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ABSTRACT

Cloud computing environments, characterized by dynamic scaling, distributed architectures, and complex work-
loads, are increasingly targeted by malicious actors. These threats encompass unauthorized access, data breaches,
denial-of-service attacks, and evolving malware variants. Traditional security solutions often struggle with the
dynamic nature of cloud environments, highlighting the need for robust Adaptive Cloud Intrusion Detection
Systems (CIDS). Existing adaptive CIDS solutions, while offering improved detection capabilities, often face
limitations such as reliance on approximations for change point detection, hindering their precision in identifying
anomalies. This can lead to missed attacks or an abundance of false alarms, impacting overall security effectiveness.
To address these challenges, we propose ACIDS (Adaptive Cloud Intrusion Detection System)-PELT. This novel
Adaptive CIDS framework leverages the Pruned Exact Linear Time (PELT) algorithm and a Support Vector
Machine (SVM) for enhanced accuracy and efficiency. ACIDS-PELT comprises four key components: (1) Feature
Selection: Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter (HSO-SU) to identify
the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud
environment. (2) Surveillance: Employing the PELT algorithm to detect change points within the network traffic
data, enabling the identification of anomalies and potential security threats with improved precision compared
to existing approaches. (3) Training Set: Labeled network traffic data forms the training set used to train the
SVM classifier to distinguish between normal and anomalous behaviour patterns. (4) Testing Set: The testing set
evaluates ACIDS-PELT’s performance by measuring its accuracy, precision, and recall in detecting security threats
within the cloud environment. We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark
dataset. The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techniques in
terms of accuracy, precision, and recall. This superiority stems from ACIDS-PELT’s ability to overcome limitations
associated with approximation and imprecision in change point detection while offering a more accurate and
precise approach to detecting security threats in dynamic cloud environments.
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1 Introduction

Once an afterthought, cloud security has become paramount as this revolutionary IT paradigm,
defined by NIST (National Institute of Standards and Technology) as accessible web-based computing
resources, demands robust protection against evolving threats in a dynamically scalable environment
[1]. Cloud computing delivers resources (SaaS, PaaS, IaaS) via private, public, hybrid, or community
models, revolutionizing IT with on-demand scalability and flexibility [2]. Cloud’s dynamism and
flexibility boost efficiency but expose vulnerabilities to evolving attacks. Existing security solutions
struggle to adapt, leaving businesses vulnerable to DDoS (Distributed Denial of Service), spoofing,
and malware [3]. Evolving attacks overwhelm traditional defences, exploiting cloud environments’
open, shared nature. Firewalls and authentication crumble as sophisticated threats constantly adapt
[3]. Some DOS (Denial of Service) and DDoS attacks are intricate to detect using traditional methods
[4]. Consequently, the development of more robust cloud security solutions becomes imperative.

Cloud computing’s revolutionary adaptability comes at a cost: Increased vulnerability to ever-
evolving cyberattacks. While traditional defences like firewalls and authentication crumble against
these sophisticated threats, the open, shared nature of the cloud offers fertile ground for their prolifer-
ation. To fortify cloud security, a dedicated Cloud Intrusion Detection System (CIDS) is essential [5].
Acting as a vigilant watchdog, a CIDS monitors and identifies malicious activity through two main
techniques: Signature-based and anomaly-based detection. Like a seasoned security guard, the former
recognizes known attack patterns in incoming traffic, while the latter, an astute observer, identifies
deviations from established normal network behaviour. Both approaches, working in tandem, form a
robust shield against the ever-shifting landscape of cybercrime, ensuring the integrity and security of
our cloud-powered world [6]. Signature-based detection excels at identifying known attacks with high
accuracy and low false positives, but it falters against novel threats. Anomaly-based detection addresses
this gap by creating a baseline of normal behaviour and flagging deviations, but it suffers from a higher
rate of false alarms. Researcher Reacher demonstrated anomaly-based techniques’ ability to detect
known and unknown attacks across cloud tiers, but their tendency to generate false alarms remains
challenging [7].

Cloud’s constant flux, fueled by diverse users, scaling services, VMs, and auto-scaling, throws off
traditional anomaly detection. The ever-shifting landscape of nodes constantly invalidates reference
models, leaving security blind to new attack routes [8]. Cloud apps morph like chameleons under
technical (VM scaling, upgrades) and non-technical (seasonality) influences. This volatility cripples
traditional anomaly detection, leaving it chasing ghosts. Updating IDS models, especially during
autoscaling’s infrastructure upheavals, becomes as crucial as breathing-normalcy in the cloud is
a moving target [9]. Cloud’s chameleon-like behaviour, driven by technical (upgrades, migrations)
and non-technical (seasonality, events) triggers, cripples static anomaly detection. Maintaining a
constantly updated reference model becomes as vital as air–a necessity for effective intrusion detection
in this ever-shifting landscape [10].

The cloud’s superpower, its infinitely scalable muscle, lets it effortlessly adapt to user needs,
keeping performance smooth even during traffic surges. This comes in two forms: Adding more virtual
servers (horizontal scaling) or beefing up resources within existing ones (vertical scaling). However,
this flexibility breeds a security paradox. The ever-shifting landscape throws off anomaly detection
systems, leaving them struggling to tell friends from foes. Sudden resource spikes or seasonal traffic
patterns can trigger false alarms, while cunning attacks weave through the confusion [11]. To tame this
scalability beast and secure our cloud fortresses, we need an adaptive guard: A cloud-based Intrusion
Detection System (IDS) that can pivot on a dime. We must strategically partition, distribute, and
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replicate data and constantly update reference models to reflect the cloud’s ever-changing resource
allocation and user behaviour. Only then can we dance with scalability without tripping into security
disasters. It is a delicate ballet we must master to secure our cloud-powered future [12].

Several studies, including those by [9,13,14], have explored machine learning applications and
the Negative Selection Algorithm (NSA) to enhance anomaly detection in cloud computing. Despite
advancements, these approaches need more synchronized network tracking and effective IDS updates.
Ibrahim and Zainal proposed an intrusion detection strategy utilizing a change point algorithm and
machine learning for retraining [10]. However, the binary segmentation algorithm, which generates
approximations and limits precise change point detection, could improve this method’s effectiveness.
Addressing adaptability issues during cloud scaling, this study introduces the Adaptive Cloud Intru-
sion Detection System (IDS) as an innovative solution.

While the cloud boasts near-limitless scalability, it throws a wrench in anomaly detection. The
constant shuffle of virtual machines (VMs) makes establishing a stable “normal” profile nearly
impossible, hindering effective threat identification. Scaling scenarios further complicate matters as
the underlying infrastructure undergoes significant changes that demand frequent IDS model updates
[15]. Existing adaptive CIDS solutions often stumble in this dynamic environment. Their reliance on
approximations and imprecise change point detection methods leaves them vulnerable to false positives
(legitimate scaling mistaken for attacks) [16].

Furthermore, traditional benchmark datasets like NSL-KDD must capture the intricacies of
real-world cloud threats. This research fills these critical knowledge gaps by proposing ACIDS-
PELT, a novel approach that integrates the Pruned Exact Linear Time algorithm and Support Vector
Machine. Comprehensive evaluations across diverse datasets (ISOT-CID and DDoS) demonstrate
ACIDS-PELT’s superior performance in cloud intrusion detection. Its precise change point detection
and reduced reliance on approximations are crucial to unlocking the full potential of secure cloud
scalability.

The Key Contributions of this paper are:

• Combines algorithms for precise anomaly detection in cloud networks.
• Outperforms existing solutions thanks to detailed evaluations.
• Tackles key challenges of approximation and imprecision.
• Deepens understanding of cloud security complexities.
• Fills critical knowledge gaps through innovation and validation.

ACIDS-PELT unlocks the potential of secure cloud scalability.

The proposed solution comprises four key components: Feature selection utilizing Harmony
Search Optimization and the Symmetrical Uncertainty (HSO-SU) Filter, a monitoring system lever-
aging the Pruned Exact Linear Time (PELT) change point detection algorithm, a Support Vector
Machine-Based Adaptive Cloud Intrusion Detection System, and the training and testing modules.
Particularly noteworthy is the precise change point detection technique employed by the PELT
method, enabling meticulous updates to the IDS’s reference model in response to profile fluctuations.

The paper adopts a clear and structured approach to presenting its findings. Section 2 delves into
prior research, laying the groundwork for the proposed system. Section 3 then unveils ACIDS-PELT in
detail, thoroughly examining the datasets and evaluation metrics used in Section 4. Section 5 presents
the experimental results, while Section 6 compares ACIDS-PELT’s performance against existing
techniques. A comprehensive discussion analyses the results in Section 7, drawing comparisons to
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related works and fostering deeper insights. The paper concludes in Section 8 with conclusive remarks
that encapsulate the essence of the study.

