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ABSTRACT

In this study, we introduce a novel multi-objective optimization model tailored for modern manufacturing, aiming
to mitigate the cost impacts of operational disruptions through optimized corrective maintenance. Central to our
approach is the strategic placement of maintenance stations and the efficient allocation of personnel, addressing
a crucial gap in the integration of maintenance personnel dispatching and station selection. Our model uniquely
combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance
between maintenance efficiency and cost-effectiveness. The core of our methodology is the NSGA III+ Dispatch, an
advanced adaptation of the Non-Dominated Sorting Genetic Algorithm III (NSGA-III), meticulously designed for
the selection of maintenance stations and effective operator dispatching. This method integrates a comprehensive
coding process, crossover operator, and mutation operator to efficiently manage multiple objectives. Rigorous
empirical testing, including a detailed analysis from a Taiwanese electronic equipment manufacturer, validated the
effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.
The findings reveal that the proposed model significantly outperforms current practices by reducing response
times by up to 23% in low-frequency and 28.23% in high-frequency machine failure scenarios, leading to notable
improvements in efficiency and cost reduction. Additionally, it demonstrates significant improvements in oper-
ational efficiency, particularly in selective high-frequency failure contexts, while ensuring substantial manpower
cost savings without compromising on operational effectiveness. This research significantly advances maintenance
strategies in production environments, providing the manufacturing industry with practical, optimized solutions
for diverse machine malfunction situations. Furthermore, the methodologies and principles developed in this
study have potential applications in various other sectors, including healthcare, transportation, and energy, where
maintenance efficiency and resource optimization are equally critical.
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1 Introduction

Modern manufacturing is continually challenged by unpredictable variables that disrupt the
smooth operation of production lines, leading to significant operational costs despite the incorpo-
ration of cutting-edge technology and advanced equipment [1–3]. In this context, machine mainte-
nance, encompassing predictive and corrective approaches, emerges as a critical element. Predictive
maintenance, a proactive strategy, employs extensive data analytics to anticipate and prevent machine
malfunctions but often faces challenges due to incomplete data collection. On the other hand,
corrective maintenance, a reactive approach, is activated after detecting machine faults, aiming to
swiftly restore functionality. The advancement of monitoring systems and sensor technologies has
bolstered this approach, enhancing real-time anomaly detection and enabling rapid deployment of
maintenance teams to mitigate disruptions.

This research focuses on the efficiency of maintenance stations within factories, crucial for
operational responsiveness. These hubs, where operators receive alerts and mobilize to address
machine malfunctions, play a vital role in enhancing efficiency and reducing downtime, thereby
optimizing productivity in manufacturing settings. The corrective maintenance process on production
lines entails several steps: Detection of machine issues, notification and mobilization of technicians,
diagnosis, repair, verification of functionality, and return of technicians to their stations. Both the fault
response time—from detection to repair commencement—and the maintenance duration are critical
for maintaining operational efficiency.

The response time in corrective maintenance mirrors that in Emergency Medical Services (EMS),
where it is defined as the duration from an emergency report to the start of medical treatment. Just as in
EMS, where the strategic location of service points and efficient resource allocation are essential for not
only rapid but also quality care [4–8], in manufacturing, response time is influenced by the proximity of
maintenance stations and the distribution of technical personnel. The closer the maintenance stations
are to the site of the malfunction, the quicker the response for repairs. Thus, the strategic establishment
of maintenance stations and the assignment of operators to these stations are crucial in enhancing the
efficiency of corrective maintenance and overall production line operations.

The optimization of maintenance personnel dispatch and strategic station selection, a crucial
topic for improving efficiency and reducing downtime, has garnered considerable attention across
various disciplines. This growing interest is reflected in an increasing body of literature that explores
diverse decision-making challenges in this area. Researchers have employed a range of methods,
from heuristic to classical techniques, for modeling workforce deployment and station selection. For
instance, Qiu et al. [9] proposed a hybrid heuristic model, integrating genetic algorithms and variable
neighborhood search strategies, to enhance the dispatch and routing of multi-skilled technicians in
equipment maintenance. Similarly, Li et al. [10] developed a multi-objective optimization method
that incorporates improved genetic and NSGA-II algorithms for optimizing maintenance, repair, and
operations service resources for complex products. Chen et al. [11] introduced an enhanced Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) for maintenance personnel dispatch in smart
grids. Xu et al. [12] combined a multi-objective selective maintenance optimization method with
a personnel allocation model for series-parallel systems, utilizing NSGA-II algorithms to optimize
maintenance efficiency in complex systems. Ansari et al. [13] developed a methodology that integrates a
knowledge graph, linear programming, and genetic algorithms for efficient human resource allocation
in industrial maintenance. Adding to these advancements, Rillo et al. [14] devised a multi-objective
mixed-integer linear programming model focused on resource allocation in aircraft line maintenance,
while Kim et al. [15] utilized queuing models and optimization strategies for improving maintenance
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personnel allocation in the naval ship maintenance system. Gkonou et al. [16] introduced a mixed-
integer programming optimization model for railway maintenance scheduling and crew allocation,
aiming to enhance network reliability and reduce operational costs.

In the agricultural sector, Han et al. [17] created a model for optimizing the placement of
temporary agricultural machinery maintenance stations to improve harvest maintenance efficiency.
The use of big data was exemplified by Zhang et al. [18], who leveraged vehicle trajectory data
to optimize the placement of automobile maintenance stations, blending zoning and advanced
algorithms for maximum efficiency. Al Ali et al. [19] introduced a model for optimizing bus depot
locations, focusing on maintenance center accessibility to reduce operational costs and improve public
transport efficiency. In the industrial domain, David et al. [20] introduced a method for optimizing
maintenance locations, enhancing the CRAFT technique to reduce material handling costs. Their
approach streamlined maintenance center placement decisions, addressing logistic delays in various
sectors. Tönissen et al. [21] developed a model for optimally locating and routing railway rolling
stock maintenance facilities, targeting operational efficiency and service cost reduction. In the field
of agriculture, Li et al. [22] crafted a mixed-integer linear programming model for optimally locating
service stations and spare part centers, with a focus on service cost reduction. In maritime operations,
Xin et al. [23] designed an algorithm for strategically locating maintenance bases for marine drones,
enhancing operational efficiency and response. Lastly, Malec et al. [24] introduced a mixed-integer
linear programming model for optimizing the location of gas network maintenance centers, aiming to
enhance service response times and reduce operational costs.

