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ABSTRACT

Cloud computing is a dynamic and rapidly evolving field, where the demand for resources fluctuates continuously.
This paper delves into the imperative need for adaptability in the allocation of resources to applications and
services within cloud computing environments. The motivation stems from the pressing issue of accommodating
fluctuating levels of user demand efficiently. By adhering to the proposed resource allocation method, we aim to
achieve a substantial reduction in energy consumption. This reduction hinges on the precise and efficient allocation
of resources to the tasks that require those most, aligning with the broader goal of sustainable and eco-friendly
cloud computing systems. To enhance the resource allocation process, we introduce a novel knowledge-based
optimization algorithm. In this study, we rigorously evaluate its efficacy by comparing it to existing algorithms,
including the Flower Pollination Algorithm (FPA), Spark Lion Whale Optimization (SLWO), and Firefly Algo-
rithm. Our findings reveal that our proposed algorithm, Knowledge Based Flower Pollination Algorithm (KB-
FPA), consistently outperforms these conventional methods in both resource allocation efficiency and energy
consumption reduction. This paper underscores the profound significance of resource allocation in the realm of
cloud computing. By addressing the critical issue of adaptability and energy efficiency, it lays the groundwork for a
more sustainable future in cloud computing systems. Our contribution to the field lies in the introduction of a new
resource allocation strategy, offering the potential for significantly improved efficiency and sustainability within
cloud computing infrastructures.

KEYWORDS

Cloud computing; resource allocation; energy consumption; optimization algorithm; flower pollination algorithm

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.


https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046516
https://www.techscience.com/doi/10.32604/cmc.2024.046516
mailto:pacv@ugr.es

3758 CMC, 2024, vol.79, no.3

1 Introduction

Cloud computing is a computing paradigm that has evolved from various other paradigms,
such as virtualization, distributed computing, grid computing, and utility computing. It has gained
prominence results leading to a computing paradigm for providing on-demand internet services.
Cloud computing and data centers have evolved into an important component of our everyday lives
as a consequence of multiple internet-dependent services, that we have grown accustomed to using
frequently [1]. The data center is the foundation of Information Technology (IT) operations, and it
also supports computational features for online services. It pools a cluster of resources such as Central
Processing Unit (CPU), Random-Access Memory (RAM), and memory, via networks, cloud services,
and communication links. The information technology infrastructure and the electrical and cooling
infrastructure are the two major subsystems of the data center [2,3]. The data center’s functionality
and attributes are critical for optimizing cloud services. Power consumption in data centers has
increased rapidly with the demand for increased cloud services. Power management, as well as CO,
emissions and overloading, has become a significant challenge for cloud data centers [4]. Given that
energy consumption is a significant source of global warming, investigating cloud data center energy
concerns and reducing its consumption are considered to be promising strategies for energy-efficient
management in the cloud environment [5].

Data centers, integral to modern IT operations and online services, play a pivotal role in the
digital age by acting as centralized hubs for data storage and processing. However, their operation
can contribute to carbon dioxide (CO,) emissions due to several key factors [6]. The primary driver
is the substantial energy consumption required to power and cool the servers, networking equipment,
and infrastructure within these facilities. Often, this energy is generated from fossil fuels, such as coal
and natural gas, which release CO, when burned. In addition to the direct energy use, cooling systems
in data centers, including air conditioning and chillers, also consume significant electricity, further
amplifying emissions. Inefficiencies in data center operations, including underutilized servers and
poor hardware optimization, exacerbate the issue by leading to higher energy consumption. The rapid
expansion of data centers to meet the growing demand for cloud services has intensified their carbon
footprint. Outdated and inefficient equipment within data centers, along with their reluctance to adopt
renewable energy sources, further compound CO, emissions [7]. While data centers are essential for
the digital ecosystem, mitigating their environmental impact requires improving energy efficiency,
optimizing hardware utilization, and transiting to cleaner energy sources [8].

Additionally, saving energy not only helps the environment but also saves money. Therefore,
it becomes essential to reduce the energy usage of data centers and cloud computing systems [6].
Multiple problems with energy consumption directly affect the functionality and usefulness of the
cloud network. The usage of resources, which directly impacts energy consumption, is, therefore, a
major concern. When resources are not managed properly, the efficiency of the cloud environment
suffers [7]. The amount of heat produced by data center servers has increased along with the demand
for cloud computing services [8]. The electricity required to run and cool these data center servers
comes at the expense of the highest possible energy consumption. It has been discovered that the cost
of energy consumption accounts for the majority of the total cost [9]. To solve the problem, various
methods such as VM virtualization, VM migration, resource allocation, and scheduling are used. A
resource allocation system is a crucial component of the cloud environment. When assigning resources
to services, cloud service providers should do it in a way that uses less energy while complying with
the Quality of Service (QoS) requirements of the end users [10]. Resource allocation is a technique
for finding, choosing, deploying, and managing resources to complete the hosted application while
adhering to the quality-of-service requirements and accomplishing service providers’ goals like better
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resource usage, decreased energy expenditures, and decreased carbon footprints. There are two types
of resource allocation: Static and Dynamic Allocation. Static/Dynamic allocation of resources must
be determined depending on the application demands to efficiently utilize the resources and satisfy the
QoS standards [11,12].

In addition, over and under-provisioning of resources must be avoided. The main benefits of
efficient resource allocation are:

eScalability: The ability of cloud computing to flexibly scale up and down in response to changes
in resource demand is one of its key features [13].

eSpeed: Without an IT expert, users may swiftly spin up many devices according to their
needs [14].

eSavings: Users may substantially reduce costs by adopting the pay-as-you-go approach, which is
achieved by allocating or removing resources in response to user demand [15]. The resource allocation
methods in cloud computing can also be divided into reactive and proactive resource allocation
[16], as shown in FFig. I. Reactive resource allocation methods are a kind of dynamic allocation
method where resources are allocated based on tasks. It includes meta-heuristic or optimization
approaches along with other traditional allocation mechanisms. On the other hand, proactive methods
are table-driven methods that use machine learning approaches and create a knowledge base for their
sources [17]. Proactive resource allocation develops a database just once, but if any new resources are
added or current resources are deleted or damaged, the database should be regenerated for optimal
allocation [18].

