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ABSTRACT

Locomotor intent classification has become a research hotspot due to its importance to the development of
assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady
locomotion states. However, it remains challenging for these methods to attain high accuracy when facing
transitions between steady locomotion states. Due to the similarities between the information of the transitions and
their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws
between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes
such as transitions. To address the existing deficiencies, we propose the locomotion rule embedding long short-term
memory (LSTM) network with Attention (LREAL) for human locomotor intent classification, with a particular
focus on transitions, using data from fewer sensors (two inertial measurement units and four goniometers). The
LREAL network consists of two levels: One responsible for distinguishing between steady states and transitions,
and the other for the accurate identification of locomotor intent. Each classifier in these levels is composed of
multiple-LSTM layers and an attention mechanism. To introduce real-world motion rules and apply constraints to
the network, a prior knowledge was added to the network via a rule-modulating block. The method was tested on
the ENABL3S dataset, which contains continuous locomotion date for seven steady and twelve transitions states.
Experimental results showed that the LREAL network could recognize locomotor intents with an average accuracy
of 99.03% and 96.52% for the steady and transitions states, respectively. It is worth noting that the LREAL network
accuracy for transition-state recognition improved by 0.18% compared to other state-of-the-art network, while
using data from fewer sensors.
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1 Introduction

Millions of people global suffer from severe disabilities, which can drastically decline the quality of
life [1]. Fortunately, with the development of robotics and wearable sensor technology, disabled people
can now live relatively comfortably with the help of wearable assistive devices [2,3]. To work effectively
and ensure the safety of users, devices such as wearable robots or exoskeletons need to recognize the
locomotor intent of the user precisely. However, it can be difficult for the devices to distinguish human
locomotor intent as it can not be observed directly. Therefore wearable robots identify locomotion by
using real-time data from wearable sensors, such as electromyography (EMG) [3], inertial measurement
units (IMUs) [4], load cell [5], pressure sensor [6], goniometer (GONIO) [7], and fused signals from
multiple sources [8].

Several studies have attempted to enable human locomotor intent detection by robots, via
traditional machine learning (ML) approaches, such as support vector machines (SVMs) [9], linear
discriminant analysis (LDA) [10], quadratic discriminant analysis (QDA) [11], and artificial neural
networks (ANNs) [12] and achieved high prediction accuracies. While these methods can recognize
locomotor intent successfully, they require extensive feature engineering in advance. Moreover,
when the situation becomes complex or the decision boundary is fuzzy when facing transitions,
the traditional ML method performances decline [13]. Compared to classical ML methods, deep
learning (DL) methods, such as convolutional neural networks (CNNs) [13], recurrent neural networks
(RNNs) [14], gated recurrent units (GRUs) [15], can predict complex locomotion modes with minimal
feature engineering. Recently, deep reinforcement learning (DRL) has garnered significant attention
an interactive ML paradigm that seamlessly integrates deep neural networks (DNNs) [16] into the
well-established conventional reinforcement learning (RL) framework [17]. Many DRL approaches,
such as the Markov decision process (MDP) and self-organizing networks have obtained remarkable
achievements in several fields [18–20], offering new possibilities and advancements in the field of lower-
limb prosthetics. However, RL typically requires a large number of interaction samples for training,
which can be a challenge in the real world, it still needs further development before being applied to
practical scenarios.

Using the time history information on locomotion sequence, long short-term memory (LSTM)
networks have demonstrated good results for classifying human locomotion [21]. LSTM concentrates
on the long-range information of the previous moments for accurate recognition, especially on steady
states. However, this method may not perform as well when facing transitions as they are often situated
between two steady states, and most of their historical information would be is similar to that of the
adjacent state. As a result, raw LSTM may not be able to focus on crucial time instances to accurately
classify transition modes.

Attention mechanism (AM) has been an emerging research direction that has been applied to
several fields such as natural language processing (NLP) and computer vision in recent years for its
ability to focus on key parts of temporal information [22]. However, AM has not yet been widely used
or explored in human locomotion mode prediction. Zhu et al. [23] proposed a knee/ankle joint angle
prediction method based on attention-based CNN-LSTM model. They deployed the AM before the
LSTM layers to extract detailed information from the CNN while suppressing useless information.
As the attention layer in this model is located before LSTM layers, the struct of the latter becomes
N-to-1, i.e., the LSTM layers obtain a result directly from the input. Therefore, the AM is mainly used
for spatial feature selection rather than temporal characteristics.