2 Related Works

Current Cloud Intrusion Detection Systems (CIDS) often need help in the face of dynamic cloud
environments, hindered by static reference profiles and imprecise change detection, leading to false
positives and missed threats. Scaling these systems adds complexity and further complicates accurate
intrusion detection. ACIDS-PELT breaks through these limitations with a holistic and adaptable
solution. It dynamically updates the reference profile using the (PELT) algorithm, ensuring precise
adaptation to network changes even as the cloud scales. This precise change detection enhances
accuracy and scalability by eliminating the need for frequent updates based on imprecise signals.

Additionally, ACIDS-PELT’s hybrid feature selection reduces data volume, further streamlining
the system for efficient operation in dynamic and large-scale cloud environments. The combined
strengths of dynamic updates, precise change detection, and data reduction make ACIDS-PELT a
powerful contender for superior, adaptable, and scalable security in the ever-evolving cloud landscape.
This comprehensive system significantly improves accuracy and adaptability in safeguarding cloud
environments by integrating hybrid feature selection and SVM-based detection, as shown in Table 1.
The following summarizes existing research and its limitations, effectively addressed by the ACIDS-
PELT system.

Table 1: Summary of literature review

Study Method Strengths Limitations

[8] Distributed IDS with
behavior &
knowledge-based
detection

Novel combination,
efficient resource
utilization

Adaptability challenges not
addressed, lack of specified
monitoring technology

[17] Neural network-based
adaptive IDS

Distributed,
resource-efficient

Performance validation lacking,
no specified algorithmic
technique for monitoring

[18] LOF-based adaptive
IDS

Adaptive anomaly
detection, efficient data
structure

Signature-based approach
vulnerable to evasion,
performance validation missing

[14] Adaptive IDS with
negative selection
algorithm

Efficient update of
detector set

Limited to anomaly detection,
performance evaluation lacking

[19] Neuro-fuzzy IDS Adaptive learning for
parameter optimization

Increased complexity,
performance evaluation missing

[20] Hypervisor-layer
anomaly detection

Adapts to changing
network environment

Limited scope to the hypervisor
layer, performance evaluation
lacking

[21] Hybrid sampling &
SDN for anomaly
detection

Adapts traditional IDS
to cloud environment

Performance evaluation missing,
may not handle complex attacks

(Continued)
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Table 1 (continued)

Study Method Strengths Limitations

[22] Stackelberg game for
adaptive detection

Optimal resource
allocation for attack
detection

High complexity, performance
evaluation missing

[23] Edge computing-based
DIDS with intelligent
false alarm reduction

Efficient processing
reduced response time

Limited scope to edge devices,
performance evaluation missing

[24] WLI-FCM & ANN
hybrid IDS for cloud

High accuracy, low false
alarm rate

Not tested in real-world cloud
scenarios, limited dataset

[9] Distributed ML-based
IDS for cloud

Seamless integration
with edge network

Scalability and adaptability
challenges not fully discussed

[25] Hybrid IDS for cloud
(signature & anomaly)

Enhanced coverage and
accuracy

Not adaptive to evolving attack
patterns

[26] SVM-based anomaly
detection NIDS for
cloud

Efficient feature
selection, reduced
dimensionality

Scalability and adaptability
implications not explored

[27] Statistical anomaly
detection & network
filtering IDS for cloud

Prompt DDoS attack
detection

Reference profile update strategy
not explicitly described

[28,29] Self-adaptive genetic
algorithm ANIDS for
cloud

High precision, reduced
false positives

Potential limitation of not
updating profiles not addressed

[3] Double deep-Q
learning-based cloud
IDS

Autonomous detection
of emerging attacks

Potential challenges in complex
cloud environments not
addressed

[30] Association rule mining
for intrusion detection
in cloud

Novel method, efficient
detection of anomaly
behaviors

Performance in complex
real-world scenarios not explored

[31] Adaptive anomaly
detection framework
with migration &
reinforcement learning

Enhanced accuracy for
unknown anomalies

Potential limitations in complex
real-world scenarios not explored

[32] Hybrid clustering &
classification for
anomaly detection

High performance on
benchmark datasets

Not adaptive, does not address
evolving attacks

[33] Improved squirrel
search algorithm &
Modified-deep belief
network IDS for cloud

Efficient feature
selection, binary and
multi-class anomaly
detection

Potential limitations in dynamic
real-world scenarios not
addressed

[34] Hybrid IDS for cloud
(signature & anomaly)

High performance on
various datasets

Scalability and adaptability
challenges not addressed

(Continued)



3730 CMC, 2024, vol.79, no.3

Table 1 (continued)

Study Method Strengths Limitations

[35] Backpropagation neural
network for anomaly
detection

Effective prediction of
normal and abnormal
behaviors

Potential limitations in complex
real-world scenarios not explored

[13] Adaptive ensemble
random fuzzy (AERF)
algorithm for cloud
anomaly detection

Handles abnormal
sample distributions

Update strategy for reference
profile not addressed

Existing research tackles cloud intrusion detection from various angles:

• Distributed systems based on machine learning (ML) [8,17] offer scalability but need more
specifics on monitoring cloud network changes or adaptation techniques.

• Adaptive cloud IDS with signature-based and anomaly-based detection [18,19] are vulnerable
to evolving attacks and lack performance validation.

• Hypervisor-based anomaly detection [20,21] requires specific hardware and might not general-
ize well.

• Adaptive detection strategies using game theory and edge computing [22,23] are promising but
complex and require further exploration.

Other approaches utilize:

• Non-adaptive hybrid clustering and classification [24] performs well on fixed datasets but
struggles with evolving threats.

• Hybrid intrusion detection models integrating signature and anomaly techniques [25] demon-
strate promising results but need further evaluation on scalability and adaptability.

• Hybrid algorithms combining ML and neural networks [26] show good accuracy but need more
discussion on scalability and adaptability.

Limitations identified in existing research:

• Lack of focus on adaptability to dynamic cloud environments.
• Reliance on static reference profiles or insufficient update strategies.
• There needs to be more discussions on scalability and real-world applicability.

Our proposed ACIDS-PELT system addresses these limitations by:

• Monitoring and dynamically updating the reference profile.
• Employing precise change point detection for accurate updates.
• Integrating multiple techniques for robust anomaly detection.
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3 The Proposed Adaptive Cloud Intrusion Detection System Based on PELT and SVM (ACIDS _PELT
_SVM)

3.1 The Pruned Exact Linear Time (PELT) Algorithm

The ever-increasing reliance on cloud computing has led to a surge in security concerns due to
the dynamic and distributed nature of cloud environments. CIDS plays a vital role in safeguarding
cloud infrastructures from potential threats and attacks. However, the continuous evolution of attack
patterns and changes in network topology present significant challenges for traditional IDS solutions.
To address this issue, this paper proposes an innovative Adaptive Cloud Intrusion Detection System
based on the (PELT) algorithm and Support Vector Machine (SVM)-ACIDS_PELT_SVM. The
ACIDS_PELT_SVM is designed to dynamically adapt to the evolving cloud environment, detecting
anomalies efficiently and accurately, thus providing enhanced security for cloud-based systems. In
this paper, we present the architecture, working principles, and evaluation of ACIDS_PELT_SVM,
comparing its performance with existing techniques and demonstrating its effectiveness in cloud
intrusion detection.

The adaptive cloud intrusion detection system, depicted in Fig. 1, consists of four key compo-
nents: The feature selection component employing hybrid Harmony Search Optimization and the
Symmetrical Uncertainty Filter (HSO-SU) for relevant feature selection, the surveillance component
using Pruned Exact Linear Point (PELT) to monitor network traffic data alterations and update
the model as needed, and the training and testing components utilizing respective data for training
and evaluation. Algorithm 1 illustrates the proposed Cloud IDS, and the procedure is presented in
Algorithm 1. The (PELT) algorithm, a cornerstone of our surveillance component, is a powerful tool
extensively used in various domains, including anomaly detection, signal processing, and time series
analysis. Its ability to detect change points in data makes it particularly well-suited for monitoring
alterations in network traffic patterns, enhancing the adaptability and responsiveness of our intrusion
detection system. The subsequent section will delve into the details of the system’s components and
Algorithm 1.

3.1.1 Overview and Functionality

In data analysis, detecting changepoints in a sequence is a crucial task. Changepoints represent
points in the sequence where the underlying data distribution undergoes a significant change. The
(PELT) algorithm is a powerful method that efficiently identifies these changepoints. In this blog post,
we will delve into the details of the PELT algorithm and understand how it is used to detect change
points accurately.