The collective body of work in the field of maintenance resource allocation and station selection,
highlighted by these studies, underscores the significant progress and innovative approaches being
made. This research domain, characterized by its multidisciplinary involvement, demonstrates a strong
practical relevance, addressing a range of complex issues from optimizing technician dispatch in
various sectors to strategizing station placements. These advancements not only enhance operational
efficiency but also reflect the dynamic nature of the field, where diverse methodologies and sector-
specific adaptations contribute to the broader understanding and improvement of maintenance
systems.

However, despite extensive research in maintenance personnel dispatching and station selec-
tion, a critical gap exists in integrating these aspects, particularly for quick response in corrective
maintenance. This deficiency presents a significant opportunity for developing integrated models
that can simultaneously optimize personnel deployment and station selection, potentially enhancing
operational efficiency and effectiveness in urgent maintenance scenarios. Addressing this gap is crucial
for formulating more effective maintenance strategies, particularly in situations demanding timely
corrective actions. This paper introduces a novel multi-objective optimization model. This model aims
to concurrently optimize maintenance personnel deployment and station selection, taking into account
both operator expertise and the spatial layout of factory machinery, with the goal of minimizing
response times and labor costs. The expanded focus on integrating these two critical aspects represents
a significant advancement in the field, offering the potential to significantly impact maintenance
operations in a variety of industries.

In light of the problem’s NP-hard nature, the study innovatively adapted the Non-Dominated
Sorting Genetic Algorithm III (NSGA III), integrating the spatial distribution of factory machinery
with operator expertise. This approach ensures the prompt assignment of operators to malfunctions,
accelerating adjustments, and optimizing resource utilization. To effectively apply this approach to
our multi-objective optimization model, which focuses on locating maintenance stations and operator
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dispatching, we have meticulously designed the coding, crossover, and mutation operators of the
algorithm. The research thoroughly examines the algorithm’s performance across varied problem
instances. Its effectiveness is validated through extensive experiments covering different machine
failure frequencies and diverse operator scenarios, complemented by detailed data analysis from
a Taiwanese electronic equipment manufacturer. These experiments provide valuable insights into
the algorithm’s real-world applicability and effectiveness in improving maintenance strategies in
manufacturing settings. The paper’s expanded focus on integrating these two critical aspects of
maintenance represents a significant advancement in the field, offering the potential to significantly
impact maintenance operations in various industries.

The paper’s contributions include:

• The development of a novel multi-objective optimization model for maintenance personnel
dispatching and station selection, incorporating the spatial distribution of machinery and
operator expertise.

• The development of the NSGA III + Dispatch method, an adaptation of NSGA III specifi-
cally designed for complex multi-objective optimization in locating maintenance stations and
operator dispatching.

• Conducting empirical experiments to validate the model’s effectiveness in real-world mainte-
nance operations.

The rest of this paper is structured as follows: The subsequent section provides a comprehensive
literature review related to the topic. Section 3 is dedicated to introducing key definitions, notations,
and explaining the proposed mathematical model as well as the optimization framework. Section 4
examines the outcomes of various experiments conducted with the proposed algorithm across multiple
scenarios. The article concludes by summarizing the key findings and suggesting future research
directions.

2 Related Literature

The determination of site selection also called location determination involves a strategic analysis
to identify the most suitable locations for various facilities within a specific area [25]. This analytical
process takes into account a range of factors to ascertain the optimal site that aligns with defined
objectives [26]. This decision-making process is pivotal in sectors such as manufacturing, retail, and
healthcare, affecting their operational success [27–29]. A variety of tools and methods have been
developed to address the challenges of site selection. For example, Zhang et al. [30] demonstrated the
use of CPLEX optimization software to determine the best locations for emergency medical service
stations. Similarly, Wu et al. utilized LINGO software for selecting a location for an automotive service
firm [31]. Despite their capabilities, traditional software packages may fall short when dealing with
complex, large-scale, or non-linear challenges [6]. In these instances, meta-heuristic approaches, such
as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), have been shown to offer robust
solutions [32]. Zambrano-Rey et al.’s use of PSO for optimal retail store site selection is a case in point,
illustrating the effectiveness of these advanced methods [33].

The Human Resource Allocation Problem (HRAP) is the challenge of distributing limited
human resources across multiple tasks in the most effective manner [34]. Traditional exact methods
strive to find the best possible solution, but they can be computationally intensive. In contrast,
metaheuristic algorithms are known for delivering efficient, though sometimes less than optimal,
solutions [35,36]. In exploring exact methods, Vila et al. [37] harnessed the Branch, Bound, and
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Remember Algorithm (BBRA) for optimal worker distribution along assembly lines, a strategy
similarly employed by Su et al. [38]. For tasks of higher complexity, metaheuristic approaches such as
the Non-Dominated Sorting genetic Algorithm II (NSGA II) and PSO have proven effective [35,39].
For instance, Feng et al. implemented NSGA II to improve staffing in emergency departments [40],
while Wei et al. combined Ant Colony Optimization (ACO) with PSO to address human resource
allocation challenges [41]. Additionally, well-established metaheuristic strategies like Tabu Search
(TS) [42,43] and Simulated Annealing (SA) [44,45] have been effectively applied to the HRAP. These
techniques have proven instrumental in optimizing the allocation process, ensuring efficiency and
effectiveness in human resource management.