Despite their advantages, most DNNs for human locomotor prediction are purely data-driven,
and lack an understanding of locomotion rules. This can lead to low model accuracy, especially when
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meeting complex locomotion modes (e.g., transitions). Rule-based methods such as state machines [24]
and decision trees have been applied to address the issue. However, to achieve high accuracies similar to
that of DNNs, rule-based methods require a deep understanding of the experimental data to obtain the
rules. Rule designing becomes increasingly complex when meeting highly diverse locomotion modes.
Considering the respective advantages of DNNs and rule-based methods, it may be helpful to combine
a priori knowledge with the former for the optimal utilization of the two.

In response to the existing deficiencies, in this study, we proposed a locomotion rule embedding
LSTM network with AM (LREAL), a system to identify human locomotor intent precisely, based
on IMU and GONIO sensor signals. We introduced the AM after the LSTM layer to redistribute the
attention of different features at different times. This creates an N-to-N LSTM layer struct, which
is maintained by its the output. This attention layer placement allows the model to focus on the
complete spatiotemporal characteristics. To drive the network by using both data and rules (instead
of only data), inspired by rule-embedded neural networks (ReNN) [25], we introduced the locomotion
information to the model by embedding the rule in the network. Specifically, the LREAL network is
composed of two levels: The first is a steady/transition state classifier and the second is composed of
two classifiers to accurately recognize the locomotor intent of the states. Each classifier in these levels
is combined with LSTM layers and an attention layer. Initially, continuous raw IMU and GONIO data
are processed into fixed-size fragments for input into the structure. After the first level of classification,
the fragments from steady locomotion modes are input into the classifier for steady locomotion to
classify steady locomotor intent. It further passes a result in the form of a probability vector to a rule
modulating block. In this block, the rule will be combined with the probability vector to obtain an
encoding vector for transitions. As transitions follow steady locomotion, the features obtained by the
rule-modulating block are directly input into the attention layer of the transitions-state classifier for
prediction. The proposed model performance vastly improved human locomotor intent recognition
compared to CNN, LSTM, and other ML methods. The contributions of this study can be summarized
as follows:

• We introduced AM to the LSTM network, enhancing the ability of the model to capture key
instances in time and effectively extract locomotion-related features of the sensor data.

• We combined LSTM layers and an AM to build a classifier (AT-LSTM) that enables complete
learning from two IMU and four GONIO datasets.

• We introduced a priori knowledge via a rule modulating block to the network to constrain the
decision scope when meeting the transition states, and demonstrate the added effectiveness via
ablation studies.

• We constructed the LREAL work with a multi-level architecture composed of AT-LSTM
for human locomotor intent and validated its efficacy using ENABL3S dataset [26] through
accuracy scores. Our results using fewer sensors were comparable to or better than the existing
models.

2 Literature Review

In this section, we discuss the related works and technologies on: Sensors, locomotor intent
classification and ReNNs.

2.1 Sensors

Sensors play a crucial role in the design of exoskeletons and wearable robots as they greatly
influence reliability and cost. Wearable robots most commonly use IMU sensors which record 3-axis
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acceleration, angular velocity, and gyroscope signals [4,15]. IMUs are preferred as they provide reliable
data and are cost-effective. EMG sensors are employed for human activity recognition (HAR) as they
can measure electrical signals generated from muscle contractions during physical activities [3]. While
EMG data can significantly enhance their performance wearable robots are relatively expensive and
inconvenient to wear. Other types of sensors, such as load cells, pressure sensors, (GONIO), are also
used. Furthermore, the fusion of signals from multiple sources has also been widely applied to leverage
their respective advantages [8]. The selection of sensor types and data processing methods can greatly
impact the locomotor intent classifier performance, and finding ways to achieve better results with
fewer sensors has been the primary research focal point.

2.2 Locomotor Intent Classification

Motivated by their successful application in various fields, DL methods have gained significant
popularity in locomotor intent classification. CNNs, known for their effective feature learning in
CV, have been applied to locomotor intent classification by similarly processing sensor data [27].
While CNNs offer advantages such as parameter sharing and sparse connections, they require higher
computational resources. LSTM networks, known for their ability to process time series data, haves
shown promising results in classifying human locomotion [21]. To enhance efficiency, studies have
explored CNN-RNN hybrid networks. Wang et al. [28] proposed a CNN-LSTM hybrid approach,
achieving a validation accuracy of 95.90% in recognizing six types of activities (walking, lying, sitting,
standing, and stair ascent, and stair descent) using a smartphone IMU. Zhu et al. [23] proposed an
attention-based CNN-LSTM model for knee/ankle joint angle movement prediction, using AM for
feature extraction. In contrast to [23], the AM in LREAL was introduced after the LSTM layer to
dynamically redistribute attention across different features at different time steps, aiming for complete
spatiotemporal feature selection.