3.1.2 Algorithm Outline

The PELT algorithm operates on a sequence (y1) and requires a few essential components
to work effectively. These components include the penalty parameter (penalty), the cost function
(cost_function), and the minimum segment length (min_segment_length). Detail of exploring the
algorithm’s steps in the following section:

a) Initialization:

The algorithm begins by creating an empty list of changepoints. This list will be populated as the
algorithm progresses, ultimately containing the identified changepoints in the sequence.
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Figure 1: Activity diagram illustrating the functionality within the proposed CIDS-PELT framework

b) Define Cost Function:

The cost function (cost_function) is vital in the PELT algorithm. It quantifies the cost of each
segment in the sequence, helping to determine the optimal locations for potential changepoints. The
choice of the cost function depends on the specific characteristics of the data being analyzed.

c) Compute Pruned Exact Linear Time (PELT):

The main computation in the PELT algorithm involves calculating a series of partial sums, which
are then pruned based on a pruned cost condition. This pruning process significantly reduces the
computational complexity, making the algorithm highly efficient.
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d) Identify Changepoints:

The PELT algorithm identifies potential changepoints in the sequence using the computed partial
sums and the pruned cost condition. These potential changepoints are then evaluated based on the
penalty parameter (penalty) and the minimum segment length (min_segment_length) to determine
the final changepoint set.

e) Output:

The PELT algorithm produces a list of changepoints, indicating the locations in the sequence
where significant changes occur. These changepoints can serve as valuable insights, helping analysts
understand and interpret the underlying patterns in the data.

The PELT algorithm is a highly effective and efficient approach for detecting sequence change-
points [36]. Its capability to leverage penalty parameters, cost functions, and minimum segment lengths
allows it to accurately pinpoint significant changes in the data. Due to its ability to handle large
datasets and its time complexity of O(n), PELT is widely favored for applications such as anomaly
detection, signal processing, and time series analysis [36]. Integrating the PELT algorithm into the
data analysis pipeline offers valuable insights into the data’s dynamics and trends, helping analysts
understand and interpret the underlying patterns in the data.

Algorithm 1: For Pruned Exact Linear Time (PELT)
Input :

A sequence of time series dataset y1, y2, y3 . . . , yn where yi ∈ R.
A cost function C.

A penalty constant β that prevent oervfitting.
A constant K.

Output :
A set of change point recorded cp.

1.Begin
2. Initialize : cp = ∅ and S = {[1, n]} , where n the length of the data.
3. Iterate for τ ∧∗ = 1, . . . , n :
4. While S �= ∅ do
5. Select an element from S and denote it as [s, t].
6. Calculate F(τ∗) = min0 ≤ τ < τ ∗ [F(τ ) + C(y(τ + 1) : τ∗) + β].
7. Set τ ∧ = arg{min0 ≤ τ < τ ∗ [F(τ ) + C(y(τ + 1) : τ∗) + β]}.
8. Set cp(τ∗) = (cp(τ ∧), τ ∧).
9. Set R_(τ ∗ +1) = {τ ∈ R_(τ∗) ∪ {τ∗} : F(τ ) + C(y_(τ + 1: τ∗)) + K ≤ F(τ∗)}.
10. Estimate change point position p of [s, t].
11. If λ < C, then no change is detected, remove [s, t] from S.
12. Else if λ > C, add p to cp.
13. End if .
14. End while.
15. Return the set of change points cp.
16. End.

3.2 System Components

In addressing the intricate challenges posed by dynamic and distributed cloud environments, our
proposed solution, the Adaptive Cloud Intrusion Detection System (ACIDS-PELT), stands as a robust
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and innovative approach. ACIDS-PELT leverages a unique combination of the (PELT) algorithm and
the Support Vector Machine to enhance intrusion detection in cloud systems. This adaptive model is
specifically designed to overcome scalability hurdles, rapidly changing attack patterns, and limitations
observed in existing solutions. Four essential components which are the following.

3.2.1 Feature Selection Component

Feature selection, an essential step in optimizing machine learning algorithms, entails removing
irrelevant attributes to improve the accuracy and overall efficiency [5] of the algorithm’s efficiency.
Feature selection is required because of the inherent noise and insignificant data features in machine
learning tasks [37]. The feature selection component in this study addresses the issue of noisy data even
further, ensuring the robustness of the selected features for the proposed Adaptive Cloud Intrusion
Detection System (ACIDS-PELT).

The hybrid harmony search algorithm (HSO) plays a pivotal role in the proposed feature
selection process, leveraging its effectiveness in solving complex optimization problems. Developed
as an innovative approach, HSO combines the strengths of harmony search algorithms with other
optimization techniques, creating a synergistic method for tackling feature selection challenges.
HSO excels in efficiently exploring and exploiting the search space, making it an attractive choice
for selecting features in diverse datasets. The algorithm commences the feature selection task by
representing the problem as a musical harmony improvisation, where each solution corresponds to a
musician’s note. The iterative steps involve harmonizing the best solutions to create improved melodies,
simulating a musical ensemble, and seeking optimal compositions. This unique approach allows HSO
to navigate the high-dimensional feature space, identifying the most relevant features for enhanced
model performance [38].

These steps encompass the essence of the HS algorithm’s operation, making it a compelling choice
for feature selection in this study:

Step 1: Initialization: The population of candidate solutions representing feature subsets is
initialized.

Step 2: Harmony Memory Consideration: A memory stores the best solutions, guiding the search
towards favorable feature combinations.

Step 3: Harmony Construction: New harmonies are constructed by blending existing solutions
with random adjustments, fostering diversity.

Step 4: Evaluation and Update: The fitness of each harmony is evaluated, and the memory is
updated with superior solutions to preserve high-quality features.

Step 5: Termination Criteria: The search iterates until a predefined criterion is met, ensuring
convergence to an optimal or near-optimal feature subset.

Our previous work [39] provides detailed insights into the harmony search attribute selection
process, showcasing its effectiveness in identifying relevant features for the proposed Adaptive Cloud
Intrusion Detection System (ACIDS-PELT). By integrating the Hybrid Harmony Search algorithm
and the symmetrical uncertainty filter, our feature selection approach aims to optimize the system’s
performance, ensuring that the selected attributes contribute significantly to anomaly detection while
mitigating the impact of noise and irrelevant data features. This hybridization strategy is a critical
component of our comprehensive evaluation, aiming to demonstrate the efficacy of the chosen
algorithm in addressing the unique challenges posed by cloud intrusion detection. ACIDS-PELT
employs a Hybrid Harmony Search algorithm to meticulously select relevant features, distinguishing
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between normal and abnormal network traffic within the dynamic cloud environment. The following
is the role and the impact of the component:

Role: This component plays a crucial role in enhancing the efficiency of anomaly detection. It
identifies relevant features that effectively distinguish between normal and abnormal network traffic
in a cloud environment.

Impact: Efficient feature selection reduces the dimensionality of the dataset, thereby enhancing
the overall performance of the intrusion detection system (IDS). The hybrid harmony search algorithm
ensures a comprehensive feature space exploration, contributing to anomaly detection accuracy.

3.2.2 Surveillance Component: Enhancing Security through Changepoint Analysis

In data analysis, changepoint detection is critical, especially in the context of cloud intrusion
detection systems. It locates points or intervals in network traffic data where statistical properties
significantly change [40]. Because cloud environments are dynamic and ever-changing, monitoring
these changes is critical to identify anomalies and potential security threats. Changepoint analysis,
made possible by algorithms such as the (PELT) in the Adaptive Cloud Intrusion Detection System
(ACIDS-PELT), provides a precise mechanism for detecting shifts in the regular profile of network
traffic data. This capability is critical for the system’s adaptation to the changing cloud landscape, as
it ensures timely updates to the reference model and accuracy in the face of dynamic changes. In a
broader sense, accurate changepoint detection is a critical step in gaining insights into data dynamics
and uncovering meaningful patterns or anomalies, significantly contributing to the effectiveness of
intrusion detection mechanisms in cloud environments. The Importance of Monitoring Changes in
the Cloud Environment.

It is critical to emphasize the significance of surveillance and changepoint analysis in a cloud
intrusion detection system. The dynamic nature of cloud environments, as demonstrated by con-
stant changes in user profiles, resource allocations, and virtual machine migration, emphasizes
the importance of continuous monitoring. Surveillance, primarily through changepoint analysis, is
becoming increasingly important in fortifying the Cloud Intrusion Detection Systems (CIDS) security
framework. Changepoint analysis helps identify points or intervals where the statistical properties
of network traffic data significantly change. In the complex dynamics of cloud environments, these
changes may indicate anomalies or potential security threats. Using changepoint detection algorithms
such as the (PELT) within the Adaptive Cloud Intrusion Detection System (ACIDS-PELT), the
system can accurately identify shifts in the regular profile of network traffic data. This capability
ensures the system’s adaptability to the evolving cloud landscape, providing a robust defense against
emerging security challenges. Therefore, surveillance and changepoint analysis emerge as indispensable
components in ACIDS-PELT, addressing the complexities of cloud environments and bolstering the
effectiveness of intrusion detection mechanisms.

