function Ffd and
a counter diffusion function Fcd, which are based on modulo addition operation. First of all, we
straighten y ∈ R

m×n into a vector y′ with size of 1 × mn. Then, we use Ffd and Fcd to act on the vector
y′, respectively. The forward diffusion function Ffd can be modeled as:

w = Ffd(y′). (9)

Specifically, for an element of w, wj, we have:(
wj = (

wj−1 + T(j)
2 + y′

j

)
mod 256

y′
j = (

2 × 256 + wj − wj−1 − T(j)
2

)
mod 256

, (10)

where T (j)
2 denotes the jth element of the generated Chebyshev chaotic sequence, and j ∈ {1, 2, 3, . . . , mn}.

Similar to Ffd, the counter diffusion function Fcd is:

q = Fcd(w), (11)

where q is the output of Ffd. Specifically, for an element of q, qj, we have:(
qj = (

qj+1 + T(j)
2 + wj

)
mod 256

wj = (
2 × 256 + qj − qj+1 − T(j)

2

)
mod 256

. (12)

After the bilateral diffusion operator, the extraction of information related to the original image
from the ciphertext image q becomes a challenging task, consequently enhancing the overall security
of the encryption process. The inherent difficulty introduced by this operation serves as a robust
protective measure, making it arduous for unauthorized entities to retrieve meaningful details from
the encrypted data.

Step 5 Chaotic scrambling operator: We use the Chaotic scrambling operator Fcs to scramble the
ciphertext image q, which can be defined as:

ys = Fcs(q) = sort(Corr{vect(q), T3}), (13)

where ys is the ultimate ciphertext image, sort(·) and vect(·) denote the sorting and vectorization
operations, respectively, and the Corr(·) function is used to establish a one-to-one correspondence
between q and the chaotic sequence T3.

3.2.2 The Decryption Process

As descripted in Fig. 2, the decryption process of the proposed CCSE is the reverse of the
encryption process. Specially, the decryption process consists of an inverse sparse operator, an inverse
Arnold scrambling operator, a CS recovery, an inverse bilateral diffusion operator, and an inverse
chaotic scrambling operator. Note that the inverse sparse operator, the inverse Arnold scrambling
operator, the inverse bilateral diffusion operator, and the inverse chaotic scrambling operator is the
corresponding reverse operations of step 1, step 2, step 4, and step 5 in the encryption process.

For example, the inverse sparse operator can be formed as:

x = BC, (14)

which is the inverse of Eq. (5). By using this inverse sparse operator, we can obtain the reconstructed
and decrypted image x̃. All other reverse operations are reverse operations of their corresponding
formulas.
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Specially, the CS recovery can be converted to some optimization problems, most famously, l1-
optimization problem defined by Eq. (3). One can use many CS algorithms to solve this problem, such
as basis pursuit [35]. Please see the reference [26] for more details. To save space, we omit the detailed
description of the decryption process.

4 Numerical Experiments

In this section, the encryption performance of the proposed CCSE is investigated via numerical
experiments. For a fair comparison, we also use several image chaotic encryption methods as the
comparison algorithms of CCSE. The results of the compared algorithms are obtained using the
author’s publicly available code or by reproducing the methods (in cases where the codes are not
available).

4.1 Experimental Setup and Environment

We use the standard test images to test the performance of CCSE. The standard test images include
“Lena”, “Pepper”, “Cameraman”. In addition, these numerical experiments are implemented on the
MATLAB 2018(R2018b) platform on a computer PC with Intel(R) Xeon(R) Silver 4110 CPU @
2.10 GHz, 64 G memory, Windows 10 system. In particular, we adopt basis pursuit method [35] as the
CS recovery algorithm for CCSE. The quality metric for image recovery is the commonly used peak
signal-to-noise ratio (PSNR) defined as:

PSNR = 10 log10255 × 255MSE dB,

where

MSE = 1
n × n

Σn
r=1Σ

n
t=1

(|x (r, t) − x̃ (r, t) |),

where x(r, t) and x̃ (r, t) denote the pixel values of the original image and the decrypted image,
respectively, and n × n is the size of the original image.