2.3 ReNN

The interpretability of DNNs is often criticized due to the difficulty in explaining inferences
as concise interactions among parameters and the network [29]. Unlike human inferences based
on experiences and knowledge, most DNNs are purely data-driven. This lack of prior knowledge
can result in low interpretability and potential errors in the models [30]. To address these issues,
knowledge representation has been utilized to describe the richness of the world in computer systems,
allowing artificial intelligence to understand and utilize it for reasoning and inference. Rule-based
representation, a common formalism of knowledge representation, has been widely employed in expert
systems and achieved excellent results [31]. Considering the aforementioned challenges and inspired
by the concept of rules embedded in neural networks [25], we propose a rule-modulating block that
incorporates locomotion rules into a knowledge representation and combines it with DNNs. This
approach aims to enhance interpretability and improve the model performance by leveraging both
data-driven and rule-based learning.

3 Dataset and Preprocessing Steps
3.1 Dataset

We used a the ENABL3S public benchmark dataset to validate the proposed method. The dataset
consists of data from IMU sensors (placed on the thigh and shank of the subjects), GONIO sensors
(placed on knee and ankle of the subjects) and EMG sensors, collected from 10 able-bodied subjects
(seven males and three females) with an average age of (25.5 ± 2) y, height of (174 ± 12) cm, and weight
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of (70 ± 14) kg. The subjects move according to the required mode [sit (S), stand (ST), ground-level
walking (LW), ramp ascending/descending (RA/RD), and stair ascent/descent (SA/SD)]. The ramps
have a 10° slope slopes of 10° and the stairs consist of four steps. The odd-numbered moving sequence
is: S → ST → LW → SA → LW → RD → LW → ST → S; and the even-numbered moving sequence
is: S → ST → LW → RA → LW → SD → LW → ST → S. There are seven kinds of steady locomotion
modes in ENABL3S with recorded true labels. Each data sample contains the signals from five IMU
sensors recording six data channels (3 axis acceleration and angular velocity) and four GONIO sensors.
By using a key fob, the start and end of the steady locomotion modes are recorded and the data is
labeled according to the true moving mode. Although only labels of steady locomotion modes are
available in ENABL3S, the information on the transition modes can be obtained by extracting the
data between the steady modes as ENABL3S marks the time of the beginning and ends of the steady
states.

3.2 Data Preprocessing

The IMU data underwent low-pass filtering at 20 Hz to eliminate high-frequency noise. In the
ENABL3S dataset, the IMU and GONIO data are sampled at 500 Hz (i.e., sampling once every 2 ms).
Every 250 samples (2 ms per sample) were segmented into a 500 ms analysis window with a sliding
window of 50 ms. We used the locomotion mode at the end of each gait event to obtain the label of each
analysis window. If the beginning and end of the gait event maintained the same locomotion mode,
analysis windows for the gait event were directly labeled as “steady locomotion intent” (Fig. 1). Gait
events with different modes can experience two different situations. If the analysis window was located
(i) fully within a transition gait event, it was labeled according to the starting and ending mode and (ii)
partially within a transition gait event of transitions, it was labeled based on the majority of its location
(>50%; Table 1). We utilized the acceleration and angular velocity data of only two IMU sensors on
the upper and lower right leg in 3 axes (X, Y and Z axes) and GONIO data, so the initial input of the
network can be denoted as x ∈ R500∗12. The above data was divided as follow: 90% for training and 10%
for testing. Additionally, 20% of the training set was also used for validation to prevent the network
from over-fitting.

Figure 1: Sequence extraction visualization and labeling: The yellow windows refer to the steady LW
locomotor intent, as they are located fully within a steady gait event; the blue windows refer to the
LW-RA transition, as they are located fully within a transition gait event; and the green window refers
to steady RA locomotor intent as the start and end of the window fails in the same locomotor mode
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Table 1: Analysis windows extracted for each label from the ENABL3S dataset; each window is
composed of 250 samples and each sample has 12 features

Label Number Label Number

S 29089 SA-LW 1158
LW 45741 LW-RD 1805
RA 15346 RD-LW 1420
RD 17730 LW-ST 1556
SA 5641 ST-S 2065
SD 5499 LW-RA 1778
ST 6552 RA-LW 1410
S-ST 8282 LW-SD 1638
ST-LW 4045 SD-LW 1392
LW-SA 1390

4 Methods
4.1 Network Architecture

The proposed LREAL network is composed of two levels (Fig. 2). The firstlevel, i.e., the
steady/transition classifier, is responsible for initially classifying the input sequence and dividing it
into the two main states. This classifier treats both steady and transition states equally. Its purpose is
to serve as a pre-classification step for the subsequent level.