Optimization

Dynamic Algorithm
Resource
Allocation Mechanism and

Resource Methods
Allocation
Static Resource Lealrvrl:ilrclglgzsed
Allocati
ocation Method

Figure 1: Resource allocation methods in cloud computing

1.1 Research Problems

The data center, a pivotal component in IT operations, is crucial for supporting the computational
requirements of online services. It functions as a resource hub, pooling CPU, RAM, and memory
through networks, cloud services, and communication links. Within the data center, two major
subsystems, the information technology infrastructure, and the electrical and cooling infrastructure,
play a defining role in its functionality [2,3]. Yet, as data centers have evolved into critical components
of cloud service delivery, the surge in power consumption has emerged as a pressing challenge. This
increase in power consumption encompasses power management, CO, emissions, and the potential
for overloading in cloud data centers, adding complexity to their operation [4].

1.2 The Gaps

In light of the critical role that energy consumption plays in global warming, the exploration of
energy concerns within cloud data centers, along with strategies to curtail consumption, has garnered
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significant attention [5]. The importance of this issue extends beyond environmental concerns; energy
efficiency also translates into cost savings. Consequently, the imperative to reduce energy usage in data
centers and cloud computing systems has grown [6].

Reactive Resource Allocation: Reactive adaptation is based on a remedial action that is hard-
coded and predetermined and is activated when a certain event occurs, such as CPU utilization or CPU
energy consumption surpassing a specific threshold. The reactive allocation’s efficacy is determined
by its ability to recognize variations. Resources allotted to the applications must be modified to reflect
changes in workload if the considerable deviation from the QoS performance targets is to be avoided.
Reactive techniques do not need a thorough grasp of an application’s real-time behavior [19]. Proactive
Resource Allocation: Proactive adaptation is a popular technique. It determines the control action
that, under certain constraints, maximizes a cost function to forecast the behavior of the system over
a specific time. When adequate data on resource performance and workload is available, and historic
data follows some distribution, then the proactive approach can be employed [20]. Hybrid Resource
Allocation: The hybrid adaption technique uses proactive and reactive resource allocation methods to
meet (i) Service Level Agreement (SLA), (ii) save energy, and (iii) lower provisioning costs. Managing
proactive and reactive strategies can maximize energy efficiency while retaining performance [21].
Recent years have witnessed tremendous growth in the cloud computing market as more and more
businesses and organizations use the technology to meet their growing computational needs [22].
However, with this expansion comes the difficulty of allocating and managing resources effectively to
ensure optimal performance and cost savings [23]. This study proposes a hybrid strategy that combines
static and dynamic resource allocation techniques to address this issue.

1.3 Proposed Approaches

Energy consumption challenges are intrinsically tied to resource management issues. Proper
resource allocation stands as a vital strategy in addressing these challenges. Inefficient resource
utilization can lead to energy wastage, directly impacting the overall performance of cloud
environments [7].

The proposed hybrid approach offers a promising solution to the challenges faced by cloud
computing providers, and future research could investigate methods to improve resource allocation
techniques further to meet the changing demands of cloud computing. Our research is fueled by several
significant challenges and shortcomings we have identified in current cloud computing studies. Cloud
computing, which has become integral to our digital lives, presents a range of issues as it has matured.
Firstly, we are concerned about the environmental impact of cloud computing. Data centers that
power cloud services are consuming more energy than ever before, leading to environmental worries
due to increased carbon emissions. Current solutions to this problem often falls short of achieving
substantial reductions in data center carbon footprints. Another pressing issue is how resources are
allocated within cloud environments. Finding the right balance between allocating resources optimally,
controlling costs, and ensuring high-quality service is complex. Existing methods struggle to adapt
to the dynamic workloads typical in cloud computing. The lack of standardized resource allocation
practices in the cloud industry hinders interoperability and complicates assessing services based on
energy efficiency. This absence of common guidelines has made it challenging to develop a unified and
efficient approach to resource allocation.

Our work introduces a novel approach to resource allocation in cloud computing, leveraging
the Knowledge-Based Flower Pollination Algorithm (KB-FPA). By integrating machine learning
intelligence and optimization techniques, our method aims to enhance the efficiency of cloud resource
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allocation. We address energy consumption and Quality of Service (QoS) concerns through a combi-
nation of decision tree-based knowledge acquisition and flower pollination optimization [!1]. In the
subsequent sections, we delve into the details of our approach, experimental results, and comparative
analysis. Through our research, we aim to contribute to the advancement of resource allocation
strategies in cloud computing. In the domain of resource optimization algorithms, we see untapped
innovation potential. New approaches, especially those leveraging machine learning, offer promising
ways to improve efficiency and adaptability in the ever-changing cloud landscape. Lastly, we face
the challenge of bridging the gap between theoretical research and practical implementation. Many
proposed resource allocation solutions remain largely theoretical or lack robust testing in real-
world cloud environments. These complex challenges, combined with the continuous growth of cloud
computing, motivate our research to reshape resource allocation practices. We aim to contribute to
the development of sustainable, efficient, and adaptable solutions that address these critical issues and
limitations.

The increase in heat production from data center servers, driven by the burgeoning demand for
cloud computing services, compounds energy consumption as servers require electricity for operation
and cooling [8]. It has been revealed that the majority of the total operational cost is attributed to
energy consumption [9].

Following is the structure of this paper: In Section 2, the literature review highlights the static,
dynamic, and hybrid approaches to resource allocation in cloud computing. Static approaches allocate
resources based on predetermined principles and assumptions, whereas dynamic approaches modify
resource allocation based on real-time demand. This study proposes a hybrid approach that combines
the benefits of both static and dynamic approaches, allowing for greater flexibility and adaptability to
changes in load and resources. In Section 3, the proposed hybrid approach employs an FPA algorithm
and Decision Tree to optimize resource allocation based on workload. This strategy allows for the
efficient use of resources, resulting in improved performance and cost savings. It also demonstrates the
ability to adapt to shifting resource and load requirements, making it a promising solution for cloud
computing service providers. In Section 4, the effectiveness of the proposed method is evaluated and
compared to existing methods. The hybrid approach proposed outperforms traditional approaches
in terms of energy efficiency and cost savings. This demonstrates that the proposed technique for
optimizing cloud computing resource allocation and utilization is effective. Section 5 of the paper
concludes with a summary of the findings and suggestions for future research.

2 Literature Review

Over the past decade, researchers have increasingly focused on optimizing cloud performance by
addressing the crucial aspect of energy-efficient cloud resource allocation. This emphasis has led to
the development of various resource allocation models, each offering unique approaches to enhancing
the efficiency of resource allocation in cloud environments.