4.2 Encrypted Data and CS Recovery

We take images (“Lena”, “Pepper”, “Cameraman”) of size 256×256 as the original images, which
are depicted in Figs. 3a, 3d and 3g, respectively. Assume that the measurement rate τ = 0.8. Then, we
follow the encryption steps of CCSE to obtain the corresponding compressed and encrypted data, as
shown in Figs. 3b, 3e and 3h. Based on the decryption process, we can obtain these decrypted images,
i.e., Figs. 3c, 3f and 3i. The corresponding PSNRs are 38.11, 38.62, and 37.75 dB. According to these
results, we can observe that CCSE can reconstruct the original images with high quality.
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Figure 3: Original image, encrypted image, and decrypted image. (a) Original “Lena”, (b) encrypted
“Lena”, (c) decrypted “Lena”; (d) Original “Pepper”, (e) encrypted “Pepper”, (f) decrypted “Pepper”;
(g) Original “Cameraman”, (h) encrypted “Cameraman”, (i) decrypted “Cameraman”

In addition, to observe in more detail, we adopt various CTsMs with different sizes for CCSE,
i.e., τ ∈ {0.4, 0.6, 0.8}. Fig. 4 shows the encrypted data and CS recovery for “Lena”. The PSNRs for
τ = 0.4, τ = 0.6, τ = 0.8 are 24.76, 31.39, and 38.11 dB, respectively. According to this figure, we can
see that as τ is higher, the reconstruction quality of CCSE is better. Moreover, although τ is as low
as 0.4, CCSE can still reconstruct the image better. This also confirms that CCSE can compress the
image while encrypting the image, which can improve the efficiency of image transmission.
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Figure 4: Encrypted images and decrypted images at different measurement rates. (a) Encrypted
“Lena” at τ = 0.4, (b) decrypted “Lena” at τ = 0.4; (c) encrypted “Lena” at τ = 0.6, (d) decrypted
“Lena” at τ = 0.6; (e) encrypted “Lena” at τ = 0.8; (f) decrypted “Lena” at τ = 0.8

4.3 Key Space

The proposed CCSE adopts the secure hash algorithm SHA-256 to generate the keys, therefore,
the key space for CCSE is Skey = 2256. Table 1 compares the key space of CCSE with other image
encryption algorithms. According to Table 1, we can see that the proposed CCSE has a larger key
space than other algorithms. Moreover, it is well-known that if the encryption method’s key space is
larger than 2100, then this approach is easily resistant to all kinds of brute force crack or attack key.

Table 1: Comparison of key space for CCSE and other methods

Method Ref. [16] Ref. [17] Ref. [27] Ref. [28] Ref. [32]

Key space >264 2120 1070 1053 2208

Method Ref. [33] Ref. [34] Ref. [41] Ref. [42] CCSE

Key space >1069 2256 >2256 2100 2256
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4.4 Histogram Analysis

Histogram is a statistical method of data distribution, which is also an efficiency tool to measure
the encryption performance of a method. We illustrate the histograms for our proposed CCSE on
images “Lena”, “Pepper”, and “Cameraman” in Fig. 5. The second column and fourth column are
the histograms of original images and the encrypted images, respectively. According to Fig. 5, we
can see that the histogram of the original image exhibits a Gaussian phenomenon, which is unevenly
distributed. However, the histogram of encrypted image has no high and low features, which is flat.
Moreover, the distribution characteristics of a histogram can be quantitatively verified by calculating
the variance of the histogram [43,44]. It can be expressed as:

Var(X) = Σn
i=1Σ

n
j=1(

1
2
× (xi − xj))

n × n
× 100,

where X = {x0, x1, . . . , xi=n−1} is a vector, and xi and xj denote i-th and j-th corresponding gray value,
respectively. The smaller the variance of a histogram, the flatter the histogram becomes, indicating a
more equal distribution of gray-level pixels in the image. The ideal value of Var(X) is 0, signifying xi

= xj for all i and j.

Figure 5: Histograms of original images and the encrypted images. First column: Original images;
Second column: Histograms of original images; Third column: The encrypted images; Fourth column:
Histograms of encrypted images
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We calculated the histogram variances for the proposed scheme concerning plain images with a
size of 256 × 256 pixels and their corresponding visually encrypted images. As shown in Table 2, we
can see that the Var(X) of the cipher image is smaller than the original image, which indicates that the
histogram of encrypted image for CCSE is flat.