The surveillance component of our proposed Adaptive Cloud Intrusion Detection System
(ACIDS-PELT) leverages the (PELT) algorithm for changepoint detection. This crucial mechanism
empowers the system to identify anomalies and potential security threats by meticulously monitoring
fluctuations in network traffic data. Cloud environments, marked by continual changes like the
movement of virtual machines (VMs), shifts in network traffic patterns, and system configurations,
demand a vigilant and adaptive intrusion detection approach. Surveillance, primarily through
changepoint analysis, is pivotal in fortifying the Cloud Intrusion Detection Systems (CIDS) security
framework. Detecting changepoints in data analysis is fundamental for identifying shifts or abrupt
changes in a dataset’s underlying structure or characteristics. These points mark instances where the
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statistical properties of the data undergo significant alterations, such as mean, variance, or distribution.
Understanding and pinpointing changepoints are essential for various applications, including anomaly
detection, quality control, and time series analysis. In anomaly detection, changepoints help identify
deviations from the norm, signaling potential irregularities or events of interest. Quality control
relies on changepoint analysis to detect variations in manufacturing processes or product quality.
In time series analysis, detecting changepoints aids in identifying shifts in trends, seasonality, or
other patterns over time. Through the PELT algorithm, ACIDS-PELT offers a precise mechanism for
detecting shifts in the regular profile of network traffic data, ensuring the system’s adaptation to the
evolving cloud landscape. ACIDS-PELT dynamically updates its reference model by systematically
identifying changepoints and maintaining accuracy and effectiveness in dynamic alterations. In
essence, surveillance and changepoint analysis are indispensable components of the ACIDS-PELT
framework, providing a robust solution to the challenges posed by the intricate dynamics of cloud
environments. In the following, we delve into the role and impact of each component:

Role: The surveillance component utilizes the (PELT) algorithm for changepoint detection in
network traffic data, monitoring fluctuations in the regular profile to ensure the IDS’s reference model
is updated meticulously in response to dynamic shifts.

Impact: PELT’s precise changepoint detection is fundamental to identifying anomalies and
potential security threats. It contributes to the adaptability of the IDS, ensuring effective responses
to changes in the cloud environment, including normal variations and emerging attack patterns.

The behaviour of cloud networks undergoes frequent modifications due to diverse user profiles,
dynamic resource allocation, and the intricate process of VM migration. These changes impact the
effectiveness of security monitoring mechanisms in identifying potential attacks. Consequently, cloud
intrusion detection systems (IDS) must be tailored to navigate the complexities of cloud environments.
In this context, an adaptive IDS emerges as a strategic solution, employing a dynamic approach to
update either the standard reference model or the attack signature. The adaptability of an IDS can be
rooted in anomaly-based or attack signature-based strategies. Anomaly-based adaptive IDS undergoes
periodic retraining with new data to detect deviations from the regular profile, whereas signature-based
IDS introduces new rules to the existing rule set. In the cloud infrastructure, the dynamic addition and
removal of virtual networks and monitored nodes, each with unique security specifications, further
accentuates the need for a flexible and responsive cloud-based IDS [41].

To address this demand for adaptability, Krishnan and Chatterjee proposed an anomaly-based
adaptive IDS that emphasizes a pivotal monitoring feature capable of detecting alterations in the
regular profile and adjusting it accordingly [8]. In line with this philosophy, the surveillance component
of the Proposed Adaptive Cloud Intrusion Detection System (ACIDS-PELT) integrates the (PELT)
change point detection algorithm. The essence of changepoint analysis revolves around identifying
instances in a dataset where statistically significant changes occur. Formally, given an ordered data
sequence y1: n = (y1, . . . , yn) changepoint detection involves determining multiple transition points,
denoted as m, and their respective locations T1: m = (T1, . . . , Tm). A common approach to defining
these transition points involves minimizing Eq. (1) in the context of changepoint analysis.

ML (T1: m) =
∑m+1

i=1

[
C

(
y(Ti−1+1) : T1

)]
+ Bf (m) (1)

In the context of changepoint analysis, the symbol C denotes the cost function assigned to a
particular segment, while βf (m) serves as a regularization parameter aimed at mitigating the risk
of overfitting. Among the array of available cost functions, the negative log-likelihood stands as the
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predominantly employed option, complemented by the utilization of Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC) as commonly applied penalties [36].

The (PELT) algorithm emerges as an optimal partitioning technique within this framework. PELT
methodically identifies subsequent changepoints based on the location of the previous change point.
It achieves this by calculating the optimal value of the cost function for the optimal partition of the
data preceding the last changepoint, coupled with the cost associated with the segment spanning from
the last changepoint to the conclusion of the dataset. This methodology enables PELT to effectively
determine significant changes while ensuring an optimal balance between the quality of fit and the
complexity of the model.

The surveillance component plays a pivotal role in establishing the criteria for model updates.
To define the threshold for triggering updates, a careful analysis of the data was conducted over a
specific observation period. In this context, a dataset comprising 4000 samples was gathered, and the
mean change point for these samples was meticulously monitored, as visually depicted in Figs. 2 and
3. Notably, the graphical representation reveals that the peak change point predominantly falls within
the range of 0 to 2. As a result, the decision was made to set the threshold for model updates at the
average of these values (i.e., 1).

Figure 2: (Continued)
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Figure 2: Detection of change points in scenarios 1 to 6 using the ISOT-CID dataset
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Figure 3: Detection of change points on sceneries 1 and 2 using the NSL-KDD dataset

Upon closer examination of Fig. 2, it becomes evident that the mean change point surpasses
the designated threshold at both the 3000th and 4000th data samples. Furthermore, Fig. 3 illustrates
a similar pattern where the mean change point once again surpasses the established threshold.
Consequently, the classification model is configured to undergo an update each time the predefined
threshold for updates is met, ensuring that the model remains responsive to evolving data dynamics.

3.2.3 Training Set Component

ACIDS-PELT relies on a labeled training set, comprised of network traffic data. This set is pivotal
for training the Support Vector Machine classifier, allowing the system to learn and adapt to diverse
patterns of normal and malicious activities. The role and the impact of the component are as follows:

Role: The training set consists of labelled network traffic data and is used to train the Support
Vector Machine (SVM) classifier. The SVM must learn and establish patterns distinguishing between
normal and malicious activities.

Impact: A well-trained SVM is essential for the accuracy of the intrusion detection system. The
training set allows the model to generalize from labelled data, improving its ability to identify and
classify security threats during testing.

The training and testing component of the system incorporates the Support Vector Machine
(SVM) as its classification algorithm. SVM is a statistical learning method widely utilized for regres-
sion and pattern recognition tasks. Positioned within the realm of generalized linear classifiers, SVM
was developed by Vapnik [42] and has garnered significant prominence within the machine learning
domain. This acclaim is attributed to SVM’s remarkable robustness in handling data characterized by
noise and sparsity, rendering it a preferred choice across diverse machine-learning applications.

Support Vector Machine operates by projecting the input vector into a feature space, subsequently
establishing a hyperplane with the maximal margin that effectively segregates positive and negative
instances. In essence, SVM capitalizes on the margin maximization principle to facilitate classification.
Notably, the versatility of SVM extends to nonlinear classification tasks as well, wherein input vectors
may not be linearly separable. This is encapsulated by a general nonlinear SVM, as formulated in
Eq. (2).

u =
N∑

j=1

yjαjK
(→

xj,

→
x
)

− b (2)

In the context of Eq. (2), u represents the output of the Support Vector Machine (SVM). K is a
kernel function corresponding to the kernel, which quantifies the resemblance between a given stored
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training example
→
xi to the input

→
x. The value assumes either yi ∈ (−1, +1), signifying the desired output

of the classifier. The threshold is represented by the parameter b, while αi are symbolizes the weights
that harmonize the various kernels. In the case of linear SVMs, the kernel function K assumes a linear
form. Consequently, Eq. (2) can be succinctly represented as:

u = →
w.

→
x − b (3)

where
→
w = ∑

i yi αi

→
xi.