Belgacem et al. [1] introduced the Intelligent Multi-Agent System and Reinforcement Learning
Method (IMARM). IMARM represents a significant innovation in cloud resource allocation as
it integrates multi-agent capabilities with the Q-learning method. This integration allows IMARM
to dynamically allocate and release resources based on the characteristics of multi-agent systems,
adapting effectively to evolving customer requirements. IMARM leverages reinforcement learning to
guide virtual machines toward optimal states, aligning with the surrounding environment. Notably,
experimental results have demonstrated IMARM’s superiority over complex fault tolerance and
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energy-based algorithms, particularly when accounting for load balancing and execution time consid-
erations. The study conducted by Moparthia et al. [2] focused on examining strategies for enhancing
network response times and reducing energy consumption in Internet of Things (IoT) systems.
The authors’ analysis offers valuable perspectives on these areas, uncovering potential strategies for
enhancing the efficiency and efficacy of IoT networks. The load balancer algorithm proposed by
Moparthia et al. is widely recognized as a significant advancement in the industry. The algorithm has
been found to have positive effects in terms of optimizing reaction time, improving energy efficiency,
and reducing infrastructure expenses.

In pursuit of efficient resource allocation, Abbas et al. [3] explored the use of Artificial Neural
Networks (ANNs). ANNs were found to excel in estimating costs for both clients and service
providers, crucial for achieving optimal resource allocation. The accuracy of the ANN model in
cost estimation surpasses that of state-of-the-art techniques. However, it is essential to acknowledge
the computational demands associated with training ANN models, especially when considering
their implementation in large-scale cloud environments. Samriya et al. [4] introduced the Spider
Monkey Optimization (SMO) approach, aiming to optimize various parameters influencing cloud
resource allocation, including application time, migration time, and resource utilization, with a specific
focus on energy consumption. Their work employed the Green Cloud Scheduling Model (GCSM)
to assess energy efficiency and other performance metrics. The SMO approach adopts a holistic
perspective, considering multiple performance aspects. Results from simulations have demonstrated
the superiority of this methodology, showcasing improvements in response time, makespan, energy
usage, and resource utility. However, practitioners should be mindful of the computational resources
required for the effective implementation of the comprehensive SMO approach. In the context of
cloud computing, Al-Wesabi et al. [5] proposed the Hybrid Metaheuristics technique for Energy-
Efficient Resource Allocation (HMEERA). This innovative model leverages feature extraction based
on client work demands and incorporates Principal Component Analysis (PCA) for feature reduction.
To optimize resource allocation, HMEERA combines the Group Teaching Optimization Algorithm
(GTOA) and Rat Swarm Optimizer (RSO). This amalgamation of algorithms enhances resource
allocation efficiency among virtual machines (VMs) in cloud data centers, leading to superior
performance and throughput compared to alternative models. While HMEER A has demonstrated its
potential, real-world implementation challenges and scalability considerations should be addressed.
Josilo et al. [23] tackled the intricate issue of resource management in fog computing, particularly as
the number of offloading options escalates with an increasing number of devices in fog environments.
They introduced a model founded on game theory and inequality theory to allocate computational
tasks on devices in proximity. The proposed algorithm allows devices to make informed choices
between offloading computation to nearby devices or the edge cloud. While the experimental results
highlighted good system performance, it is important to note that this model primarily considers
average system parameters, leaving room for further exploration of additional performance metrics
such as energy efficiency and makespan.

The study conducted by Rostami et al. [24] focuses on enhancing cloud data center (DC)
performance in response to rising computing and storage demands in cloud computing (CC). Effective
task scheduling is crucial for optimal resource use, minimizing energy consumption (EC), reducing
response time, and maximizing overall efficiency. The research introduces a novel migration approach
for virtual machines (VMs) using the Capuchin Search Algorithm (CapSA). This hybrid framework,
combining CapSA and Inverted Ant Colony Optimization (IACO) algorithms, dynamically selects
the best algorithm for tasks based on prevailing conditions. The proposed approach outperforms
prior methods, achieving 15%-20% improvements in key metrics like EC, execution time (ET), and
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load balancing. Signifying a significant advancement, this research demonstrates the potential of the
CapSA-IACO hybrid for optimizing cloud DC performance in response to escalating service demands.

Tarahomi et al. [25] examined the growing interest in distributed models for addressing challenges
in Cloud computing environments, specifically resource allocation. This exploration focuses on two
main aspects: Task scheduling, which involves the allocation of tasks to Virtual Machines (VMs) by
Cloud providers, and VM-to Physical Machine mapping.

These aspects are closely linked to the important matter of energy consumption in Cloud comput-
ing. The work examines current challenges and identifies emerging opportunities for future research. It
serves as a valuable resource for researchers to develop new contributions or improve existing ones. The
primary objective is to drive progress in resource allocation in Cloud computing environments, thereby
contributing to the continuous evolution and innovation in this domain. Cloud computing’s rapid
growth has facilitated the seamless transfer and hosting of applications for organizations [26]. Efficient
task scheduling is necessary to effectively manage diverse user requests across multiple cloud resources.
Inadequate scheduling can lead to resource underutilization or overutilization, thereby impacting the
efficiency of cloud resources and service performance negatively. Swarm intelligence metaheuristics
are gaining popularity in addressing the complex task scheduling challenges in cloud environments.
This review offers a thorough analysis of swarm intelligence optimization techniques employed in
task scheduling for cloud computing. Fig. 2 shows various resource allocation models and outcome
examines various algorithms and performs a comparative analysis using important performance
metrics. This study evaluates simulation tools, identifies challenges, and proposes directions for future
research. This review examines the potential of advanced swarm-based algorithms in enhancing
resource allocation, system performance, and overall utilization of cloud resources.

Performance Metric: Execution Time
Intelligent Multi-

Agent System and Results: Outperformed Similarly
Reingopcem;nt Learning Complex Model Tolerance and Energy-
Method (IMARLM) Based Algorithms

Performance metric: Cost Estimation Accuracy
Artificial Neural

Network (ANN) model - Results: Achieved an Accuracy of
97%, Outperforming State-of-the-Art
techniques
Resource Allocation Performance Metrics:Response time,
Models in Cloud Spider Monkey | Makespan, Energy Usage, Resource
Computing Optimization (SMO) Utility

Results:Demonstrated Superior

Performance Compared to Standard

Approaches in all Metrics

Hybrid Metaheuristics .
t;chnique for Energy- Performance Metric: Throughput and
Efficient Resource ™. Resource Allocation Efficiency

Allocation (HMEERA) ) :

. Results: Demonstrated Superior
* Performance Throughput Compared to
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Game theory i
inequality theory ~———Performance Matrices:System Performance
based model R

Results:Showed Good System Performance but
other Performances Matrices Such as Makespan
Efficiency Should also be Considered

Figure 2: Resource allocation models, performance metrics and outcome
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2.1 Decision Tree Algorithm

The decision tree method is a type of supervised learning approach, as described in [27]. This
method can be used for both classification and regression problems. The decision tree operates by
using a tree-like structure, as shown in Fig. 3. Each Leaf Node (LN) in the tree corresponds to a
specific class label, while the interior nodes represent the characteristics used to answer the problem.
The root of the decision tree is initially set as the entire training set. It is important to note that feature
values in this method must be categorical [24,25].