In the field of manufacturing, it is common to encounter complex Combinatorial Optimization
Problems (COPs). These multifaceted issues require dealing with several goals at once and are known
to be NP-hard, a category of problems that are particularly challenging to solve. Traditional methods
often fall short when tackling the intricacies of these problems [46,47]. The NSGA-III algorithm
stands out as a popular metaheuristic tool, recognized for its ability to handle non-linear problems
and multiple objectives with efficiency [48]. Its practical application extends beyond theoretical use, as
evidenced by Zhang et al.’s successful implementation in scheduling tasks. They utilized NSGA-III to
achieve a balance between carbon emissions, cost, and completion time, demonstrating the algorithm’s
applicability in real-world situations [49]. He et al. [50] developed a mathematical model to address
the Rush Order Insertion Rescheduling Problem within a Hybrid Flow Shop setting. By applying
the NSGA-III algorithm, they effectively orchestrated job sequences and allocated machines. Their
goal was to cut down on both processing and transportation times and to align initial scheduling
with adaptive rescheduling, accounting for unexpected disruptions. This approach is indicative of
their comprehensive effort to optimize workflow efficiency and flexibility in a dynamic manufacturing
environment.

In summary, while traditional optimization tools and methods remain pivotal in site selection and
resource allocation, the emergence of meta-heuristic algorithms has added a layer of flexibility and
efficiency, especially for more complex, large-scale problems. These modern approaches continue to
gain traction for their ability to deliver satisfactory outcomes efficiently, balancing multiple objectives
in diverse real-world scenarios.

3 Methodology
3.1 Problem Formulation

As outlined in the introduction, this study conducts a comprehensive analysis of a specialized dis-
patching system used for corrective maintenance in a working factory. Within this system, parameters
such as the number and layout of machines, the number of operators, their expertise levels, and the
count of maintenance stations are predetermined and clearly defined. The system springs into action
upon machine failure, promptly assigning a suitable operator—who is ready, skilled in specific machine
maintenance, and available—to the repair task. In cases where all eligible operators are already engaged
in other tasks, the system selects the operator capable of completing the current maintenance job in
the shortest time. After completing the repair, this operator will return to the maintenance station
and then be assigned to the new task at hand. The path taken by the operator from their maintenance
station to the faulty machine is a key factor in determining the system’s response time, which is a crucial
performance indicator being assessed. Fundamental to our study are the assumptions of an immediate
alert mechanism for machine malfunctions and a swift operator response following a first-come, first-
served protocol. Additionally, we assume uniform walking speeds for all operators, underscoring the
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importance of strategically minimizing the distance between machines and maintenance stations to
enhance response efficiency.

The complexity of the dispatching landscape is underscored by the intricate balance between
human resources and response time. Increasing the workforce can lead to faster repair times but
also results in higher operational labor expenses. Conversely, a leaner team, while cost-effective,
may inadvertently prolong machine downtime, negatively impacting overall productivity. This study
dives into these operational intricacies, aiming to unveil a balanced relationship between workforce
size, response times, and labor costs. The system’s design ensures minimal operational interruptions,
reallocating the nearest-to-completion operator to a new task when all suitable operators are occupied.
We aim to define a balanced operational model that combines these dynamic elements to create
a cost-effective, efficient system. By examining the allocation of operators, machine locations, and
maintenance station placements in detail, we strive to create a machine maintenance model that offers
quick response times without excessive labor costs.

3.1.1 Definition of Variables and Parameters

This section outlines the essential variables and parameters that underpin our examination of the
machine maintenance dispatching system.

Variables Description:

• Round-Trip Time (tmr): This metric measures the complete duration needed for an operator to
travel from maintenance station r to machine m and return. The calculation uses the Manhattan
Distance and a fixed walking speed (s), as expressed in Eq. (1).

tmr = Manhattan distance (m, r)
speed (s)

(1)

• Maintenance Station Location: The placement of a maintenance station should be optimized
for accessibility to each machine. The location of a maintenance station should be constrained
horizontally between the minimum and maximum x-coordinates as outlined in Eq. (2). and
vertically between the minimum and maximum y-coordinates of the machines as defined in
Eq. (3).

xm,min ≤ xr ≤ xm,max (2)

ym,min ≤ yr ≤ ym,max (3)

• Waiting Time (tmi): This denotes the time machine m awaits the availability of operator i. It is
set to zero if the operator is immediately available or extends according to the current repair
and travel time if the operator is already engaged.

• Operator’s Duty Status (Oi): A binary variable where 1 indicates that operator iis actively on
duty, while 0 means the operator is off duty.

• Station Assignment (Pir): A binary variable determining whether operator i is assigned to be
waiting for corrective job in maintenance station r.

• Expertise Level (Eim): Reflects operator i’s skill level regarding machine m, with 1 indicating
experienced and 0 indicating less experienced.
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• Maintenance Assignment (Dim): A binary variable indicating whether operator i is tasked
with maintaining machine m, with a value of 1 signifying an assignment and 0 indicating no
assignment.

Table 1 presents the symbolic definitions of sets, parameters, and variables employed in the
formulation.

Table 1: Mathematical notation

Symbol Description

Sets

I Set of operators
M Set of machines
R Set of maintenance stations

Parameters

S Walking speed
tmr Time from machine m to maintenance station r, m ∈ M, r ∈ R
tmi The waiting time for machine m to be assigned to operator i, m ∈ M, i ∈ I
Eim Binary variable equals to 1 if operator i has experience with machine m, 0

otherwise, i ∈ I , m ∈ M
Dim Binary variable equals to 1 if operator i is assigned to repair machine m, 0

otherwise, i ∈ I , m ∈ M

Variables

xr The x-coordinate of maintenance station r, r ∈ R
yr The y-coordinate of maintenance station r, r ∈ R
xm The x-coordinate of machine m, m ∈ M
ym The y-coordinate of machine m, m ∈ M
Oi Binary variable equals to 1 if operator i on duty, 0 otherwise, i ∈ I
Pir Binary variable equals to 1 if operator i is assigned to maintenance station r, 0

otherwise, i ∈ I , r ∈ R

3.1.2 Mathematical Formulation

This section presents a comprehensive mathematical model formulated to optimize the balance
between immediate maintenance requirements and cost-effectiveness. The model integrates a range of
sets, parameters, and variables. This is mathematically expressed as:

minimize
∑

r∈R

∑
m∈M

∑
i∈I

(tmr × Pir × Dim + tmi × Dim) (4)

minimize
∑

i∈I
Oi (5)