Figure 2: Schematic representation LREAL network for human locomotor intent recognition

The second level consists of two distinct classifiers and a rule-modulating block. The input
sequence divided by the first-level classifier is directed to the appropriate classifier based on the
assigned state label. The steady-state classifier receives the fragments from the steady-state portion
of the sequence as its input. The output of this classifier is stored and passed onto the rule-modulating
block as auxiliary information, which helps in preparing for the recognition of transitions.

As mentioned previously, transitions occur between steady states, i.e., there always exists a
preceding steady state that significantly influences the range of post-transition behavior. There also
exist specific rules governing the motion transformations, such as considering the previous locomotion
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mode when encountering a transition [32]. Incorporating these rules and prior information from the
classifier for steady locomotion into the transition-state classifier does not affect practical applications
or add computational cost. Therefore, the rule-modulating block is designed to introduce motion
transformation rules to the network. It receives transmission information from the steady-state
classifier to obtain the preceding condition for each window for transitions. This information is
combined with the motion transformation rules to assist the transition-state classifier in recognition.
This process embeds the provided motion conversion rules with auxiliary information from the
preceding steady state, resulting in an output vector that represents refined information.

Finally, the transition-state classifier uses the sequence of recognized transitions from the first-
level classifier and refined information from the rule-modulating block to generate the final output.
Note that the classification of steady states solely relies on the data, while the transition recognition
combines the data with rule-embedded information. This integration of data and rule-based informa-
tion enhances the of transition recognition accuracy.

4.2 AM Design

As different samples within a specific analysis window may contribute differently to the recogni-
tion of various activities, the proposed AT-LSTM model employs an AM to capture the relationship
between the samples and locomotion classes (Fig. 3). The attention layer first derives a vector
representation for the features of each sample and maps to a probability value indicating the likelihood
of the analysis window belonging to a certain locomotion class. Formally, we constructed the attention
layer as follows.

Figure 3: Attention layer structure in the proposed LREAL model. Here, hk denotes the input vector
of the kth sample containing n features

We first formulated the attention importance score, ak
i , for each feature in the kth sample by

multiplying the input vector, hk
i , with a weight matrix, Ws, and normalizing the result to a probability
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which represents the degree of relevance between the ith feature and the locomotion mode of the kth
sample. It can be expressed as

ak
i = exp

(
sk

i

)
∑n

j=1 exp
(
sk

j

) (1)

where sk
i = hk

i Ws.

To concentrate on the feature instead of focusing on a specific sample, each feature of a sample
is assigned a separate importance score instead of a fixed score. Then we can denote the newly-
constructed feature vectors of ith feature, ek

i , as

ek
i = hk

i a
k
i (2)

which indicates the degree of relevance between the ith feature of kth sample and the locomotion class.
By flattening ek

i ,we then combine the different features of the sample within the feature vector, vki, as

vki = ek
i (3)

In conclusion, the attention layer helps the network to better predict the locomotion classes by
focusing on the key sample of the analysis window.

After obtaining vki, the probability vector, p = [p1, p2, . . . , pc,], for analysis window classification
can be formulated as

p = softmax
(
wpvki + bp

)
(4)

where wp and bp are the weight matrix and bias vector, respectively.

4.3 Attention-Based LSTM Design

The input of the attention-based LSTM network (Fig. 4) is an analysis window of dimension 250
× 12. The three LSTM layers have 128, 64, and 32 units, respectively, and the LSTM layers will keep
the structure of N-to-N, which means the output of the final LSTM layer remains a sequence. The
attention layer takes the sequence as the input (Fig. 3). Finally, we add a dense layer with 100 units
and a softmax layer that obtains the final classification result. The size of the softmax layer is designed
based on tasks. Specifically, the layer size is set to (i) 2 when the classifier is designed to distinguish the
steady and transition states, and (ii) 7/12 when recognizing the steady and transition states in detail.