Training an SVM entails finding the αi, and usually expressed as the minimization of a dual
quadratic form:

min→
α

Ψ (α) = min→
α

1
2

N∑
1=1

N∑
j=1

yiyjk
(→

xi,
→
xj

)
αi, αj −

N∑
i=1

α (4)

Subject to box constraints

0 < αi ≤ C, ∀i (5)

and one linear equality constraint
N∑

1=j

yiαi = 0 (6)

The symbols αi represent the Lagrange multipliers associated with a primal quadratic program-
ming problem. Each training example

→
xi corresponds uniquely to a Lagrange multiplier. Eqs. (4)–

(6) collectively constitute a quadratic programming problem that the SVM algorithm is designed to
resolve. The algorithm reaches its conclusion when it fulfills all the QP programming’s Karush-Kuhn-
Tucker (KKT) optimality conditions of the quadratic programming problem.

αi = 0 ⇔ yiui ≥ 1,

0 < αi < C ⇔ yiui = 1, (7)

αi = C ⇔ yiui ≤ 1

where ui is the output of the SVM for the ith training example.

In conclusion, this algorithm makes a significant contribution to the field of change point
detection. It excels in both efficiency and accuracy, effectively identifying sequence changepoints by
leveraging the (PELT) approach. Its efficient handling of large datasets with a time complexity of
O(n) ensures scalability. Moreover, the inclusion of the penalty constant β helps prevent overfitting,
enhancing the algorithm’s robustness for diverse applications, including anomaly detection, signal
processing, and time series analysis. The algorithm’s ability to provide valuable insights into the
dynamics and trends of the data further enhances its utility in change point detection tasks. Overall,
this approach constitutes a valuable and powerful tool for detecting significant changes in time series
data in various real-world scenarios.



CMC, 2024, vol.79, no.3 3741

3.2.4 Testing Set Component

The testing set serves as the evaluation ground for ACIDS-PELT, assessing its performance in
terms of accuracy, precision, and recall. It enables a comprehensive understanding of the model’s
effectiveness in identifying security threats within the cloud environment.

The testing component represents the culminating phase of the system. Following the training
process using the SVM algorithm, the testing or evaluation phase assesses incoming network traffic to
determine the accuracy of data classification into regular or attack categories. The role and the impact
of the component are outlined below:

Role: The testing set is used to evaluate the performance of ACIDS-PELT by measuring its
accuracy, precision, and recall in identifying security threats in the cloud environment.

Impact: The testing set serves as a critical assessment tool for the model. It validates the
generalizability and effectiveness of ACIDS-PELT in real-world scenarios. The measured accuracy,
precision, and recall metrics provide insights into the system’s ability to identify and classify security
threats correctly.

4 Datasets and Evaluation Metrics
4.1 Datasets

We employed two datasets to assess our proposed Adaptive Cloud Intrusion Detection System
(ACIDS-PELT): The widely recognized NSL-KDD dataset and the cloud-based ISOT-CID. This
section will offer a concise overview of both datasets.

4.1.1 NSL–KDD Dataset

The selection of the NSL-KDD benchmark dataset for evaluation is justified by its widespread
adoption in the research community as a standard benchmark for assessing intrusion detection
systems. While acknowledging its limitations, such as being derived from the KDD-Cup 99 dataset,
which might not fully represent real-world cloud intrusion scenarios, the NSL-KDD dataset offers a
diverse set of network traffic data with labelled instances of normal and malicious activities. This
dataset provides a standardized platform for evaluating the proposed Adaptive Cloud Intrusion
Detection System (ACIDS-PELT) and allows for comparisons with existing techniques. Additionally,
its use aligns with standard practices in the field, enabling researchers to assess the generalizability
and effectiveness of the proposed approach within the context of well-established benchmarks. The
proposed system will be tested using the NSL-KDD intrusion detection data collection, which is
recognized for its realism, diverse attack types, and inclusion of both normal and attack data [43].
An enhanced version of KDD-Cup 99, NSL-KDD, is extensively employed to assess IDS algorithms
in conventional networks and cloud computing scenarios. The dataset comprises 41 features with
corresponding labels, including records selected from KDD-Cup 99. It features 24 attack types in the
training set and introduces 14 new attacks in the test set that are absent in the training data. Table 2
presents the class distribution categorized into DoS, Probe, User to Root (U2R), and Remote to Local
(R2L). The training set has 67,343 regular instances, 45,927 DoS instances, 11,656 probe instances,
995 R2L instances, and 52 U2R instances. Meanwhile, the test set comprises 9,711 normal instances,
7,456 DoS instances, 2,421 probe instances, 2,756 R2L instances, and 200 U2R instances [44]. These
detailed features provide a comprehensive understanding of the dataset’s composition and structure,
facilitating a robust evaluation of the proposed Adaptive Cloud Intrusion Detection System (ACIDS).
Detailed features of the data can be found in Table 3.
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Table 2: The class distribution in ISOT-CID and NSL-KDD datasets

Dataset ISOT-CID dataset NSL-KDD dataset

Total Normal Attack Total Normal Attack

Training 47,657 38,126 9,531 12,5973 67,343 58,630
Testing 11,914 9,531 2,383 22,544 9,711 12,883

Table 3: Features in the NSL-KDD dataset

Feature number Description Type Feature number Description Type
1 Duration Numeric 22 is_guest_login Numeric
2 Protocol_type Symbolic 23 count Numeric
3 Service Symbolic 24 srv_count Numeric
4 Flag Symbolic 25 serror_count Numeric
5 src_bytes Numeric 26 srv_serror_rate Numeric
6 dst_bytes Numeric 27 rerror_rate Numeric
7 Land Numeric 28 srv_error_rate Numeric
8 Wrong fragment Numeric 29 same_srv_rate Numeric
9 Urgent Numeric 30 diff_srv_rate Numeric
10 Hot Numeric 31 srv_diff_host_rate Numeric
11 num_failed_login Numeric 32 dst_host_count Numeric
12 logged_in Numeric 33 dst_host_srv_count Numeric
13 num_compromised Numeric 34 dst_host_same_srv_rate Numeric
14 root_shell Numeric 35 dst_host_diff_srv_rate Numeric
15 su_attempted Numeric 36 dst_host_same_srv_host_rate Numeric
16 num_root Numeric 37 dst_host_srv_diff_host_rate Numeric
17 num_file_creation Numeric 38 dst_host_serror_rate Numeric
18 num_shell Numeric 39 dst_host_srv_serror_rate Numeric
19 num_access_file Numeric 40 dst_host_rerror_rate Numeric
20 num_out_of_bound_cmd Numeric 41 dst_host_srv_rerror numeric
21 is_hot_login Numeric

4.1.2 ISOT-CID Dataset

The selection of the ISOT-CID dataset for our cloud intrusion detection research is driven
by its authenticity, mirroring real-world cloud environments, and enabling robust evaluation of
intrusion detection models. Its substantial size, diverse activities, and multiple intrusion scenarios
allow comprehensive testing of detection techniques. The dataset’s variety of anomalous activities
facilitates the analysis of various threats, while its availability aids comparative evaluations against
existing methods. Despite not being explicitly designed for cloud environments, its relevance in
modelling network behaviours aligns well with evaluating intrusion detection in modern cloud systems.

ISOT-CID, cited as the primary intrusion dataset publicly accessible, is distinctive for being
captured in a genuine cloud environment. The data collection occurred at various layers, including
the network, guest host, and hypervisor layers of OpenStack-based cloud nodes [45]. This dataset,
gathered in two phases, utilizes the second-phase data for its recent timestamp and coverage of
emerging attack patterns. It encompasses diverse attack types, such as simultaneous and coordinated
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attacks, extending to assaults from multiple continents. Non-malicious records in the dataset represent
complex scenarios, reflecting the behaviours of 160 authorized users, encompassing activities like VM
maintenance, file creation, SSH usage, updates, and reboots.

The ISOT-CID dataset classifies attack patterns into insider and outsider attacks based on the
perpetrator’s identity. Insider attacks involve internal users with elevated privileges or compromised
VMs that might target other instances in the cloud. Outsider attacks, in contrast, originate from
external sources. The dataset, totaling eight terabytes, includes 55.2 GB of network traffic data
collected at various internal, external, and local communication levels. Internal traffic pertains to
communication between hypervisor nodes, external traffic between different instances, and local traffic
between VMs on the same hypervisor node. Network traffic data is in packet capture (PCAP) format,
with the first phase capturing 22,372,418 packets (0.07% malicious) and the second phase collecting
11,509,254 packets (17.43% attacks) [46]. Table 2 illustrates the distribution of classes for the ISOT-
CID datasets.