∑
i∈I

Pir × Oi > 0 ∀r (6)



3526 CMC, 2024, vol.79, no.3

|I| − |R| >
∑

i∈I
Pir × Oi ∀r (7)

∑
i∈I

Eim × Oi > 0 ∀m (8)
∑

m∈M
Dim ≤ Oi ∀i (9)

Dim × Oi ≤ Eim ∀i, m (10)

Dim × Oi × tmi ≤ tmin
mi ∀i, m (11)

Oi, Dim, Eim, Pir ∈ {0, 1} (12)

Eq. (4) delineates the objective function designed to minimize the total response time, encom-
passing both the walking time of operators and the waiting time of machines for maintenance. The
objective function’s first term is dedicated to the travel time component of the response time, applicable
only when both Pir and Dim are set to 1. This situation signifies that the operator is allocated to a
particular station and is also assigned to a specific machine, thus measuring the time required for the
operator to travel to the machine in need of maintenance. The second term of the function captures
the waiting time component, calculating the duration a machine waits for maintenance to commence,
which is considered only when an operator is specifically assigned to that machine.

Eq. (5) in the model is a key objective function aimed at minimizing the number of operators
involved in maintenance tasks. It complements Eq. (4), which focuses on reducing response times
and increasing service efficiency by minimizing machine downtime. Together, these equations create a
harmonious strategy: Eq. (4) enhances operational efficiency, while Eq. (5) optimizes labor allocation
to improve cost-effectiveness. By reducing the active maintenance workforce, Eq. (5) is instrumental
in controlling and potentially lowering operational labor costs, ensuring an economically balanced
maintenance dispatch system.

To ensure effective system assignment and operational efficiency, several constraints are meticu-
lously applied. Constraints (6) and (7) are established to guarantee that each maintenance station is
equipped with at least one operator on standby, ready to respond to maintenance needs. Constraint
(8) is imposed to ensure that for every machine requiring maintenance, there is at least one experienced
operator available for the task. Further, Constraint (9) ensures that any operator assigned to a
maintenance job is currently on duty. Constraint (10) mandates that the assigned operator possesses
the requisite experience for the specific maintenance task. Constraint (11) is focused on ensuring that
the operator assigned is the one who can become available in the shortest amount of time among
all operators, thus optimizing the response time. Finally, Constraint (12) introduces a binary variable
into the mathematical framework of the model, enhancing its precision and adaptability in various
operational scenarios.

3.1.3 Framework for Optimization

The presented model focuses on enhancing machine maintenance by considering various objec-
tives. First and foremost, it evaluates the competency of operators and the strategic placement of
machines, emphasizing the value of both human skills and equipment location in the optimization
journey, as depicted in Fig. 1. Subsequently, the system pinpoints optimal locations for maintenance
and assesses the positioning of operators and their current tasks. To map out potential solutions, the
system uses techniques like generating chromosomes and applying crossover and mutation processes.
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It then calculates the walking time for each solution to assess its practicality. With this data, the model
evaluates the viability of each strategy, estimating the necessary operator count. The Non-Dominated
Sorting Genetic Algorithm III (NSGA III) method is employed to refine and select the most effective
solutions. In conclusion, the system checks against a “Stop” point to determine if certain benchmarks
are achieved. If these criteria are met, the optimal solution is selected. Otherwise, the optimization
process persists, leveraging chromosomes, crossover, and mutation techniques until the best possible
strategy emerges.

Figure 1: Optimization framework of applying NSGA III on minimizing response time and labor cost

3.2 Designing Multi Objective Genetic Algorithm

In this research, we have innovatively adapted the Non-Dominated Sorting Genetic Algorithm
III (NSGA-III), introduced by Deb et al. [51], to create a method we call NSGA III + Dispatch.
This adaptation is specifically designed to tackle the unique challenges of multi-faceted maintenance
optimization problems, such as the simultaneous optimization of Locating Maintenance Stations and
Operator Dispatching. Traditional genetic algorithms, while adept at single-objective optimization,
often struggle with the complexities of such multi-objective scenarios.

NSGA-III stands out in its ability to handle multiple objectives effectively through a novel
sorting mechanism known as non-dominated sorting. This technique ranks solutions based on their
performance across all objectives, categorizing them into different levels of dominance. As a result,
NSGA-III identifies a diverse set of optimal solutions, representing various trade-offs among the
objectives. This feature is further enhanced by the algorithm’s reference point-based approach for
maintaining diversity in the solution set, particularly beneficial in problems with several objectives.
It ensures that solutions are distributed across the entire spectrum of potential outcomes, providing
decision-makers with a comprehensive understanding of the trade-offs involved, such as the balance
between maintenance station location and operator dispatch efficiency.

NSGA-III, renowned for its adaptability to the multifaceted nature of multi-objective problems,
stands out for its ability to not only identify optimal solutions but also to present a spectrum
of alternatives, highlighting the potential trade-offs. This feature is vital for making well-informed
decisions, particularly in situations where optimizing one objective could require concessions in
another. As a result, NSGA-III, and by extension, our customized version, NSGA III + Dispatch, are
exceptionally suited for tackling the complex optimization challenges found in maintenance operations
and related fields.
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To effectively apply this approach to our multi-objective optimization model, which focuses on
locating maintenance stations and operator dispatching, we have meticulously designed the coding,
crossover, and mutation operators of the NSGA III + Dispatch algorithm. The upcoming section
details this development. These components are specifically crafted to meet the unique demands and
complexities inherent in this particular optimization task.

3.2.1 Chromosome Generation and Initialization

Chromosomes, each embedded with multiple genes, form the population, acting as individual
candidate solutions in this study. The chromosome design in this study is illustrated in Fig. 2. Each
chromosome is structured with four integral components: The x-coordinate, y-coordinate of the
maintenance station on a given graph, the on-duty status of the operator, and the operator’s assigned
position.