4.4 Rule-Modulating Block Design

The rule-modulating block was designed based on the locomotion transformation information
from the ENABL3S dataset. It combines this information with that from the steady-state classifier
and passes it to the transition-state classifier for recognition. The rule was designed based on the
previous locomotion mode before the transition, as we know that each steady state can only have
limited options for subsequent transition states (e.g., for the S steady state, only the S-ST transition is
possible; and for the ST steady state, only the ST-S and ST-LW transitions are possible). All rules were
obtained based on the actual locomotion mode in ENABL3S and encoded as within the M7×12 matrix
in the network (Table 2). The rows of the matrix represent the previous steady locomotion state and
the columns represent the subsequent transition. If the transformation from the previous locomotion
to the subsequent transition is valid(invalid), its value in the matrix is set to 1(0).
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Figure 4: AT-LSTM structure of the attention-based LSTM. The dense layer size d is fixed based on
the actual problem

Table 2: Locomotion mode conversion rules in the ENABL3S dataset. The rows represent the
previous steady locomotion and the columns represent the subsequent transition; ‘√’ represents valid
conversions

S-ST ST-LW LW-SA SA-LW LW-RD RD-LW LW-ST ST-S LW-RA RA-LW LW-SD SD-LW

S √
LW √ √ √ √ √
RA √
RD √
SA √
SD √
ST √ √

After obtaining the conversion rules, the rule-modulating block combines it with the probability
vector, p = [p1, p2, . . . , p7,], of the previous analysis window from the steady-state classifier as

xj =
∑7

i=1
pi × Mi,j j ∈ [1, 12] (5)

The obtained encoded information vector X1∗12, which represents the probability of the next
transition, is passed on to the transition-state classifier as input. To prevent the encoded information
from being diluted, it is directly input into the attention layer along with the hidden layer output vector
from the previous LSTM layer to construct the final transition-state classifier (Fig. 5).
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Figure 5: AT-LSTM structure for transitions

5 Experimental Setup and Discussions

In this section, we present the conducted experiments and obtained results to validate the efficacy
of the proposed LREAL method. All experiments were conducted using the Keras API, with the
training performed on a system with an NVIDIA RTX 3080 and AMD Ryzen 9 5900 HX processor
with 32 GB RAM. We evaluated the overall network performance when handling mixed data, as well
as that of each classifier in LREAL when dealing with pure steady-state or transition-state scenarios.
Additionally, we compared our results with those of the existing classification methods to demonstrate
its accuracy.

5.1 Experimental Setup

We utilized an initial set of hyperparameters and investigated their impact on the model to narrow
down the range for the subsequent grid search (Table 3). A grid search with a 5-fold cross-validation
was then performed on the hyperparameters to maximize validation accuracy (Table 4; a detailed
discussion on the influence of the hyperparameters can be found in Section 5.3.6). The configuration
shown in Table 4 was selected as the optimal choice for subsequent experiments involving the classifier.
To deal with the imbalanced distribution of the different classes in the ENABL3S dataset (Table 1), we
adjusted the weight of each class for training inversely proportional to class frequency in the dataset as

Weighting = nsamples_with_class

nclasses ∗ nsamples_with_class

(6)

To validate the effectiveness of the proposed method, we devised two distinct experimental scenar-
ios. The first scenario aimed to evaluate the classification performance of each LREAL component
individually. Thus, the performance of the three classifiers was tested separately in classifying pure
data for steady/transitions states. In the second scenario, we introduced mixed data and examined the
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performance of LREAL when considering the mutual influence of various components. Furthermore,
in both scenarios, the networks were trained and tested on user-dependent and user-independent base.

Table 3: Hyperparameters values

Parameter Value

Epoch 200
Learning rate 0.0001
Batch size 256
Optimizer Adam [33]
Loss function Cross-entropy
Class-weighting True
Early stopping 10 epochs if no improvement on validation loss

Table 4: Grid search results

Classifier Learning rate Optimizer Batch size

Steady/transition 0.001 Adam 64
Steady state 0.001 Adam 64
Transition 0.0005 RMSprop 64

5.2 Performance Evaluation

We used the accuracy (ACC) score to measure the overall performance of our proposed LREAL
network; it can be expressed as

ACC = Ncorrect

Ntotal

× 100% (7)

where Ncorrect is the number of correct classifications and Ntotal is the total number of data points. We
also evaluated the network performance in two bases: (1) Data from one out of ten subjects was used
to train and test a user-dependent network; (2) data from nine out of ten subjects was used as the
training set, while the remaining subject was used as test set to construct a user-independent network.
The processes were repeated 10 times until all subjects were used.

Furthermore, when evaluating the overall performance, the number of sensors utilized serves as
a crucial metric. In terms of practical applications, achieving comparable results with fewer sensors
signifies superior model performance.