Table 2: Variances of histograms of the encrypted images

Lena Cameraman

Original image Cipher image Original image Cipher image

30665.70 260.47 110973.40 200.85

Because the histogram of encrypted image for CCSE is flat, the attackers cannot collect effective
information through pixel statistical analysis. As a result, the proposed CCSE can resist statistical
analysis.

4.5 Differential Attack Analysis

Typically, an attacker may make slight modifications to the original image (e.g., changing only
one pixel) and observe the corresponding changes in the encrypted results. Through this approach, the
attacker may discover meaningful relationships between two ciphered images and the original image.
To assess the impact of this attack on the encryption algorithm, we use two evaluation metrics [16,17],
i.e., Number of pixels change rate (NPCR) and Unified average changing intensity (UACI), which are
described as following:

NPCR = Σn
r=1Σ

n
t=1D(r, t)

n × n
× 100,

and

NPCR = Σn
r=1Σ

n
t=1|x (r, t) − x̃ (r, t)|
n × n × 256

× 100.

Note that if x (r, t) = x̃ (r, t), D (r, t) = 0, otherwise D(r, t) = 1. For all cryptographic systems,
the ideal outcomes for NPCR and UACI are 100% and 33.33%, respectively. We utilize the encrypted
version of the original image (Lena) and the modified encrypted version of the image, and compute
the values for NPCR and UACI, which are presented in Table 3. From the Table 3, it can be observed
that compared to other benchmark algorithms, our proposed CCSE exhibits better NPCR and UACI
values, and is also closer to the ideal values. As a result, CCSE demonstrates robust resistance against
differential attacks.

Table 3: Comparison of correlation coefficients of different images for different methods

Test image Method NPCR % UACI %

Peppers Ref. [16] 99.821 33.460
Ref. [17] 99.299 33.391
Ref. [27] 96.341 35.614
Ref. [28] 99.615 33.559

(Continued)
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Table 3 (continued)

Test image Method NPCR % UACI %

Ref. [32] 99.582 33.623
Ref. [33] 99.601 33.512
Ref. [34] 99.733 33.725
Ref. [41] 99.884 35.315
Ref. [42] 99.607 33.495
CCSE 99.885 33.384

Boat Ref. [16] 99.782 33.682
Ref. [17] 98.923 33.494
Ref. [27] 96.761 34.997
Ref. [28] 99.638 33.455
Ref. [32] 99.251 33.682
Ref. [33] 99.581 33.441
Ref. [34] 99.483 33.875
Ref. [41] 99.350 36.539
Ref. [42] 99.617 33.661
CCSE 99.485 33.406

4.6 Information Entropy Analysis

Information entropy is commonly used to evaluate the randomness of an image, and its defini-
tion is

I (s) = −Σ255
j=0p(sj) log2(p

(
sj

)
),

where s denotes a collection of pixels, and p(sj) is the occurrence probability of s. If an encryption
method is closer to the upper limit of 8, then it is safer. Table 4 compares the information entropy for
CCSE and other image encryption methods. According to Table 4, we can see that the information
entropy of our proposed CCSE is higher than that of the literatures [32] and [34]. These results mean
that our proposed CCSE algorithm can effectively scramble the original image and obtain a ciphertext
image with better randomness.

Table 4: Comparison of correlation coefficients of different images for different methods

Method Information entropy
Lenna Pepper Cameraman

Original image 7.441 7.594 6.905
Ref. [16] 7.971 7.985 7.912
Ref. [17] 7.991 7.993 7.981
Ref. [27] 7.994 7.992 7.986
Ref. [28] 7.990 7.989 7.982
Ref. [32] 7.987 7.993 7.988

(Continued)
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Table 4 (continued)

Method Information entropy
Lenna Pepper Cameraman

Ref. [33] 7.991 7.994 7.984
Ref. [34] 7.994 7.992 7.986
Ref. [41] 7.991 7.990 7.985
Ref. [42] 7.992 7.991 7.990
CCSE 7.996 7.997 7.995

4.7 Correlation Analysis

The correlation coefficients of vertical, horizontal and diagonal adjacent pixels are important
metrics to measure the encryption performance of a method. Specially, correlation coefficient of
adjacent pixels of an encrypted image obtained by an excellent encryption algorithm should be small,
close to zero. In this experiment, we randomly choose 10000 pairs of adjacent pixels of an original
image and its corresponding encrypted image, and compute the correlation coefficient via

Corr(x, y) = cov(x, y)√
D(x) × √

D(y)
,

where cov (x, y) = 1
n
Σn

i=1(xi − E(x))(yi − E(y)), E (x) = 1
n
Σn

i=1xi, E (y) = 1
n
Σn

i=1yi, D (x) = 1
n
Σn

i=1(xi

−E (x))2, D (y) = 1
n
Σn

i=1(yi − E (y))2.