Figure 2: Chromosome composition

The chromosome’s first and second segments, equal in length, represent the x and y coordinates of
maintenance stations, respectively in Fig. 3. Their length corresponds to the total number of stations,
aiding in station position optimization and walking time conversion. This is exemplified by explicit
coordinate details: Maintenance station 1 at (142, 193), station 2 at (290, 721), and so on, up to
station 6 at (367, 467), providing a clear visual representation of station locations. The chromosome’s
third segment represents operators’ working status, encoded as 0 for off-duty and 1 for on-duty.
Correspondingly, the fourth segment assigns each on-duty operator to a maintenance station, denoting
–1 for those off-duty depicted in Fig. 4. This system ensures that each maintenance station’s positional
assignment aligns with the operators’ availability and status.

Figure 3: Examples of chromosome representation of maintenance station location

Figure 4: Examples of chromosome structure of operator duty status and position

Fig. 5 exemplifies a complete chromosome configuration, emphasizing mandatory conditions:
Each machine should have at least one skilled operator on duty, and operators must be present at
every maintenance station. In cases of absence, random assignment or reallocation from well-staffed
stations ensures no station is left unmanned. This systematic chromosome generation and initialization
provide a robust foundation for intricate computations, aiming for optimal operator allocation and
maintenance station positioning while adhering to the constraints of operators’ availability and
expertise.
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Figure 5: One example of a complete chromosome

3.2.2 Crossover and Mutation

The algorithm begins with creating an initial set of randomly generated chromosomes, establishing
a parental population. Each chromosome is then assessed for suitability in crossover and mutation to
generate offspring. These chromosomes are comprised of four distinct segments, each with unique
characteristics that influence the sites for crossover and mutation.

Crossover: To initiate crossover, first establish the crossover rate Pcross. Then, generate a random
probability value; if it is below the crossover rate, proceed with crossover; if not, crossover is bypassed.
This process entails swapping gene segments between chromosomes to create a new generation of
solutions. The methodology includes several structured steps:

1. The process begins by assigning a random probability value to the initial chromosome. If this
value falls below the crossover rate, the procedure advances to the next step; otherwise, the
algorithm proceeds to evaluate the next chromosome and repeat step 1.

2. A distinct parent chromosome is selected for crossover, distinct from the current chromosome
and not previously chosen. For example, as depicted in Fig. 6, the first chromosome is paired
with the seventh for crossover.

3. Within each chromosome segment, two random points are chosen: One in the first half and
another beyond the first point. This selection creates a specific segment for crossover. In cases
where chromosome parts are interrelated, such as the third and fourth parts, the same segment
is used for both. Fig. 6 illustrates the genes within the orange lines as those involved in the
crossover.

4. The crossover is then performed on the chromosomes identified in step 2, with the resulting
chromosomes displayed in Fig. 7.

5. After-crossover, any chromosome not meeting certain criteria undergoes modification. For
instance, if a maintenance station lacks assigned operators, as shown in Fig. 8, an operator not
currently on duty is randomly chosen, with their duty status altered and assigned accordingly.

6. Continue repeating steps one through five until every chromosome has been evaluated.

Figure 6: Example of chromosome crossover processes
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Figure 7: Example of the chromosome after crossover

Figure 8: Example of chromosome correction

Mutation: The mutation process, integral to the genetic algorithm, commences with establishing
a mutation rate (Pmtate). Each chromosome is then assessed individually; if a randomly generated
probability value is less than Pmtate, mutation occurs. The method involves the following streamlined
steps:

1. Beginning with the first chromosome, mutation is triggered if the probability value is less than
the mutation rate. If not, the evaluation moves to the next chromosome.

2. Each chromosome part undergoes a segment selection process, with a focus on two distinct
points before and after the midpoint. The synergy between the third and fourth parts
necessitates a shared mutation segment, illustrated in Fig. 9.

3. The identified segment undergoes mutation. Specific alteration protocols are assigned to
different parts of the chromosome, ensuring constraint adherence and variability introduction.
The mutation’s outcome is displayed in Fig. 10.

4. Following mutation, any chromosomes not meeting the constraints are adjusted to ensure
compliance.

5. Continue repeating steps one through four until all chromosomes are thoroughly examined.
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Figure 9: Chromosome mutation processes

Figure 10: Example of post-mutation chromosome

This concise approach ensures an efficient and effective mutation process, vital for generating
diverse and optimized solutions in the genetic algorithm framework.

4 Experiments and Results

This section provides the details conducted to validate the proposed method, utilizing various
failure frequencies of production line equipment and differing numbers of operators. Section 4.1
delineates the data required for the simulations and the preprocessing steps undertaken. In Section 4.2,
the design of each simulation scenario is elucidated, along with a discussion on the prevailing
methodology in the factory. Section 4.3 engages in a comparative analysis between the proposed
method and existing factory methods, aiming for validation. The findings from the simulations are
concisely summarized in Section 4.4.

4.1 Data Description and Preprocessing

This section outlines the data preparation and analysis utilized in the optimization of machine
maintenance dispatch systems. Data was gathered from one of electronic equipment manufacturers
in Taiwan, as illustrated in Fig. 11, which included machine coordinates, worker skills, and device
malfunction records.

The key task was to merge these data sets to create a matrix that captures the walking time between
various machines and maintenance stations, a critical factor in optimizing the dispatch system’s
efficiency using the NSGA III + Dispatch. The data consolidation involved linking the machine’s
spatial coordinates with worker competencies to form a database that facilitates the assignment
of maintenance tasks. Through preprocessing steps, including the translation of project and device
information into a standard “Device ID” format, the system aligns worker skills with the equipment
needs, simplifying the complexity of data into manageable and actionable insights.
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Figure 11: The process of optimizing configurations

The collected data encompasses a detailed account of each machine’s placement and the skill levels
of individual workers. This data is meticulously organized and analyzed to assign maintenance tasks
most effectively. The system prioritizes tasks based on the critical nature of equipment malfunctions
and the availability of appropriately skilled workers. By optimizing task allocation in this manner, the
approach facilitates quick and competent responses to equipment issues, thereby reducing idle time
and enhancing overall productivity.