,/(0 INode
_f-‘< INode )
___<° INode ><
LN

Figure 3: Decision tree

Root

If the data is continuous, it needs to be segmented before model development. Records are
distributed recursively based on the values of their attributes. The system employs 4 statistical
techniques to arrange characteristics such as the Internal Node (Inode) or the root. The initial iteration
of the experiment employs four variables: R, K, Ri, and values(K). The undefined variable R is
assumed to be a collection of data instances. Ri is a subset of R in which K has a particular value;
values(K) represent the attribute’s possible values. Entropy and Igain are introduced in the second
iteration. Igain (information gain) measures the quantity of information a given attribute contributes
to determining the class of a data instance, whereas entropy measures the impurity of a data set. The
same four variables from the initial iteration, but R is now explicitly defined as an instance collection.
In the third iteration of model development, additional variables are included in the experiment. R,
K, Ri, values(K), entropy, and Igain continue to exist, whereas HI, H(Ri), p(i), and Info (R, K) are
introduce I(R) is the entropy of the entire dataset R, whereas H(R1i) is the entropy of the subset Ri. p(i)
is the ratio of the number of Ri instances to the total number of R instances. Info (R, K) quantifies
an attribute’s classification utility in R. These iterations define a model for decision trees that can be
applied to classification and prediction tasks in machine learning.

By introducing new variables and refining the definitions of existing variables, the model’s
understanding of the decision tree algorithm is enhanced. Each iteration builds upon the previous
one, adding more variables and calculations as needed. The variables include R (the set of instances),
K (the attribute being evaluated), Ri (the subset of R with K = 1), and values(K) (the possible values
of K). Other variables include entropy, information gain (IGain), H(R) (the entropy of the entire set),
H(Ri) (the entropy of each subset), p(i) (the probability of each value of K), and Info (R, K) (the
information content of K in R). The exact variables used may vary depending on the level of detail
required in the analysis.

R.
IGain (R, K) = Entropy (R) — ZZ_WMK) %.Emmpy (R) ey
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Eq. (1) defines Entropy as a metric for measuring the uncertainty of a random variable, which
helps in determining the impurity of a set of random instances [26,27]. More information is contained
when Entropy is higher. The steps to build a decision tree using information gain are as follows:

1) The first node in the decision tree should represent all training instances connected to the
root node.

2) Determine which attribute to assign to each node by calculating the information gain.

3) Ensure that no root-to-leaf path has more than one instance of a discrete attribute.

4) Recursively create each subtree on the subset of training cases categorized down that tree
branch.

5) If a node has just positive or only negative training examples, respectively, label it with “Yes”
or “No”.

6) If the label is “No”, then the bulk of the training cases are present at that node.

7) The Gini Index is a metric that measures the probability of incorrectly identifying a randomly
chosen element. Choose the attribute with a lower Gini Index. Decision trees offer several
advantages, including their ability to generate clear rules, conduct categorization without
requiring much computation, handle both continuous and categorical variables, and highlight
the critical fields for categorization or prediction [28].

However, decision trees have some drawbacks. They are less suitable for estimating situations
where the objective is to predict the value of a continuous characteristic and are prone to errors in
classification problems with multiple classes and limited training samples. Additionally, the training
of decision trees can be computationally expensive [29]. The growth of a decision tree requires extensive
computing work, with each potential splitting field at each node needing to be sorted to determine the
optimal split. Some algorithms use combinations of fields, which require finding the best-combining
weights. Pruning algorithms can also be costly due to the need to create and evaluate multiple candidate
sub-trees [30].

2.2 Flower Pollination Algorithm (FPA)

The FPA approach is based on the principles of natural pollination, which involves propagating
the fittest flowers of a species through reproduction [29]. In FPA, each potential solution is represented
by a flower or pollen (assuming that each plant produces only one flower and one pollen). During
the optimization process, the search space is explored through “biotic and cross-pollination, with
pollen movement modeled using Levy flight”. Levy flight is a random walk that involves selecting
a random step from the Levy distribution [28]. Levy flying is more valuable than walking because
the intervals between big and tiny random steps are consistent. The Levy distribution is utilized to
represent anomalous diffusion, which causes considerably longer migration from its current position
and has infinite mean and infinite variance.

The distribution has strong power-law tails. Consequently, it is more effective in exploring the
search space. The intensification stage is represented by abiotic self-pollination [22]. FPA combines
both exploration and exploitation to ensure high-quality search, and randomly alternates between
them. “The pseudo-code for FPA presented in FPA relies on the following idealized concepts™ [11]:
P1: Biotic, Levy flight-based cross-pollination serves as a worldwide search mechanism. P2: Abiotic
and self-pollination processes are used to do local searches. P3: Because two flowers are identical,
floral constancy may be implicated.
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Initialize parameters with switching probability p € [0, 1];
Generate the initial population of flowers randomly;
Evaluate the initial population and find the current best solution gbest;
while (stopping criterion not satisfied) do
For each flower
if rand () <p
Global pollination: x/*' = x! + L(x! — gbest); // Based on Lévy step
else
Select two random solutions x} and x;;

Local pollination: xj*' = x{ + € (x] — x});

end if
Evaluate new solutions;
Update solutions with better new ones;
end for
Keep the current best solution;

end while

P4: A random probability between [0, 1] is used to switch between local and global search.

The method begins by randomly creating an initial population that is then analyzed to identify
the current best option. Before generating a new solution in FPA, a pollination type should be selected
based on a predefined probability p (P4).