5.3 Discussion

5.3.1 Single Classifier Evaluation

To evaluate and analyze the performance of the three types of classifiers in the proposed network
(Fig. 2), we computed their average accuracies on the user-dependent and user-independent bases. The
results of individual classifiers did not consider their mutual influence to evaluate their actual capacity
for recognizing locomotor intent (Table 5).
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Table 5: Performance of the three types of LREAL classifiers

Recognition classifier User-dependent ACC User-independent

ACC (%) ACC (%)

Steady/transition 98.56 ± 0.35 96.36 ± 2.12
Steady state 99.32 ± 0.18 96.18 ± 2.25
Transition 98.96 ± 0.32 92.51 ± 3.16

The first-level steady/transition state classifier achieved an accuracy of (98.56% ± 0.35%) and
(96.42% ± 2.12%) on the user-dependent and user-independent bases, respectively. A confusion matrix
is a table that visualizes the performance of a classifier, comprising data of the true and predicted
labels that the model evaluated. We obtained and analyzed the confusion matrix of the user-dependent
classifier (Fig. 6). Transition class obtained an accuracy of 97.50% much lower than that for the steady
state class (99.61%). A previous study has shown that steady RA and RD locomotion can introduce a
high error rate for the similarities between ramp and ground-level walking, as well as the transitions
between these steady states [32]. The performance of the steady/transition classifier largely affects the
end-stage classification accuracy and the overall network performance.

Figure 6: Confusion matrix for the steady/transition classifier on the user-dependent

A previous study developed a recognition system based on a Gaussian SVM and kinematic data
which was able to classify five steady states and eight transition states [34], and the steady/transition
classifier in it had an accuracy of 93.30%. Our framework was more accurate (+5.26%) while
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our classifiers utilized the kinematic signals with the data from GONIO sensors. Although our
steady/transition classifier demonstrated higher accuracy, further analysis is required to improve its
effectiveness.

The steady-state classifier was effective on both user-independent (ACC = 99.32%) and user-
dependent (ACC = 96.18%) bases. However, the transitions-state classifier was more accurate in the
user-independent (ACC = 98.96%) basis compared to the user-dependent (ACC = 92.51%) basis.
The errors were mainly due to the transitions between RD/RA and LW. The differences in individual
exercise methods and the complexity of transitions are expected to explain this observation.

We also compared the user-dependent classifier with the existing method when facing pure
transition or steady states data (Tables 6 and 7). Although our approach was slightly less effective
in recognizing steady states compared to a multi-level SVM [34], it was more versatile (recognized
seven types of steady states compared to the five types identified by the SVM) with similar efficacy.
Furthermore, our approach considered more transition states and achieved a much higher accuracy
than the multi-level SVM (+3.06%). Compared to context-based Bayesian [35], central pattern
generator (CPG) [36], and CNN-LSTM networks [37], our AT-LSTM network surpassed in terms
of accuracy for both steady and transition-state recognition when considering more classes. These
results validated the effectiveness of AT-LSTM in recognizing human locomotor intent.

Table 6: Comparison of various methods for steady-state recognition

Method Number of recognizable classes Accuracy (%)

SVM (multi-level) [34] 5 99.4
Context-based Bayesian [35] 7 98.3
CPG [36] 5 99.03
CNN-LSTM [37] 7 99.1
AT-LSTM 7 99.32

Table 7: Comparison of various methods for transition-state recognition

Method Number of recognizable classes Accuracy (%)

SVM (multi-level) [34] 8 95.9
Context-based Bayesian [35] 12 98.8
CPG [36] 8 98.9
CNN-LSTM [37] 12 96.9
AT-LSTM 12 98.96

5.3.2 Overall Network Evaluation

The overall performance of the LREAL network was further evaluated by calculating the
recognition accuracy across the entire network, i.e., considering the impact of all classifiers. The
network achieves an average accuracy of 98.60% and 92.78% on the user-dependent and user-
independent base, respectively. Additionally, the user-dependent (user-independent) network obtained
an average accuracy of 99.03% (94.25%) and 96.52% (86.52%) for the steady and transition states,
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respectively. From the confusion matrix of the user-dependent LREAL network (Fig. 7), it can be
seen that the errors mainly belong to the recognition of transitions, including misclassification between
transitions and between transition and steady states. Certain steady states were also misclassified as
transition states. This can be attributed to the similarity between transition and steady states and
partial locomotion.

Figure 7: Confusion matrix for the user-dependent LREAL network

On the other hand, it is worth noting that the scope of misclassification is narrow, as the rule-
embedded information restrains the classification range of each class in the case of correct first
level classification. However, our approach took a longer time to recognize locomotor intents as
there were three classifiers working together. The average running time for the recognition of one
sequence when classifying 10,000 sequences was (112.06 ± 6.23) ms for both user-dependent and user-
independent base.