4.2 Simulation Rule and Comparison Method

4.2.1 Simulation Rule

This subsection presents four simulation scenarios designed to validate the methodology proposed
in this research. A preliminary task involved the definition of machine malfunction frequencies and
durations, which were categorized as either high or low based on historical data analyses.

The collected data was evaluated to quantify the daily frequency and standard deviation of
machine abnormalities. A statistical threshold, determined by the mean value adjusted by three
standard deviations, distinguished high and low-frequency abnormalities. Specifically, high-frequency
was defined as the mean plus three standard deviations, and low-frequency as the mean minus three
standard deviations, with a minimum set at one to avoid negative values. Machine malfunction timing
is then ascertained from the daily malfunction count, segmenting the workday into equal intervals
correlating with the number of malfunctions. A malfunction is randomly assigned within each interval,
ensuring a distributed occurrence of malfunctions throughout the day while preserving their stochastic
nature.

Following the establishment of criteria for identifying high and low-frequency failures and their
respective timestamps, we delineated four distinct simulation scenarios. These scenarios are crafted to
rigorously evaluate the robustness and adaptability of our proposed methodological framework across
varied operational contexts.

1. Low-Frequency Failures across All Machines: This scenario encapsulates a condition where all
operational machines register low-frequency failures. Utilizing the foundational Worker Skill
List, we engaged in a comparative analysis, juxtaposing the outcomes derived from traditional
factory protocols against those emerging from our novel research-based approach.
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2. High-Frequency Failures across All Machines: Under this scenario, all machines are charac-
terized by high-frequency failure occurrences. The analysis was augmented by an extended
Worker Skill List, enhancing the pool of available operators. This expanded dataset facilitated
a nuanced comparison between traditional and proposed methodologies, enabling a compre-
hensive evaluation of their respective efficacies.

3. Selective High-Frequency Failures (A): In this scenario a subset of machines, specifically
device1 and device2, exhibit high-frequency failures while others maintain a low frequency.
This selective occurrence facilitates a targeted comparative analysis, illuminating the specific
advantages conferred by our proposed method from this research in this specific situation.

4. Selective High-Frequency Failures (B): Mirroring the third scenario, this context again features
selective high-frequency failures, albeit among a different set of machines (device5 to device13).
This variation enabled an additional level of detailed examination, assessing the subtle
advantages of the suggested approach within this unique operational setting. Table 2 provides
a detailed overview of these four simulation scenarios, offering insights into the respective
failure frequencies and operator allocations. To mitigate biases and ensure a comprehensive
evaluation, three distinct datasets are generated for each scenario, accounting for the inherent
randomness associated with machine failures.

Table 2: Simulation scenario description

Scenario Description of failure frequency Abnormal Operators

1 Low-frequency failures across all machines 62 12
2 High-frequency failures across all machines 1227 12

24
3 Selective high-frequency failures (A) 433 12
4 Selective high-frequency failures (B) 856 12

4.2.2 Comparison Method

The evaluation of the proposed solution’s validity was conducted through a comparative analysis
with the factory’s current methodology for allocating maintenance stations and operators, illustrated
in Fig. 12. The prevailing technique relies on pre-existing data, devoid of the capacity for real-time
adaptability.

In the case study of the real-world factory, a two-stage process as a benchmark of this comparison
is utilized to ascertain the placements of maintenance stations and operators. A constraint of this
approach is the pre-fixed number of maintenance stations, limiting its flexibility. The K-means
clustering algorithm is employed to categorize machines of similar types into distinct groups. The
central points of these groups, or centroids, are then designated as the locations of the maintenance
stations, ensuring an organized distribution aligned with machine types.

Concurrently, an assessment of the operators’ travel time from the maintenance stations to the
machines they are skilled at repairing is undertaken. The optimal positions for operators are identified
by pinpointing the locations that yield the minimum travel time, facilitating prompt maintenance
responses. The proposal in this study is contextualized and assessed against this existing method,
spotlighting its potential enhancements in operational adaptability and efficiency.
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Figure 12: Two-stage process in the existing factory as a benchmark

4.3 Experimental Results

In this section, we present and analyze the results obtained from experiments conducted utilizing
the NSGA III + Dispatch algorithm under various scenarios. The NSGA III + Dispatch was employed
to optimize both the response time and worker assignment. Each experiment was characterized
by a distinct set of parameter configurations specific to NSGA III + Dispatch, with the objective
of evaluating the algorithm’s effectiveness under these conditions. The detailed information on the
parameter configurations employed in each experiment is provided in Table 3. The chosen parameters
for the algorithm in the experiments were thoughtfully selected to effectively evaluate the algorithm’s
performance. A population size of 100 ensures a diverse range of potential solutions, enhancing the
algorithm’s ability to explore various optimization paths. The setting of 30 iterations for stopping,
along with a minimum generation of 100 and a maximum of 1000, strikes a balance between
computational efficiency and thorough exploration of the solution space. The crossover rate of 1
maximizes the potential for combining solution traits, while the mutation rate of 0.3 introduces
variability, preventing premature convergence and encouraging exploration of new areas in the solution
space. These settings collectively aim to provide a comprehensive assessment of the algorithm’s
capabilities in optimizing response time and worker assignment under different scenarios.

Table 3: Parameter setting of NSGA III + Dispatch

Parameter Size of
population

Number of
iterations to
stop

Minimum
generation

Maximum
generation

Crossover
rate

Mutation
rate

Value 100 30 100 1000 1 0.3

4.3.1 Low-Frequency Failures across All Machines

In this subsection, the results of an experiment where every machine in the facility experiences
infrequent anomalies was presented. Using a setup of 62 machines and 12 operators, the framework
proposed in our study was applied.