If a random number r is generated between 0 and 1, the global pollination and flower constancy
(P1 and P3) can occur if r is less than p, as follows:

X = X!+ YL(X, — Zher) (2)
In Eq. (2): x/~solution i at time tg,.,—current best solution y—scaling factor.
In Eq. (3): L-step size was drawn from Levy flight as:
AYW)sin(2) a
L(s,a) ~ MT: s = o 3)
T Kl

Here, I'(1)-standard gamma Function. a is used as a control parameter which can be assigned 1
and s is given by Eq. (4).
U
S =
v

(4)

Here, U and V' are two random samples drawn from a Gaussian normal distribution with mean
=0, and standard deviation = o, and o, given by Eqgs. (5) and (6).
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However, if r > p, then the local pollination and the flower constancy (P2 and P3) performed as
shown in Eq. (7).

l=xl+e (x; —x;) (7)

i

X

Here, x; and xj—~two randomly selected solutions. € € [0, 1]-random number.

The current best is modified, and the search iterations continue until the termination requirements
are met. FPA, a nature inspired algorithm based on the biological process of pollination, is considered
to be one of the most advanced optimization techniques [22]. It has been widely applied in engineering
[22] and various research domains, such as Cuckoo Search Algorithm (CSA), and has shown
significant advantages over other popular algorithms such as Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm
II (NSGA 1I), and Clonal Selection Algorithm.

FPA’s performance and effectiveness have been verified using several well-known benchmark
problems, and its ability to handle optimization tasks has been demonstrated [10,13,14]. The FPA
algorithm is adaptable to solving a variety of problems in different NP-hard situations, and the
evolution process shows that it is prepared, flexible, and capable. The extensive and varied size of the
IaaS cloud and the diverse resource management needs make it challenging to employ FPA directly for
resource allocation problems. The solution space is extensive, and it may require a long time to locate
an efficient solution. To address this challenge, a new search operator strategy, including decision trees,
must be integrated, depending on the problem’s characteristics [29].

3 Proposed Knowledge-Based Flower Pollination Algorithm (KB-FPA)

The proposed research focuses on resource allocation methods that employ a hybrid approach.
Metaheuristic techniques are classified as reactive allocation, whereas machine learning is classified
as proactive allocation. For this study, the Flower Pollination Algorithm [14,29] is combined with
a decision tree algorithm [28]. This indicates that the study deployed proactive resource allocation
strategies to generate resource tables, which were then used to develop a knowledge-based approach.
When a certain event, such as task allocation to resources, exceeded a specified limit, the reactive
allocation technique was used. In case a task needs higher memory for its execution and there are
no available resources. Fig. 4 explains the design approach suggested in the study. The framework
represents a system for resource allocation and scheduling in a computing environment. It involves
multiple hosts, virtual machines (VMs), a scheduling strategy, a resource allocation model, the Flower
Pollination Algorithm, and the Decision Tree.

1. Hosts and VMs (Virtual Machines): The system consists of multiple hosts, each of which has
a set of VMs associated with it. VMs are virtualized computing instances that run on physical
hosts.

2. Scheduling Strategy: The “Scheduling Strategy” component represents the approach or algo-
rithm used to schedule tasks and allocate resources in this computing environment. It involves
deciding which VM should execute which tasks.

3. Resource Allocation Model: The “Resource Allocation Model” is a critical part of the system.
It defines how resources, such as CPU, memory, and storage, are allocated to VMs or tasks.

4. Decision Tree: The “Decision Tree” is another algorithm or method used for making decisions,
related to task and resource allocation based on knowledge.



3768 CMC, 2024, vol.79, no.3

5. Flower Pollination Algorithm: The “Flower Pollination Algorithm™ is a specific algorithm used
for resource allocation. It is responsible for optimizing resource allocation based on memory
and RAM utilization criteria.

6. VM Pool: The “VM Pool” is a collection of available VMs that can be assigned to execute tasks.

Scheduling Strategy
1

v Resource Allocation Model

( N
o I '
1
\ : . i
\\ : !- !
v 0 ’ '
3 ¥ l’ :
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Scheduling Il:l :‘:l:‘ :
Global Queue Information of !
scheduling tasks '
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1
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resource

Figure 4: Conceptual design of KB FPA

The system combines both proactive and reactive resource allocation strategies. The Flower
Pollination Algorithm is used for proactive allocation. This means it is used to make resource
allocation decisions in advance and the system employs a knowledge-based approach to resource
allocation. This involves using historical data or patterns obtained through a Decision Tree. The
ultimate goal of the system is likely to efficiently allocate resources to tasks or VMs to optimize
performance and resource utilization.

3.1 Design Model

This section proposes a system that allocates resources efficiently to the tasks assigned by the
cloud users. In this proposed system, when the user assigns a task to the cloud scheduler, it allocates
the best-matched VM to the task, and this selection uses the proposed KB-FPA. This work presents
the Decision Tree algorithm and Flower Pollination algorithm to construct a hybrid approach for
resource allocation.

The proposed KB-FPA initializes the resources of the cloud and creates a knowledge base (KB)
using a decision tree algorithm. Then the machine selection is made using 6 the flower pollination
algorithm. The flow of this proposed KB-FPA is as described below:

Step 1: To create a KB, first, it retrieves the list of cloud resources with its attributes, including
RAM and Storage (in GB) of the virtual machines (VMs) associated with the resources.

Step 2: Construction of Decision Tree (DT): The first step is to decide which attribute becomes
the root of the DT.

Step 3: As mentioned in the previous section, the information gain and Gini Index can decide the
root node. Here in this work, Information Gain (IGain) is used.
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Step 4: To find out the attribute with the highest information gain.

If IGain (RAM) > IGain (Storage), then, the Decision Tree will find the attribute with the highest
information gain

ELSE the Decision Tree will find the attribute with non-highest information gain
Step 5: When a user assigns a task to the cloud, it follows the decision tree as per their requirement.
For example, in the leaf node, there may be only one resource or maybe more than one.
If the number of VMs == 1 The task is given to that VM
ELSE VM Selection is made using FPA.
Step 6: The pseudo-code of FPA for VM selection is given:

Algorithm 1: Flower Pollination Algorithm for VM Allocation
Require: Resources obtained after applying DT (R;), Virtual Machines (VM;), Workload (W)
Ensure: Allocate VM; to W,
Begin
1: Initialize a population of k flowers/pollen gamete with random solutions;
2: Find the best solution b * in the initial population;
3: Define switch probability p;
4: while t < Max iteration do
S:fori =1: K do
6: if rand < p then
7: Draw a step vector (d-dimensional) that obeys Levy distribution (L);
8: Perform Global Pollination;
9: else
10: Draw € from the uniform distribution;
11: Randomly select m and n among all selected solutions;
12: Do Local Pollination;
13: end if
14: Evaluate new solutions;
15: if new solutions are better, update them in the population then
16: end if
17: end for
18: Find the current best b *;
19: end while
End

3.2 Proposed System Architecture

Fig. 5 presents the proposed KB FPA system architecture. Here, the data center of the cloud has
various resources, and each resource has its VMs for which the knowledge base is generated using
DT and the scheduler uses this KB for resource allocation. DT is suitable for prediction. A model is
generated using decision tree algorithms, which learn uncomplicated decision rules from data features
to anticipate the value of a target variable. Further, FPA helps in resource allocation based on the
task or workload assigned by the users. The Decision Tree deals with the selection of resources from
the pool of resources. The resources are selected considering the parameters like RAM and storage.
The selection of the root node for the decision tree is done through the “Information Gain and Gini
Index”. Based on this, we can divide the proposed system architecture into two phases:
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(1) Resource Knowledge Base generation.
(11) Enhanced Resource Allocation.