Furthermore, we compared the performance of the LREAL network with previous methods using
ENABL3S according to the recognizable classes, the number of used sensors, and accuracy (Table 8).
The results demonstrated that the LREAL network outperformed LDA [8], CNN-LSTM [37], CNN
[38], and Light-Weight Artificial Neural Network (LWANN) [39] in terms of accuracy for steady-
state recognition, and surpassed LIR-Net [27], LDA, CNN, LWANN, and CNN-LSTM in terms of
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accuracy for transition recognition. While LIR-Net achieves better overall performance and accuracy
for steady-state recognition compared to LREAL, it only recognizes five steady states and eight types
of transitions compared to the seven steady states and twelve types of transitions recognized by the
LREAL network. Additionally, LIR-Net utilizes a larger number of sensors compared to LREAL.
LREAL demonstrated superior performance in handling transitions, albeit with a slightly lower
overall accuracy than that of LIR-Net due to fewer sensors (two IMU and four GONIO) and a larger
number of recognizable locomotor intent classes. In summary, LREAL used fewer sensors to achieve
a higher accuracy for a higher number of classes.

Table 8: Performance comparison of the LREAL network with other methods on ENABL3S

Method Sensors Classes Accuracy (%)

Number of
steady states

Number of
transitions

Steady states Transitions Overall

LIR-Net [27] 14 EMG, 4 IMU,
4 GONIO

5 8 99.46 96.34 98.89

LDA [8] 14 EMG, 4 IMU,
4 GONIO

7 12 98.75 94.06 98.48

CNN [38] 14 EMG, 5IMU 4
GONIO

5 8 NULL NULL 96.3

LWANN [39] 5 IMU 4GONIO 7 12 NULL NULL 98.60
CNN-LSTM [37] 2 IMU 7 12 96.41 94.32 95.82
LREAL 2 IMU 4GONIO 7 12 99.03 96.52 98.60

5.3.3 AM Visualization

To better understand and explain the internal operations of the AM the locomotor intent
recognition task, we visualized its performance from two aspects.

Firstly, we analyzed the performance of AM on the features of a sample. We extracted the
activations of the attention layer of the steady-state classifier as an example. Let us denote the
simple average of hidden vectors from the previous LSTM layer as hi and their weighted sum after
the attention layer as ha

i . To make the visualization clearer, we normalized the activations after
obtaining them. In Fig. 8, each column represents a feature dimension, and the rows correspond to
the feature vectors before and after the action of the attention layer. The attention layer modifies ha

i

by redistributing the weight of each feature.

Figure 8: Visualization of feature vectors before and after the action of the attention layer

We also analyzed the ability of the AM to focus on key instances of the time sequence for the steady
states and transitions. Specifically, using the attention importance score for each feature, ak

i , in the kth
sample, we calculated the average importance score, ak, for the kth sample to study the preference
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of the AM for the overall analysis window. The attention layer exhibits different preferences for the
tasks of steady and transition-state recognition (Figs. 9a and 9b). The attention layer focused more
on the intermediate fragment of the analysis window for steady-state recognition (Fig. 9a), whereas
it concentrates on both ends of the analysis window for transitions (Fig. 9b). This indicated that the
information that helps identify steady states is concentrated in the middle of the analysis window and
the signals that dictate transitions are located on either of its end segments. Although previous studies
reached similar findings for transitions by visualizing the activations of CNNs [40], they considered
only the activations for transitions. Our work showed relied on the importance scores of both steady
and transition states, which validates the capacity of the AM to capture valuable temporal information
when facing different tasks. The finding is also critical for recognizing locomotor intent and is worth
further study.

Figure 9: Relationship of the attention weights of each sample over the complete analysis window for
(a) steady-state and (b) transition recognition

5.3.4 Impact of a Priori Knowledge

To analyze the impact of a priori knowledge in LREAL, we conducted tests without a priori
knowledge using pure transition data. The resulting confusion matrix clearly illustrated the higher
tendency for misrecognition of reversed transition states without a priori knowledge (Fig. 10). For
instance, the LW-RA transitions were easily misclassified as RA-LW transitions and vice versa. The
incorporation of a priori knowledge imposed constraints on the classifiers and reduced the occurrence
of such misjudgments by enabling the model to learn from previous states. It enabled the model to gain
a better understanding of movement rules, leading to improved performance.

5.3.5 Ablation Study

To investigate the effectiveness of each component in the LREAL network, we conducted ablation
analyses on its second level (constructed by incorporating the AM into LSTM and connecting the two
classifiers with a rule-modulating block) based on the ENABL3S dataset. We compared the results
with the following model:

1. Raw LSTM: Two LSTM classifiers without an attention layer or a rule-modulating block
between them.
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2. Rule-Embedded (RE)-LSTM: Two LSTM classifiers with a rule-modulating block to deliver
rule-embedded knowledge between them.