Fig. 13 illustrates that the NSGA III + Dispatch method surpasses the current factory approach in
both response time and resource efficiency. The NSGA III + Dispatch yielded two solutions denoted
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by orange dots (NSGA III + Dispatch) that outperformed the factory’s current method indicated
by blue dot (Factory) by delivering shorter response times and better resource utilization. Table 4
presents these results where the optimal NSGA III + Dispatch solution reduces the response time by
23%, from 238 to 183 s. The secondary solution also showed a 16% improvement, with a response
time of 200 s. Statistical analysis at a 95% confidence level indicates the proposed method’s response
time is significantly shorter than the factory method. While the factory currently assigns 12 operators
with only 7 active, the NSGA III + Dispatch suggests using either 6 or 7 fully active operators. Please
note that for both methods, none of 62 assigned tasks were delayed. This demonstrates better human
resource optimization and potential savings. Notably, the NSGA III + Dispatch configurations had
no delays due to staff shortages, highlighting the model’s ability to maintain operational stability and
increase efficiency.

Figure 13: Comparison of low-frequency failures: NSGA III + Dispatch vs. Factory method

Table 4: NSGA III + Dispatch vs. Factory solutions for low-frequency machine failures

Factory methodology

Response time Operators
(designated)

Operators (actual) Delayed repair
events

238 (sec) 3.97 (min) 12 7 0/62

Proposed framework

Response time Operators
(designated)

Operators (actual) Delayed repair
events

183 (sec) 3.05 (min) 7 7 0/62
200 (sec) 3.33 (min) 6 6 0/62

In essence, the NSGA III + Dispatch’s adeptness at managing low-frequency anomalies is
manifest. It not only accelerates response times but also refines workforce allocation. This proficiency
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equips decision-makers with a set of refined options, optimized for both performance and resource
allocation, underscoring the proposed method’s practical utility in real-world operational contexts.

4.3.2 High-Frequency Failures across All Machines

In this subsection, an experiment that models a high-frequency failure scenario involving all
machines in a factory was presented. The NSGA III + Dispatch algorithm, applied to a setup
of 62 machines and 12 operators, demonstrated superior performance compared to the current
factory approach, as illustrated in Fig. 14. It delivered enhanced efficiency in response time and
workforce utilization, though further filtration and analysis are needed to fully understand the
potential implications of the solutions presented.

Figure 14: High-frequency failures: NSGA III + Dispatch vs. Factory solutions comparison

Table 5 reveals that with the same 12-operator configuration, the proposed NSGA-III model
notably improved response time, indicating a 28.23% efficiency enhancement. Statistical analysis at
a 95% confidence level indicates the proposed method’s response time is significantly shorter than
the factory method. Additionally, a comparable efficiency was achieved with only 10 operators,
showcasing the model’s capability to optimize workforce allocation while maintaining operational
effectiveness.

However, in configurations with fewer number of operators, response times were excessively
prolonged, making them impractical for managing high-frequency failures as shown in the Fig. 15. A
marked reduction in response time was noted with an increase to 8 operators, with further reductions
as the operator count increased to 12. Also, the delayed tasks increase along with fewer number of
operators. These findings underline the necessity for enough operators to efficiently manage high-
frequency failure scenarios.
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Table 5: NSGA III + Dispatch vs. Factory solutions for high-frequency machine failures

Factory methodology

Response time Operators
(designated)

Operators (actual) Delayed repair
events

23970 (sec) 399.5 (min) 12 12 155/1227

Proposed framework

Response time Operators
(designated)

Operators (actual) Delayed repair
events

17203 (sec) 286.72 (min) 12 12 148/1227
18381 (sec) 305.3 (min) 11 11 166/1227
21687 (sec) 361.45 (min) 10 10 227/1227
31198 (sec) 519.97 (min) 9 9 347/1227
60753 (sec) 1012.55 (min) 8 8 584/1227
482927 (sec) 8048.73 (min) 7 7 833/1227
1090121 (sec) 18168.68 (min) 6 6 1209/1227

Figure 15: Changes in response time and delayed maintenance count

In efforts to explore enhanced efficiency and workforce optimization, an expanded simulation was
conducted, doubling the operator count and skills to model heightened workforce availability during
peak periods. Fig. 16 and Table 6 present the outcomes of this expansion. Remarkably, the NSGA III
+ Dispatch model required only 18 operators to achieve a 66.44% efficiency improvement, saving the
cost of 6 operators against the current method which needs 24 operators while maintaining operational
effectiveness.
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Figure 16: NSGA III+ Dispatch vs. Factory-operator number expansion comparison

Table 6: NSGA III + Dispatch vs. Factory solutions for operator expansion

Factory methodology

Response time Operators
(designated)

Operators (actual) Delayed repair
events

10873 (sec) 181.22 (min) 24 24 0/1227

Proposed framework

Response time Operators
(designated)

Operators (actual) Delayed repair
events

3648 (sec) 60.8 (min) 18 18 0/1227
3717 (sec) 61.95 (min) 17 17 2/1227
3885 (sec) 64.75 (min) 16 16 5/1227
4143 (sec) 69.05 (min) 15 15 11/1227
5011 (sec) 83.51 (min) 14 14 20/1227
6148 (sec) 102.47 (min) 13 13 34/1227
7613 (sec) 126.88 (min) 12 12 55/1227
11157 (sec) 185.95 (min) 11 11 123/1227
17429 (sec) 290.48 (min) 10 10 197/1227
29444 (sec) 490.73 (min) 9 9 334/1227
55783 (sec) 929.72 (min) 8 8 506/1227
112430 (sec) 1873.83 (min) 7 7 835/1227
1164541 (sec) 19409 (min) 6 6 1207/1227

In conclusion, the NSGA III + Dispatch model exhibited marked adaptability and effectiveness in
high-frequency failure scenarios. In situations of frequent failures and workforce shortages, the model
enhanced response efficiency. Moreover, in scenarios of frequent failures with adequate manpower, it
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not only bolstered response time efficiency but also offered solutions for significant manpower cost
savings, underscoring its comprehensive applicability in varied operational contexts.