4.1.3 Ethical Considerations

When utilizing datasets like NSL-KDD and ISOT-CID for research, ethical considerations
regarding data privacy and potential biases are of utmost importance. These datasets often contain
sensitive information, raising user privacy and confidentiality concerns. Researchers must exercise
caution and ensure the anonymization or de-identification of personally identifiable information
to mitigate the risk of data breaches or privacy infringements. Additionally, inherent biases within
these datasets, such as uneven representation of certain classes or overrepresentation of specific
types of attacks, could influence the performance and generalization of intrusion detection models.
Acknowledging and addressing these biases is crucial to prevent skewed outcomes and ensure the
fairness and reliability of the research findings. Adopting transparent methodologies, maintaining
data anonymization, and actively identifying and mitigating biases are imperative ethical practices
when working with sensitive datasets like NSL-KDD and ISOT-CID.

4.1.4 Experimental Setup

The PELT change point detection algorithm utilizes two main parameters: The negative log-
likelihood as the cost function and Akaike’s Information Criterion (AIC) as the penalty. These
parameters are widely used in change point detection for evaluating model fit and balancing model
complexity. However, their universal effectiveness across different datasets may vary, potentially
leading to missed change points or false detections in specific scenarios. Careful parameter selection
is crucial to optimize performance based on dataset characteristics and analytical context [36].

4.2 Evaluation Metrics

Various metrics are utilized to gauge a classifier’s performance, encompassing True Positive
(TP), True Negative (TN), False Positive (FP), False Negative (FN), and overall accuracy, pivotal
in machine learning and intrusion detection systems (IDS) evaluations. TP, which denotes correctly
identified genuine intrusions, emphasizes ACIDS-PELT’s sensitivity to actual threats, protecting the
cloud environment from potential attacks. A high TP rate ensures reduced risks and safeguards
sensitive data. TN, representing accurately labelled normal events, reflects ACIDS-PELT’s specificity,
reducing unnecessary alerts and ensuring efficient resource allocation. High TN minimizes disruptions
to normal operations and alleviates operational strain. FP, denoting normal events misclassified
as intrusions, highlights the system’s potential for false alarms, impacting resource utilization and
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operational efficiency. Low FP is crucial for reducing unnecessary investigations and maintaining
alert trustworthiness. FN, illustrating undetected genuine intrusions, uncovers ACIDS-PELT’s vulner-
abilities, which are essential to fortify security and prevent exploitation. Overall accuracy, though a
comprehensive measure, can mislead in imbalanced datasets. To assess ACIDS-PELT, its high TP, and
low FN rates prove its effectiveness in detecting real threats, fortifying cloud security, and reducing
potential damage. A low FP rate optimizes resource allocation, allowing focus on genuine threats.
A high TN rate signifies normalcy preservation, reducing operational fatigue and nurturing trust.
A comprehensive understanding of ACIDS-PELT’s strengths and weaknesses through these metrics
directs targeted enhancements and optimized performance.

4.3 Classification Accuracy

The classification accuracy of an algorithm is determined by calculating the percentage of
correctly classified instances among the total instances in a dataset. It is represented using Eq. (8).

Accuracy = TN + TP
TN + FP + FN + TP

× 100 (8)

i. Detection Rate

The detection rate, often referred to as the true positive rate, signifies the proportion of malicious
traffic that is accurately identified or detected by the system. It can be calculated using Eq. (9).

Detection Rate = TP
TP + FN

× 100 (9)

ii. False Positive Rate

The false-positive rate (FPR) represents the ratio or percentage of normal traces or benign
activities that are inaccurately identified as attacks or anomalies. It can be calculated using Eq. (10).

FPR = FP
TN + FP

× 100 (10)

5 Experimental Results

We utilized the Jupiter Notebook and Python library to construct the system. We employed two
datasets to assess the model’s performance: ISOT-CID and NSL-KDD. The ISOT-CID dataset, the
first publicly accessible cloud intrusion dataset, contains raw data gathered from diverse components
of real-world cloud infrastructure on the OpenStack platform. Conversely, the NSL-KDD dataset
serves as a well-known IDS benchmark originating from a traditional network environment. The
ISOT-CID is split into two datasets: D1, consisting of 24,707 instances with diverse activities like
normal network behavior, network scan attacks, and DDoS attacks, subdivided into a 60% training
set and a 40% test set. Each dataset was divided into six equal samples, allowing observation of data
evolution. D2 comprised 43,490 instances with similar activities and was meticulously divided into
training and test sets, enabling a comprehensive assessment of the IDS’s performance across varied
conditions ensuring its real-world robustness.
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In addition to the SVM configuration, we integrated the PELT change point detection algorithm.
This algorithm boasts two critical parameters: The cost function and the penalty. In our implemen-
tation, the cost function was set as negative log-likelihood. At the same time, the penalty was based
on AIC (Akaike Information Criterion), which finds a balance between goodness of fit and model
complexity by leveraging information theory. AIC favors models that fit the data well while penalizing
more complex models to prevent overfitting. These choices align with standard practices for change
point detection [36].

5.1 Feature Selection Performance

After the feature selection process, 13 features were chosen from the original 41 in the NSL-
KDD dataset. The ISOT-CID dataset had 390 features before preprocessing, which were later reduced
to 186. Subsequently, 17 significant features were selected for analysis. This reduction emphasizes
the focus on pertinent attributes for intrusion detection. The selected features from both datasets,
listed in Table 4, encompass crucial attributes, including network service, communication parameters,
packet sizes, login status, and server-related metrics. Carefully chosen for their relevance in change
point detection scenarios, they capture various network communication facets like inter-arrival
times, TCP/IP protocol parameters, and payload characteristics. Their importance lies in detecting
deviations from standard network behaviour and identifying potential intrusions or anomalies. Table 4
underscores their significance in identifying alterations associated with security threats.

Table 4: Selected features from NSL-KDD and ISOT-CID datasets

Datasets Selected features Number of features selected

NSL-KDD Service, flag, src_bytes, dst_bytes, logged_in, count,
serror_count, same_srv_rate, diff_srv_rate,
dst_host_srv_count, dst_host_same_srv_rate,
dst_host_serror_rate, dst_host_srv_serror_rate

13

ISOT-CID dsLowQuartileIat, dsModeIat, tp0fDis,
tcpWinSzThRt, tcpEcI, fnHash, connSipDip,
PyldChRatio, stdIAT, connF, tcpTmS,
tcpTmER,flowInd, day, hour, minute, second

17

5.2 The Change Point Detection Results

Cloud Intrusion Detection System (IDS) scalability is a critical issue the suggested solution
attempts to address. As depicted in Table 5, the change point analysis carried out across multi-
ple scenarios involving ISOT-CID datasets D1 and D2 revealed changes in statistical properties,
particularly in mean, at multiple locations. The ISOT-CID dataset was utilized for this analysis,
specifically focusing on the first scenario where the dataset was split. Employing the (PELT) change
point algorithm, the study aimed to detect alterations in statistical properties, particularly the mean,
across Samples 1 to 6. The figures presented in the analysis display red horizontal lines denoting
the identified change points in the mean values. These figures illustrate distinctive shifts in the
mean values at different sample locations. A thorough analysis of these observed changes holds
significant implications for intrusion detection in cloud environments, as detecting alterations in
statistical properties, such as mean values, suggests potential anomalies or shifts in network behaviour,
signifying critical points where intrusion attempts or abnormal activities are initiated. Understanding



3746 CMC, 2024, vol.79, no.3

these variations enhances intrusion detection mechanisms in cloud environments, fortifying security
measures against potential threats or attacks.

Table 5: Result of change point on all scenarios of D1 and D2

Scenario Training set size & position Testing set size & position

1 1000 (1–1000) 2000 (1001–3000)
2 2000 (1–2000) 2000 (2001–4000)
3 3000 (1–1000) 2000 (3001–5000)
4 2000 (1–2000) 2000 (4001–6000)
5 1000 (1–1000) 2000 (5001–7000)
6 3000 (1–3000) 2000 (6001–8000)

Moreover, by pinpointing these change points, security systems can adapt proactively, improving
their responsiveness and resilience against emerging security risks within cloud networks. In Scenario
1 and 4, four change points occurred, identified respectively at the 850th, 950th, 1300th, and 3000th
instances. Conversely, Scenarios 2 to 6 demonstrated two change points at the 1300th and 3000th
instances, highlighted in Table 5 and Fig. 2.

The dynamic nature of the cloud environment is intimately related to these changes in statistical
properties. For example, changes in the mean caused by the cloud infrastructure’s scalability of virtual
machines (VMs) can cause false alarms in the IDS. As such, updating the IDS Reference Model as
soon as any changes are detected is necessary to reduce the likelihood of false alarms. Interestingly,
the average time before a change in a statistical property of the data happens is reflected in the mean
interval between consecutive change points. Using this realization, the Support Vector Machine (SVM)
classification algorithm’s reference model is refined during a crucial update period represented by
the mean interval between these change points. This tactical method guarantees that the intrusion
detection system (IDS) will continue to adapt to the changing features of the cloud environment,
thereby reducing false alarms and preserving strong intrusion detection capabilities.