Fig. 6 illustrates the correlation distribution of “Lena” and its ciphertext image in three directions
for our proposed CCSE. According to Fig. 6, we can see that the correlation distributions of vertical,
horizontal and diagonal adjacent pixels for the original “Lena” are linear, however, they have become
disorganized, and evenly distributed after encryption. In other words, the correlation coefficients of
the encrypted image are weak, and thus the proposed CCSE can resist correlation analysis.

Moreover, Table 5 presents the correlation coefficients of different plaintext images and their
encrypted images in three directions. From Table 5, we can see that the original image’s the correlation
coefficients generally exceed 0.9. Moreover, compared to other encryption methods, our proposed
CCSE owns smaller correlation coefficients in three directions, indicating that CCSE has better
encryption characteristics.
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Figure 6: The correlation distribution of “Lena” and its ciphertext image in three directions. (a)–
(c) denote the horizontal, vertical, and diagonal correlation distributions of the original “Lena”,
respectively; (d)–(f) are the horizontal, vertical, and diagonal correlation distributions of the encrypted
“Lena”, respectively

Table 5: Comparison of correlation coefficients of “Lena” for different methods

Method Correlation coefficients

Horizontal Vertical Diagonal

Original “Lena” 0. 938 0. 969 0. 913
Ref. [16] 0.007 0.006 0.003
Ref. [17] 0.010 0.034 0.021
Ref. [27] 0.013 0.007 −0.008
Ref. [28] 0.015 0.016 0.010
Ref. [32] 0.009 0.028 0.006
Ref. [33] 0.021 0.466 −0.009
Ref. [34] 0.024 0.031 0.007
Ref. [41] 0.273 0.017 0.007
Ref. [42] 0.006 0.004 0.003
CCSE −0.005 −0.003 −0.002
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4.8 Analysis of Visual Strength

In this part, we conduct tests on Homogeneity, Energy, and Contrast analysis to assess the strength
of the proposed CCSE, as shown in Table 6. Homogeneity analysis is used to assess the closeness of
distribution from the diagonal of GLCM (Grey Level Co-occurrence Matrix) [45]. Energy analysis
is employed to quantify the disorderliness within the texture of the cipher image by is employed to
quantify the disorderliness within the texture of the cipher image by summing the squared values of
GLCM [46]. Contrast analysis can capture the variations among the pixels in the image [47]. According
to Table 6, we can see that our proposed CCSE exhibits excellent encryption performance, effectively
ensuring high-quality encryption of images.

Table 6: Homogeneity, energy, and contrast analysis of our proposed CCSE

Image Test

Homogeneity Energy Contrast

Lena Original image 0. 7635 0. 0645 1.1303
Encrypted image 0.3942 0.0160 10.487

Cameraman Original image 0.8564 0.1618 1.2014
Encrypted image 0.4041 0.0165 9.7857

4.9 Noise Attack and Robustness

As we all know, images are easily affected by noise during transmission, and may even be
maliciously attacked, thus we need to explore the robustness analysis for the encryption method. Based
on this observation, we will use Gaussian noise and salt and pepper noise to perform noise attack on
the ciphertext images to test the robustness of the algorithm. The Gaussian noise level has mean zero
and is controlled by its variance ∈ {

1 × 10−6, 3 × 10−6, 5 × 10−6, 9 × 10−6
}
, respectively, as shown in

first row of Fig. 7. The level of salt and pepper noise is determined by its density {0.2, 0.1, 0.05, 0.01},
as illustrated in third row of Fig. 7. The second and fourth rows in Fig. 7 present the encrypted images
with various noise.