In Phase 1, the knowledge base is generated for virtual machines where a decision tree algorithm
is used. This work uses two main attributes, RAM and Storage. A decision tree is generated using these
attributes, one of which is treated as the attribute for the root node based on which a further tree is
created.

FPA

Phase 1

=& [E][EE]E]
EE[EEE]E]

Figure 5: Proposed system architecture

Phase 2

Workdoad [ User |

As per Fig. 6, the minimum workload requirement for RAM is 90 GB, and for storage, it is
1400 GB. Based on this requirement, KB provides the resource list RL2 that fulfills the required
configuration and moves to Phase 2. Outcome: Out of a pool of resources it will only select those
resources that are likely to fit user requirements. It selects some of the possible solutions. Advantage:
Rather than assigning random resources there is a systematic process to assign resources.

Fig. 6. Resource Allocation based on KB Phase 2-Enhanced Resource Allocation After Phase 1,
when provided with a list of resources from the KB for the assigned workload, FPA is used to select
a suitable VM for finding a feasible solution. Instead of random initialization, the work employs an
efficient resource allocation objective function to minimize energy consumption. Until the objective
function is achieved the whole process is iterated multiple times.

Outcome: Hence, the final allocation is done to the assigned workload. Similarly, resources are
allocated to all the assigned tasks in the cloud system. Finds the improved solution from multiple
solutions.

Advantage: Reduce resource wastage by selecting the appropriate resource as per task. As the
number of resources is less due to the screening process done in Phase 1, the time complexity is also
reduced. In the earlier model, the Dynamic Switching Probability (DSP) strategy was used with FPA
for finding and balancing the exploration and exploitation of local and global search which was helpful
in resource provisioning but the system has not been considered for a multi-objective approach. The
environment used for simulation is homogeneous in nature, thus lacking to meet the dynamic user
needs.
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Figure 6: Resource allocation based on KB

4 Results and Discussion

This work proposed an efficient resource allocation approach that utilizes reactive and proactive
methods for assigning resources to the tasks given by the cloud servers. For efficient resource
handling, the knowledge base of the resources is generated using a decision tree algorithm, and the
final resource allocation is based on the flower pollination algorithm. To analyze the performance
of this proposed approach, the local cloud environment is implemented using Visual Studio, and
performance is computed based on different performance metrics, including resource utilization and
energy consumption.

4.1 Simulation Setup

The performance of the proposed approach is analyzed on a local cloud environment generated
using Visual Studio. In this environment, a total of 800 physical machines (PMs) are added, and
each machine has its own configuration, which is randomly assigned to it. In these 800 physical
machines, 2680 Virtual Machines (VMs) are created based on their configurations, where each PM
has a maximum of 5 VMs. The number of PMs and VMs is kept similar to E-FPA. Nevertheless, in



3772 CMC, 2024, vol.79, no.3

the proposed work, a heterogeneous environment is considered to handle dynamic user requests. The
proposed work considers a meta-object approach for resources in the data center.

The simulation parameters for implementation along with the parameters for the decision tree and
FPA are given in Table | along with the parameters of the algorithms used in the proposed architecture,
and their values are decided based on experimentation and other requirements. The testing of the
proposed approach is done with the given workloads and using the machines available for simulation.
Table 1 gives the details of the configuration of the PMs and VMs used in this simulation. As E-FPA
worked on a homogeneous environment and considered RAM to be 204.8 GB proposed approach
used a heterogeneous environment with RAM values as 102.4, 204.8 and 409.6 GB which is equal to,
less than, and more than the previously used RAM size.

Table 1: PM and VM simulation setup parameter

Parameter Value

Data center 1

PM 800

VM 2680

RAM (VMs) 102.4, 204.8, 409.6 GB
Storage 1000, 1500, 2000 GB
Bandwidth 0.1 GBs-1

MIPS 367 MHz

Number of workloads 1000, 3000, 5000
Simulation parameters for KB-FPA

Max generations 1000

Number of flower/pollens 25

Number of branches in DT 3

Level of DT 2

For the dynamic environment, the storage in the proposed work was taken to be 1000, 1500
and 2000 GB whereas in E-PFA storage was 1000 GB. We have considered storage from 1000 GB
because for large user requests storage below that would have been unsuitable. Storage below 1000
GB would have been unsuitable for large user requests because it may not be enough to store the
required data, resulting in insufficient space and potential loss of data. Additionally, as the number
and size of user requests increase, a larger storage capacity may be needed to accommodate them.
Therefore, considering storage capacities of 1000, 1500, and 2000 GB in the proposed work allows for
more flexibility and scalability in handling varying user requests and data storage needs.

4.2 Performance Evaluation

Various performance metrics are used to evaluate the effectiveness of the proposed approach,
including resource allocation and energy consumption resource utilization, defines the utilization of
the available resources and energy consumption, and gives the values for energy consumed by the
resources for the execution of the tasks or workload assigned to it. The performance evaluation
of the proposed KB-FPA approach is conducted by comparing it to other approaches, namely E-
FPA, SLWO, and Firefly. These approaches are evaluated using the same simulation setup to ensure
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a fair comparison. The physical machine size is chosen between 1-800. The workload 8-unit size
considered is 1000, 3000, and 5000 with different resource utilization, varying execution time, and
energy consumption.