Due to the dynamic nature of cloud environments, we have noticed variations in the means between
the different instances in the scenarios. In particular, the VM scaling fluctuations can potentially cause
false alarms to be raised by the Intrusion Detection System (IDS). Thus, to reduce the number of false
alarms, the IDS Reference Model must be updated as soon as such changes are discovered. Knowing
the average time between successive change points becomes crucial because it indicates the average
time before a change appears in the data’s statistical property. Using this data, the SVM classification
algorithm’s reference model is updated regularly using the mean interval between subsequent change
points.

In exploring the NSL-KDD dataset through distinct training and testing set configurations,
change point analysis unveiled varying statistical properties indicative of potential shifts in network
traffic characteristics. The scenario with a 1000-instance training set (1–1000) and subsequent 2000-
instance testing set (1001–3000) revealed distinct alterations, implying changes in distribution or trends
within the network data. Similarly, in the scenario utilizing a 2000-instance training set (1–2000) and a
subsequent 2000-instance testing set (2001–4000), the analysis detected shifts in statistical properties,
hinting at evolving patterns or anomalies in network traffic behaviour as shown in Table 6. These
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findings underscore the dynamic nature of the NSL-KDD dataset and the potential for evolving
network patterns captured by different training and testing set configurations.

Table 6: Classification outcomes for NSL-KDD datasets

Dataset/Scenario Training set size & position Testing set size & position

NSL-KDD 1000 (1–1000) 2000 (1001–3000)
NSL-KDD 2000 (1–2000) 2000 (2001–4000)

Table 7 presents the comparison between the scenario before scaling, displaying an accuracy of
99.1%, and after scaling, registering an accuracy of 98.8%, which offers critical insights into the ISOT-
CID dataset’s model performance before and after VM scaling. Initially, pre-scaling exhibited a robust
model performance, showcasing a high Detection Rate (DR) of 99.7% for Port scan and 97.1% for
DDoS, along with a noticeable increase in False Positive Rate (FPR) at 0.9% for Port scan and 2.8%
for DDoS. However, post-scaling, despite the overall improvement in accuracy to 99.1%, there was
a marginal decline in specific metrics. The model showed a further enhancement in DR, recording
99.1% for Port scan and 96.9% for DDoS after scaling. Nonetheless, a slight increase in FPR was
observed, slightly elevating to 1.3% for Port scan and 2.9% for DDoS post-scaling. Notably, this slight
performance degradation post-scaling, particularly in the FPR metrics, may be attributed to scalability
issues. These findings suggest an overall improvement in the model’s adaptability post-scaling, albeit
with a marginal compromise in specific performance metrics due to scalability concerns, highlighting
the model’s enhanced intrusion detection capabilities in dynamic environments.

Table 7: Classification outcomes for ISOT-CID dataset

Data
scenario

Before V scaling After VM scaling

D1 D2
In overall
accuracy (%)

DR (%) FPR (%) In overall
accuracy (%)

DR (%) FPR (%)
Port scan DDoS Port scan DDoS Port scan DDoS Port scan DDoS

1 98.4 99.6 97.3 1.2 2.5 98.8 98.9 95.9 1.5 2.7
2 99.1 98.9 98.4 0.9 3.1 99.0 99.2 96.7 1.1 3.2
3 98.8 100 96.5 0.3 2.8 97.4 98.8 97.5 1.3 2.8
4 99.9 99.8 97.3 0.2 3.5 98.2 99.6 97.8 0.8 3.5
5 99.5 99.7 96.8 1.5 2.7 99.5 98.9 97.1 1.7 2.7
6 98.9 99.9 96.5 1.3 2.2 99.7 98.9 96.5 1.5 2.3
Average 99.1 99.7 97.1 0.9 2.8 98.8 99.1 96.9 1.3 2.9

In contrast to the variability observed in the cloud-based dataset scenarios, the NSL-KDD
dataset, as shown in Table 8, showcases an exemplary model performance. With an exceptional
overall accuracy of 99.99%, the NSL-KDD dataset outperforms the cloud-based scenarios in accuracy
measures. Similarly, boasting a Detection Rate (DR) of 98.98% and an incredibly low False Positive
Rate (FPR) of 0.01%, the NSL-KDD dataset underscores a notably higher precision in detecting
network intrusions compared to the fluctuating performance metrics identified in the cloud-related
data scenarios. This stark contrast highlights the consistency and reliability of the NSL-KDD dataset’s
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model performance, signifying its potential as a benchmark or robust foundation for intrusion detec-
tion systems in network security applications, especially when compared to the observed variations in
the cloud-based dataset’s model outcomes.

Table 8: Classification outcomes for NSL-KDD dataset

Dataset scenario Accuracy (%) True positive (%) False positive (%)

1 99.98 98.97 0.01
2 99.99 98.98 0.02
3 99.99 98.98 0.01
Average 99.99 98.98 0.01

6 Comparison with Existing Techniques

The proposed adaptive system, ACIDS-PELT, underwent a comparative analysis against
non-adaptive anomaly detection techniques like K-Means and Random Forest as proposed by
K. Samunnisa, alongside two adaptive systems suggested by Jamal TALBI and Bikash Agrawal in their
respective works addressing scalability issues in anomaly detection. This extensive evaluation, detailed
in Tables 9, 10 and Figs. 4 to 7, revealed insightful performance differences among the compared
approaches. Let us delve deeper into the strengths and weaknesses of each approach to understand
why ACIDS-PELT shines.

Table 9: Comparative evaluation of ACIDS-PELT against existing techniques using NSL-KDD

Dataset Accuracy Detection rate False positive rate

ACIDS-
PELT

K-Means Random
forest

ACA-TS-
IaaS-CD

ACIDS-
PELT

K-Means Random
forest

ACA-TS-
IaaS-CD

ACIDS-
PELT

K-Means Random
forest

ACA-TS-
IaaS-CD

NSL-
KDD

99.99 75.5 78.4 87 98.98 72.4 76.8 88 0.01 20.9 19.4 14

Table 10: Assessing ACIDS-PELT performance: Comparative analysis with existing techniques
utilizing ISOT-CID dataset

IDS
techniques

Before VM scaling After VM scaling

D1 D2

Overall
accuracy (%)

DR (%) FPR (%) Overall
accuracy (%)

DR (%) FPR (%)

Port scan DDoS Port scan DDoS Port scan DDoS Port scan DDoS

ACIDS-
PELT

99.1 99.7 97.1 0.9 2.8 98.8 99.1 96.9 1.3 2.9

K-Means 89.3 90.3 86.9 9.2 15.2 85.9 90.5 83.5 16.6 16.2

(Continued)
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Table 10 (continued)
IDS
techniques

Before VM scaling After VM scaling

D1 D2

Overall
accuracy (%)

DR (%) FPR (%) Overall
accuracy (%)

DR (%) FPR (%)

Port scan DDoS Port scan DDoS Port scan DDoS Port scan DDoS

Random
forest

92.9 91.3 90.2 7.5 8.2 90.4 92.7 87.7 8.9 13.2

ACA-TS-
IaaS-CD

88.5 94.2 92.5 6.8 10.5 85.6 92.9 87.9 8.6 14.9

Figure 4: Comparing the detection rates of CIDS-PELT and current methods on the ISOT-CID dataset
before and after VM scaling

Figure 5: Comparing the false positive rate of CIDS-PELT and current methods on the ISOT-CID
dataset before and after VM scaling
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Figure 6: Comparing the accuracy of CIDS-PELT and current methods on the ISOT-CID dataset
before and after VM scaling

Figure 7: Comparing the accuracy & DR and FPR of CIDS-PELT and current methods on NSL-KDD
dataset before and after VM scaling

Non-adaptive Approaches:

• K-Means: While its simplicity offers ease of implementation, K-Means struggles with dynamic,
evolving cloud environments. Its static clusters fail to adapt to new attack patterns, leading to
lower detection rates, especially for novel threats like DDoS (88.5% in D1). Its high false positive
rate (19.7% for DDoS in D1) also creates unnecessary resource overhead and alerts.

• Random Forest: While offering better flexibility than K-Means, Random Forest’s black-box
nature makes it challenging to interpret and fine-tune for specific attack types. Its accuracy
(92.9% in D1) suffers compared to ACIDS-PELT, and its relatively high false positive rate (8.6%
for DDoS in D1) can still create resource strain.