According to Fig. 7, it clearly shows that we can still decrypt the original image from the ciphertext
image with different noises, which indicates that the proposed CCSE encryption scheme has good
robustness.

4.10 Analysis of Chosen-Plaintext Attacks and Known-Plaintext

As described in before, CCSE use the plaintext image x as the parameter to generate the key,
and then adopt the secure hash algorithm SHA-256 to generate three sets of keys. Therefore, a slight
change in the initial value, i.e., key, will give rise to a completely different Chebyshev chaotic sequence,
consequently leading to distinct the CS operator, bilateral diffusion operator, chaotic scrambling oper-
ator. Hence, CCSE generates entirely disparate cipher images, rendering an eavesdropper incapable
of decrypting a specific image utilizing the computed initial conditions. Consequently, the proposed
CCSE scheme exhibits robust resistance against both chosen-plaintext attacks and known-plaintext
attacks.
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Figure 7: Different noises and their decrypted images. First row, (a)–(d) are the Gaussian noise with
variance

{
1 × 10−6, 3 × 10−6, 5 × 10−6, 9 × 10−6

}
, respectively; Second row, (e)–(h) are the encrypted

image with Gaussian noise depicted in (a)–(d); Third row, (i)–(l) are the salt and pepper noise with
density {0.01, 0.05, 0.1, 0.2}, respectively; Fourth row, (m)–(p) are the encrypted image with salt and
pepper noise depicted in (i)–(l)
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4.11 Analysis of Computational Time Complexity

We selected Lena as the test image to assess the time required for the proposed encryption and
decryption methods. The encryption time represents the duration from the original image to the
ciphertext image, while the decryption time signifies the time to restore the original image from the
ciphertext image. For the Lena image, the proposed CCSE exhibits an encryption time of 0.4323 s
and a decryption time of 0.5745 s. While the encryption time of [32,34] and [45] are 0.6892 s, 0.7521,
and 4.4282 s, and the corresponding decryption time are 0.8754 s, 0.7965, and 3.4532 s, respectively.
Compared to the method in [32], our proposed CCSE is 37.28% faster in encryption time and 52.38%
faster in decryption time. It is evident that this proposed CCSE allows for rapid encryption and
decryption of images.

5 Conclusions

In conclusion, this paper introduces a novel image encryption algorithm, termed chaotic compres-
sive sensing (CS) encryption (CCSE), which addresses the increasing concerns regarding information
security in the digital age. The significance of secure image transmission spans across personal privacy,
political communications, medical data, and commercial interests. Recognizing these implications,
CCSE emerges as a promising solution by combining the efficiency of CS with the robust security pro-
vided by chaotic systems. As a result, CCSE can withstand various attacks, such as differential attack,
and exhibit robustness. The proposed CCSE employs a sequence of transformations, including sparse
transformation, Arnold transformation, and the integration of a Chebyshev Toeplitz chaotic sensing
matrix. These transformations collectively facilitate image perturbation, sampling, and compression,
thereby reducing transmission bandwidth and data volume without compromising security. Moreover,
the incorporation of bilateral diffusion and chaotic encryption operators further enhances the security
of CCSE by perturbing and expanding pixel values and positions within the encrypted image. Through
extensive experimental validation, CCSE exhibits robustness against statistical and noise attacks,
surpassing existing competitors in terms of security and performance. CCSE represents a significant
advancement in the field of image encryption, offering a viable solution to the pressing challenges of
information security in an increasingly digitized world. Its effectiveness in safeguarding sensitive data
across diverse domains underscores its potential for practical implementation and further research
exploration.

Our proposed CCSE is more suitable for regular images. However, once the image size becomes
too large, it leads to excessive complexity in our approach. In future work, we will develop a more
lightweight image chaotic compression encryption scheme based on CCSE. Additionally, CCSE
requires collaboration with traditional CS reconstruction algorithms to recover images. However,
the slow recovery speed of traditional CS reconstruction algorithms imposes a time constraint on
our proposed CCSE. By integrating deep learning techniques with CCSE, we will explore novel
image chaos encryption methods aimed at enhancing security and adaptability. Through real-world
application validation, especially in areas such as communication and cloud storage, we will assess the
performance of these algorithms, ensuring their effectiveness and feasibility in practical scenarios.
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