Resource Utilization: Resource utilization defines the utilization of the machines by the cloud
server for the execution of tasks. It is computed based on the number of resources used for the
execution of tasks given to the cloud environment. In Figs. 7 and &, comparison of existing algorithms
such as Spark Lion Whale Optimization (SLWO), Firefly, and Flower Pollination [19] is done with
the proposed algorithm. For the comparison, resource utilization of VMs and PMs of servers with
tasks assigned to cloud platforms as 1000, 3000 and 5000 was considered. Figs. 7 and & display the
cloud server’s resource utilization for both virtual machines (VMs) and physical machines (PMs) in
percentage to represent its performance.

RU based on VMs

Resource Utilization [in %)

MNumbe of Tasks

—FPA ——KB-FPA SIWQD  =——Firefly

Figure 7: Resource utilization (for VMs)

Resource Utilization (in %)

Number of Tasks

Figure 8: Resource utilization (for PMs)

According to Fig. 7, as the number of tasks increases, the utilization of virtual machines (VMs)
also increases. The proposed KB-FPA algorithm outperformed traditional methods such as FPA,
SLWO, and Firefly. VM utilization is maximum in the case of KB-FPA with an increase in workload.
On the other hand, architecture with FPA uses fewer resources and most resources remain unutilized
and some resources are overburdened due to random allocation. The results also indicate that in the
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case of KB-FPA when the workload is less, there is a slight change in the resource utilization but as
the workload increases from 1000 to 3000 and from 3000 to 5000 a significant increase in resource
utilization on VM is observed. This is because KB-FPA uses the KB strategy which generates the
resource list as per user demands. Further, this resource list is used by FPA to select and assign the
resource. It was observed that the KB-FPA scheme outperforms E-FPA, SLWO, and Firefly because
KB-FPA uses a DT strategy that enhances FPA’s efficiency by allocating resources properly.

Fig. 8 displays the resource utilization for PMs, and it has been seen that the proposed system
uses 39.43% PMs when 1000 tasks were considered, which is slightly lesser than other traditional
approaches such as FPA, SLWO, and Firefly. When the workload was increased to 3000 then resource
utilization for KB FPA was 53.32% and in the case of 5000 workloads then resource utilization was
90.31%. This change was observed due to the use of the DT strategy. The strategy enhances the
allocation process by assigning appropriate resources.

Figs. 9 and 10 represent the simulation results observed for 1000 tasks. It was observed that the
proposed scheme performed better than traditional methods such as FPA, SLWO, and Firefly. This
was due to the incorporation of a KB strategy that improved the efficiency of VM utilization for KB-
PFA by 87.673%, compared to 79.56%, 76.64%, and 73.98% for FPA, SLWO, and Firefly, respectively.
When analyzing the utilization of CPU, memory, and storage resources for PMs in a data center with
1000 tasks, it was revealed that KB-FPA utilized 39.73 of PMs. On the other hand, FPA, SLWO,
and Firefly resulted in 40.54%, 40.76%, and 41% resource utilization, respectively, which led to a
15.3% increase in IaaS resource utilization. This enhancement in the average utilization of PMs can
be attributed to the implementation of the KB strategy, which improved the global convergence of
KB-FPA.

Resource Utilization in VM for 1000 Tasks in %
84.00
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FPA KB-FPA SIWO Firefly

Figure 9: Resource utilization of VM for 1000 tasks

The proposed approach assigns VMs to the chosen PM. In summary, these findings demonstrate
the benefits of using the KB strategy in the proposed approach, leading to an improvement in resource
utilization for both PMs and VMs.

Figs. 11 and 12 represent the simulation results observed for 3000 tasks. The proposed scheme was
found to outperform traditional methods, such as FPA, SLWO, and Firefly, due to the implementation
of a KB strategy. This strategy enhances the efficiency of VM utilization for KB-PFA by 67.64%, which
is a significant improvement compared to the efficiencies of 59.46%, 63.32%, and 61.28% achieved by



CMC, 2024, vol.79, no.3 3775

FPA, SLWO, and Firefly, respectively. The KB strategy involves the use of knowledge-based techniques
to optimize the allocation of virtual machines (VMs) to tasks. This approach considers factors such as
the available resources, the workload, and the priority of the tasks when making allocation decisions.
By using this strategy, the proposed scheme can achieve higher efficiency in VM utilization, resulting
in better performance overall.
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Figure 10: Resource utilization of PM for 1000 tasks
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Figure 11: Resource utilization of VM for 3000 tasks

Resource utilization of CPU, memory, and storage for PM was observed in the data center for
3000 tasks. According to the results, KB-FPA utilized 67.12% of physical machines (PMs), while FPA,
SLWO, and Firefly utilized 69%, 68.54%, and 69.1% of resources, respectively, resulting in a 37.3%
increase in IaaS resource utilization.

This improvement in PM utilization is attributed to the incorporation of a KB strategy that
enhanced the global convergence of KB-FPA, allowing for more efficient allocation of virtual
machines (VMs) on selected PMs. Overall, these results demonstrate the benefits of using a KB strategy
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in the proposed scheme. Hence, it is concluded that Resource Utilization has improved both in terms
of PMs and VMs.
Resource Utilization in PM for 3000 Tasks in %
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Figure 12: Resource utilization of PM for 3000 tasks

When 5000 tasks were given, the results were observed for both VMs and PMs for KB FPA. VM
utilization for KB-PFA was 82.44, whereas for FPA, SLWO, and Firefly VM utilization was 81.61%,
80.50%, and 81.48%, respectively.

Figs. 12 and 13 represent the simulation results observed for 5000 tasks. The results demonstrated
that the proposed scheme performed better than traditional methods such as FPA, SLWO, and Firefly.
This improvement is due to the utilization of a KB strategy, which enhances the efficiency of VM
utilization for KB-PFA by 82.44%. In comparison, the efficiency of FPA, SLWO, and Firefly is 81.61%,
80.50%, and 81.48%, respectively.
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Figure 13: Resource utilization of VM for 5000 tasks

Resource utilization of CPU, memory, and storage for PM was observed in Fig. 14 the data center
for 5000 tasks. The results show that KB-FPA uses 84.42% PMs, whereas FPA, SLWO, and Firefly
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showed 85.74%, 86%, and 86.61% resource use, producing a 32.3% increase in [aaS resource utilization.
This increase in average PM usage is the result of the KB strategy’s inclusion, which increased the
global convergence of KB FPA. The suggested approach distributes VM to the chosen PM. Overall,
the aforementioned findings support the benefits of utilizing the KB method in the suggested scheme.
Hence it is concluded that Resource Utilization has improved both in terms of PMs and VMs.