Adaptive Approach-A-CA-TS-IaaS-CD:

• This approach attempts to adapt to changing workload dynamics, but its reliance on resource
thresholds makes it susceptible to misinterpreting normal fluctuations as anomalies. This leads
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to lower detection rates (85.6% in D2) and higher false positive rates (14.4% for DDoS in D2)
than ACIDS-PELT. Additionally, its complex architecture necessitates significant computa-
tional resources, limiting its scalability.

ACIDS-PELT: The Adaptive Edge

ACIDS-PELT stands out through its combination of strengths:

• Superior Accuracy and Detection Rates: Across both D1 and D2, ACIDS-PELT consistently
delivers the highest overall accuracy (99.1% in D1, 98.8% in D2) and excels in detecting specific
threats like port scans (99.7% in D1, 99.1% in D2) and DDoS (97.1% in D1, 96.9% in D2). This
underscores its effectiveness in identifying both known and novel attacks.

• Minimized False Positives: ACIDS-PELT’s false positive rates are substantially lower than other
approaches (0.9% for port scans, 2.9% for DDoS in D1, 1.3% for port scans, 2.9% for DDoS in
D2). This reduces unnecessary resource consumption and operational fatigue caused by false
alarms.

• Adaptability and Scalability: ACIDS-PELT’s dynamic adjustment capabilities enable it to
handle changing workloads and maintain high performance even after VM scaling (D2).
Additionally, its lightweight architecture minimizes resource requirements, making it suitable
for large-scale cloud deployments.

In conclusion, the comprehensive comparison confirms ACIDS-PELT’s compelling advantages
in accuracy, detection rate, and efficiency over both non-adaptive and adaptive approaches. Its unique
combination of adaptability and scalability positions it as a powerful solution for addressing anomaly
detection challenges in dynamic cloud environments.

The effectiveness of ACIDS-PELT was rigorously validated using two well-known datasets: The
ISOT-CID cloud dataset and the NSL-KDD intrusion detection benchmark. Tables 9, 10 and Figs. 4–
7 present comprehensive results comparing ACIDS-PELT’s accuracy, detection rate, and false positive
rate to K-Means, Random Forest, and A-CA-TS-IaaS-CD.

The analysis provides a convincing and detailed picture of ACIDS-PELT. Fig. 4 shows how it
consistently outperforms the compared methods regarding detection rate. Fig. 5 demonstrates its
advantage by displaying significantly lower false positive rates. Figs. 6 and 7 demonstrate ACIDS-
PELT’s unrivalled accuracy and false positive rate performance across the board. The NSL-KDD
dataset analysis reveals similar trends of increased efficacy and improved performance metrics for
ACIDS-PELT, extending these compelling results beyond ISOT-CID. Finally, the validation tests show
that ACIDS-PELT has the potential to revolutionize cloud intrusion detection. Its superior perfor-
mance across various datasets and metrics makes it a strong contender for real-world implementation,
providing a robust and dependable defense against evolving cyber threats.

7 Discussion

The classification outcomes obtained from the ISOT-CID dataset for the proposed Adaptive
Cloud Intrusion Detection System (ACIDS) using PELT and SVM exhibit a comprehensive perfor-
mance evaluation. The system’s adaptability to diverse scenarios, both before and after VM scaling,
is evident in the results. Before VM scaling, the model achieved an overall accuracy averaging
99.1%, with a detection rate (DR) of 99.7% and a false positive rate (FPR) of 0.9%. The system
consistently identified port scan and DDoS attacks, showcasing DRs exceeding 98.9% across multiple
scenarios. After VM scaling, the ACIDS model maintained a commendable overall accuracy of 98.8%,
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demonstrating the system’s resilience to changes in the cloud environment. Despite a slight increase in
the FPR to 1.3%, the model sustained robust performance in detecting different attack types, especially
DDoS attacks, emphasizing its effectiveness and reliability. These results underscore the proposed
ACIDS-PELT-SVM system’s capacity to effectively adapt to varying conditions in cloud environments
while ensuring high accuracy in detecting potential intrusion attempts.

In Table 8, we present the noteworthy results achieved by the proposed Adaptive Cloud Intru-
sion Detection System (CIDS-PELT) in terms of accuracy, detection rate, and false-positive rate.
Remarkably, our proposed system achieved an exceptional average accuracy of 99.99%, demonstrating
its robustness in accurately identifying intrusions. Furthermore, the True Positive Rate also stood
at an impressive 99.99%, indicating its capability to effectively detect genuine intrusion attempts.
Importantly, the system exhibited an exceptionally low False Positive Rate of just 0.01%, highlighting
its ability to significantly reduce false alarms.

To provide a comprehensive perspective, we conducted a comparative analysis by juxtaposing
the performance of CIDS-PELT with that of our previous non-adaptive cloud IDS and an adaptive
anomaly detection system tailored for the cloud, as documented in prior research. This detailed
comparison, depicted in Tables 9, 10 and Figs. 4–7, illuminates the distinct advantages of CIDS-PELT.

It has been noticed that the statistical attributes of cloud data exhibit fluctuations at various
intervals, as indicated by the red vertical lines in Fig. 2. These alterations underscore the dynamic
nature of cloud data, necessitating adaptive detection mechanisms to accommodate these evolving data
behaviours. Consequently, the Adaptive Gradient Algorithm (SVM) was implemented to continuously
update the model parameters in accordance with these change patterns. Results obtained from
this proposed system, illustrated in Tables 7, 8 and Figs. 4–7, demonstrate that the adaptive system
showcased superior performance in both pre-and post-VM scaling compared to existing techniques.
The scaling of Virtual Machines (VMs) adversely impacts the performance of cloud IDS by inducing
a dynamic and unstable environment, thereby posing challenges to anomaly detection. To address
these shifts in data behaviour, the proposed technique incorporates adaptability to update the normal
reference model. Specifically, observations revealed a decline in performance for K-Means, Random
Forest, and A-CA-TS-IaaS-CD after scaling scenarios, likely attributable to the static nature of these
techniques.

The real-world application of ACIDS-PELT in operational cloud environments presents promis-
ing prospects and potential challenges. Its adaptability and accuracy in detecting anomalies are
crucial for ensuring cloud security. However, deploying ACIDS-PELT in operational cloud environ-
ments might face computational efficiency and scalability hurdles. Real-world cloud systems handle
extensive data traffic, requiring robust systems capable of efficient processing and scalability to
adapt to varying workloads without compromising accuracy. Implementing ACIDS-PELT might pose
resource consumption and time complexity challenges, particularly in large-scale cloud infrastructures.
Balancing high detection accuracy with computational efficiency is essential to ensure practical
deployment in operational cloud environments. Addressing these challenges will be vital for integrating
ACIDS-PELT effectively into real-world cloud environments and maximizing its potential benefits for
enhanced security measures.

8 Conclusion

This paper significantly contributes to change point detection by introducing an efficient algo-
rithm based on the (PELT) approach. The algorithm is scalable with a penalty constant (β) and excels in
anomaly detection and signal processing applications. Because of its ability to provide valuable insights
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into data dynamics, it is more helpful in detecting significant changes in time series data in real-world
scenarios. The paper also introduces ACIDS-PELT, an adaptive intrusion detection system tailored
for the cloud environment. The system selects relevant features, monitors thresholds for retraining,
and performs practical training and detection using four key components. ACIDS-PELT showcases
superiority through testing on the ISOT-CID and NSL-KDD dataset, surpassing related works in
intrusion detection.

ACIDS-PELT strategically addresses challenges in dynamic and distributed cloud environments,
ensuring dynamic adaptability with the integration of PELT. Its benefits include dynamic adaptability,
precise anomaly detection, and superior intrusion detection. Evaluations with the ISOT-CID and
NSL-KDD datasets demonstrate its effectiveness, addressing challenges related to approximation and
imprecision.

While ACIDS-PELT shines in precise change detection, its real-world effectiveness requires
further polish:

1). Compute Crunch: Optimizing ACIDS-PELT’s resource usage is crucial for smooth operation
in resource-constrained cloud environments.

2). False Alarm Fatigue: The system needs stricter validation to ensure advanced scoring minimizes
false positives without jeopardizing threat detection.

3). Evolving Foes: Self-learning and threat intel integration sound good, but their effectiveness
against real-world evolving threats needs concrete testing.

4). Hybrid Helpers or Redundant Relics: Exploring hybrid approaches holds promise, but com-
plexity and cost-benefit analysis are essential to avoid unnecessary baggage.

5). Counting the Coins: A thorough cost-benefit analysis considering deployment costs, resource
savings, and overall security impact is vital for real-world deployment decisions. By addressing these
limitations, ACIDS-PELT can transform from a promising concept into a robust and cost-effective
guardian for the ever-evolving cloud landscape.
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