3. AT-LSTM: Two classifiers constructed using AT-LSTM, but without a rule-modulating block
to input locomotion knowledge between them.

Figure 10: Confusion matrix for LREAL without a priori knowledge when facing transitions

From the ablation study results (Table 9), we observed that the addition of a rule-modulating
block greatly improved the accuracy of recognizing transitions compared to the network without it.
In summary, LREAL indeed outperformed all other variants.

Table 9: Ablation study comparison for LREAL with other variant models

Method Accuracy (%)

Steady states Transitions

Raw LSTM 94.16 92.22
RE-LSTM 96.88 98.37
AT-LSTM 99.32 95.63
LREAL 99.32 98.96

5.3.6 Parameter Analysis

To achieve the best performance for the hybrid network, the choice of parameters should be
considered carefully and the parameters of each sub-classifier must be tuned and optimized. To assess
the influence of the different hyperparameters (Table 3) on the model and streamline the grid search
process, a series of ablation experiments were conducted on the individual sub-classifiers and the
hybrid network.
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We conducted ablation experiments by considering the significant impact of the learning rate and
optimizer on classifier performance, and recognizing that each optimizer has its own optimal learning
rate. Specifically, we evaluated three optimizers, namely Adam, stochastic gradient descent (SGD) with
momentum, and root mean squared propagation (RMSprop). Each optimizer was tested for a set of
learning rates (0.01, 0.005, 0.001, 0.0005, and 0.0001). Analyzing the results (Fig. 11), we observed
that for the steady-state classifier and steady/transition classifier, the Adam optimizer with a learning
rate of 0.001 outperformed the other combinations. However, for the transition-state classifier, the
RMSprop optimizer with a learning rate of 0.0005 achieved the best performance compared to the
other combinations (Fig. 11).

Figure 11: Impact of optimizers and learning rates on the sub-classifier performance

Finding a suitable batch size is crucial as it can effectively reduce memory usage and enhance the
model generalize ability. We evaluated the impact of different batch sizes (32, 64, 128, 256, and 512)
on the overall performance of the network (Fig. 12). Our findings indicated that LREAL achieved the
best overall effect for a batch size of 64.

Figure 12: Effect of batch size on LREAL performance
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5.3.7 Limitations and Future Outlook

1) Rule-modulating block design: Although we designed a simple rule to incorporate into the
network, its design of rule is based on the specific locomotor circuit in the ENABL3S dataset.
When the situation becomes much more complex, e.g., considering more daily locomotion
the rule will become diverse and the rule-embedded module may not be very effective. The
method of combining a rule-based system with DL remains relatively simple. Therefore, a
more comprehensive study of such combinations may improve the impact of rule-embedded
networks and model interpretability.

2) First-level classifier accuracy: The performance of the first-level steady/transition classifier
largely affected the overall network effectiveness as its classification errors propagate to the
final classification. The steady/transition classifier achieved an average accuracy of 97.50%
when facing transition states (Fig. 6). This might be due to the manner of extracting the
analysis window containing steady-state information before the transition. The accuracy may
be improved by a further study of extracting transition-state analysis windows. Moreover,
the unbalanced distribution of data may also contribute to this issue. A balanced dataset
containing more transition state data could enhance the classifier performance.

3) Practical application requirements: To meet the needs of practical applications and reduce user
discomfort, the latency of recognition should be <300 ms [41]; our method can currently
classify a sequence in 112 ms. However, when considering the 50 ms sliding window for
sequence extraction and the time taken to preprocess the data, the total recognition time
increases greatly (<300 ms). As for a microcomputer on a real prosthesis, it might take a longer
time to process data and recognize locomotor intent. Therefore, further research is required to
reduce the system running time to meet the needs of practical applications.

6 Conclusion

In this study, we propose a locomotion rule embedding LSTM network with an AM (LREAL)
based on IMU and GONIO sensors to recognize human locomotor intent. The performance of the
overall network and each classifier was validated on the public ENABL3S dataset and compared to
other methods. The results show that the locomotion recognition of seven steady and twelve transition
states achieved an average accuracy of 99.03% and 96.52%, respectively, on the ENABL3S dataset,
i.e., comparable to or better than the other methods. We also analyzed the impact of the AM from
two aspects and verified the effectiveness of adding the rule-modulating block by ablation studies.
To summarize, this study demonstrates the excellent human locomotor intent recognition capabilities
of AM and hence, the proposed LREAL network, which is important for the further study and
development of assistive robotic.
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