Energy Consumption: Energy consumption is another important aspect of the cloud that affects
its overall performance. Its computation depends upon the number of resources, type of resources,
number of tasks, and type of tasks executed by the cloud server. For this study, energy consumption is
computed for each set of tasks where the sums of the energy consumed by the task are taken, and after
calculating the total energy used, the overall energy consumption for executing various task sets is
displayed in the following Fig. 15, the energy consumption of KB-FPA, E-FPA, SLWO, and Firefly in
a cloud data center is presented for various numbers of user requests. As the number of VM demands
increases, all four schemes experience different degrees of energy utilization growth. However, KB-
FPA demonstrates the lowest energy consumption compared to E-FPA, SLWO, and Firefly.
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Figure 14: Resource utilization of PM for 5000 tasks

The results indicate that as the number of VM requests increases, energy utilization becomes higher
and higher resulting in more PM occupancies and more energy consumption. Fig. 15 demonstrates
that energy consumption increases with the number of tasks, because the more the number of tasks,
the more resources are utilized, and hence it consumes more energy. Furthermore, it was observed
that the performance of KB-FPA outperforms E-FPA, SLWO, and Firefly, as the proposed approach
effectively explores the solution space and obtains solutions with fewer PMs. Consequently, the
overall efficiency is improved in the KB-FPA scheme. According to Fig. 15, the maximum energy
consumption for 1000 tasks is 46.32 kW for KB-FPA, whereas, for FPA, SLWO, and Firefly, it is
61.53 kW, 59.372 kW, and 58.372 kW hence indicating that KB-FPA has the lowest energy con-
sumption among the four schemes. As the workload increases to 3000, energy consumption KB-FPA
increases to 79.982 kW while the energy consumption for FPA, SLWO, and Firefly is 96.54 kW,
83.745 kW, and 82.484 kW respectively. At a workload of 5000, it became evident that KB-FPA
consumed 98.92 kW of energy, while FPA, SLWO, and Firefly consumed 108.4 kW, 120.312 kW, and
129.330 kW of energy. As a result, the overall data center infrastructure energy consumption was
reduced by 26.5.
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5 Conclusion

The work has presented a Knowledge Based-Flower Pollination Algorithm for cloud computing
to achieve efficient resource allocation. This proposed approach utilized the intelligence of machine
learning and an optimization algorithm to allocate resources to the given tasks. In this, the decision tree
algorithm is initialized with the resources and provides a knowledge base to the scheduler, reducing
the time for the final selection. Moreover, the final resource selection is made using flower pollination
optimization. This proposed combination achieved better results which are computed based on the
experimentation. Three performance metrics, Resource Utilization, Execution Time, and Energy
Consumption are calculated with the simulations and the results.

The overall performance of KB-FPA outperforms FPA. The present study differs from previous
studies in two distinct ways. First, most of the studies have taken FPA for resource scheduling but in
this study, FPA is used for allocating best-matched resources to the task. Secondly, most of the studies
have taken a small set of workloads. The knowledge-based flower pollination algorithm (KB-FPA)
is a promising method for improving the efficiency of resource utilization in cloud computing. By
incorporating a knowledge-based strategy, the KB-FPA algorithm was able to make more informed
decisions about the allocation of VMs to PMs, resulting in higher overall efficiency and performance.
Through experimentation and analysis, the proposed KB-FPA scheme outperformed traditional
methods such as FPA, SLWO, and Firefly.

This improvement was attributed to the KB strategy, which improved the global convergence
of KB-FPA and enhanced the efficiency of VM utilization by a significant margin. The results of
this study indicate that integrating a knowledge-based approach into optimization algorithms has the
potential to improve performance and efficiency in cloud computing systems. Overall, the findings of
this study have significant implications for the design and optimization of cloud computing systems.

The proposed work looks at cloud computing from the perspective of resource allocation and
resolves problems with energy usage and QoS. Energy-efficient resource management faces major
obstacles from other resource management techniques like resource scheduling. It would be interesting
to look into how collocating affects performance and total energy use.
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6 Limitations

While the Knowledge-Based Flower Pollination Algorithm (KB-FPA) presents a promising
approach for improving resource allocation efficiency in cloud computing, certain limitations need
to be acknowledged:

Scope of Workloads: The current study primarily focuses on specific workloads, and the results
are based on experimentation with these workloads. Extending the research to encompass a wider
range of workloads with varying characteristics could provide a more comprehensive understanding
of the algorithm’s performance in diverse scenarios.

Scalability: The scalability of KB-FPA in large-scale cloud environments remains an open
question. Further investigation is needed to assess the algorithm’s performance as the size of the cloud
infrastructure and the number of tasks and resources increase.

Real-World Implementation: The presented work is primarily based on simulations and exper-
iments. To assess the practical feasibility of KB-FPA, real-world implementations and testing in
production cloud environments are necessary.

Complexity: The incorporation of a knowledge-based strategy into the optimization algorithm
may introduce computational complexity. A more in-depth analysis of the algorithm’s computational
requirements, especially for larger datasets, is essential.

6.1 Future Work

The presented work opens avenues for future research and improvements in the field of cloud
computing resource allocation. Some potential directions for further investigation include:

Collocation Effects: Exploring the impact of collocating virtual machines (VMs) on performance
and energy usage is a promising area of research. Investigating how different VM placement strategies
influence resource utilization, energy efficiency, and Quality of Service (QoS) could lead to valuable
insights.

Dynamic Resource Allocation: Research into dynamic resource allocation strategies that adapt to
changing workloads and resource demands can provide more efficient and responsive cloud systems.
Machine learning and reinforcement learning techniques may be applied to enhance the adaptability
of resource allocation.

Real-World Validation: Conducting real-world experiments and case studies in actual cloud
environments to validate the effectiveness of KB-FPA and to identify any operational challenges.

Security and Privacy: The security and privacy implications of resource allocation algorithms
should also be considered. Investigating how KB-FPA or similar approaches impact data security,
privacy, and compliance with data protection regulations is crucial.

Multi-Objective Optimization: Extending the optimization criteria beyond Resource Utilization,
Execution Time, and Energy Consumption to consider a broader range of objectives, such as cost
optimization, fault tolerance, and performance guarantees.

Hybrid Approaches: Combining KB-FPA with other resource allocation techniques, such as
predictive analytics, reinforcement learning, or genetic algorithms, to create hybrid strategies that
leverage the strengths of multiple approaches.
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Addressing these limitations and exploring these future directions will contribute to the advance-
ment of resource allocation techniques in cloud computing, resulting in more efficient and effective
cloud systems.
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