4.3.3 Selective High-Frequency Failures (A)

This section outlines an experiment that simulated a specific scenario where two machines, device1
and device2, encountered high-frequency anomalies while the remaining equipment in the factory
experienced low-frequency anomalies. The test employed the NSGA III + Dispatch algorithm on a
setup of 62 machines and 12 operators, as illustrated in Fig. 17. The results indicate a more efficient
response time compared to the factory’s existing methods.

Figure 17: NSGA III + Dispatch vs. Factory—selective high-frequency failures (A)

Table 7 offers a comprehensive comparison between the factory’s current method and the NSGA
III + Dispatch framework. Employing the factory’s strategy yields a response time of 11653 s with
only 7 active operators. In contrast, the NSGA III + Dispatch model enhances operational efficiency,
reducing the response time to 10731 s, a 7.9% improvement, with the same number of operators, here
is 7. Statistical analysis at a 95% confidence level indicates the proposed method’s response time is
significantly shorter than the factory method. Additionally, the number of delayed repair events is
slightly reduced, underscoring the proposed framework’s superior resource utilization.

Table 7: Selective high-frequency failures (A)—NSGA III + Dispatch vs. Factory

Factory methodology
Response time Operators

(designated)
Operators (actual) Delayed repair

events

11653 (sec) 194.22 (min) 12 7 119/433

(Continued)
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Table 7 (continued)

Proposed framework

Response time Operators
(designated)

Operators (actual) Delayed repair
events

10719 (sec) 178.65 (min) 9 9 117/433
10721 (sec) 178.68 (min) 8 8 117/433
10731 (sec) 178.85 (min) 7 7 117/433
11216 (sec) 186.93 (min) 6 6 116/433

Though the NSGA III + Dispatch model demonstrates enhanced efficiency, practical implemen-
tation typically avoids comparing solutions from both the factory and NSGA III + Dispatch methods
directly. A more pragmatic approach involves adopting a suitable factory solution informed by the
NSGA III + Dispatch-generated solution, warranting further analysis of the latter. In the examined
scenario, a total of 443 anomalies were noted, with device1 and device2 accounting for 383, while
the remaining devices had only 50 abnormal events. Despite an increased workforce, no additional
operators were assigned to these two devices, as all qualified personnel were already deployed. This
condition led to diminished marginal utility for each added operator, as illustrated in Table 8.

Table 8: NSGA III + Dispatch solutions selective high-frequency failures (A)

Operators Events dist. Operators dist. Response time Marginal effect

6 383 3 11216 (sec) 186.93 (min) -

50 3
7 383 3 10731 (sec) 178.85 (min) 4.3%

50 4
8 383 3 10721 (sec) 178.68 (min) 0.9%

50 5
9 383 3 10719 (sec) 178.65 (min) 0.2%

50 6

Given the circumstances, a strategic increment in operators skilled in repairing device1 and device2
is advised. This approach is projected to elevate efficiency metrics and enhance the factory’s capacity to
address high-frequency anomalies effectively, optimizing both response times and resource allocation.

4.3.4 Selective High-Frequency Failures (B)

This section discusses an experiment where machines labelled device5 to device13 frequently
malfunctioned, while the rest experienced fewer maintenance issues. The proposed framework was
applied to a setup of 62 machines and 12 operators, generating five different solutions depicted
in Fig. 18. The results highlighted varied efficiency levels, dependent on the number of operators
deployed.
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Figure 18: NSGA III + Dispatch vs. Factory—selective high-frequency failures (B)

Fig. 18 illustrates that with 8 operators, our proposed method outperformed the current factory
method in response time. For solutions utilizing fewer than 8 operators, the response time was a
bit longer, but they offered the benefit of lower manpower costs. Solutions deploying more than 8
operators exhibited reduced response times at increased manpower costs.

Table 9 amplifies these findings. The traditional factory method, utilizing 8 operators, recorded a
response time of 8604 s. Our proposed model, with the same number of operators, reduced this time to
6311 s, a saving of over 38 min, and marking a 26.7% improvement in efficiency. This performance
elevation also witnessed more delayed repair events, underscoring the enhanced efficiency of our
model.

Table 9: NSGA III + Dispatch vs. Factory solutions for selective high-frequency failures (B)

Factory methodology

Response time Operators
(designated)

Operators (actual) Delayed repair
events

8604 (sec) 143.4 (min) 12 8 8/856

Proposed framework

Response time Operators
(designated)

Operators (actual) Delayed repair
events

3173 (sec) 52.88 (min) 10 10 5/856
4013 (sec) 66.88 (min) 9 9 17/856
6311 (sec) 105.18 (min) 8 8 58/856
13287 (sec) 221.45 (min) 7 7 180/856
43313 (sec) 721.88 (min) 6 6 430/856

In this scenario, out of 856 recorded abnormal events, a majority (844 incidents) were associated
with device5 to device13 while the remaining devices had only 12 incidents. A noteworthy observation
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was the increased allocation of operators to these devices as the total number of operators increased,
an indication of the NSGA III + Dispatch ‘s capability to effectively allocate resources. However, the
model maximized the utilization at ten operators, as the remaining two lacked the specific skills to
repair these particular devices, as detailed in Table 10.

Table 10: NSGA III + Dispatch solutions for selective high-frequency failures (B)

Operators Events dist. Operator’s dist. Response time Marginal effect

6 12 1 43313 (sec) 721.88 (min) −
844 5

7 12 1 13287 (sec) 221.45 (min) 69.32%

844 6
8 12 1 6311 (sec) 105.18 (min) 52.50 %

844 7
9 12 1 4013 (sec) 66.88 (min) 36.41 %

844 8
9 12 1 3173 (sec) 52.88 (min) 20.93 %

844 9

Based on the data, the factory should prioritize training and assigning personnel proficient in
repairing devices 5 to 13. Leveraging skilled operators in these contexts can boost maintenance
efficiency and address recurring malfunctions effectively. Such a strategy, informed by our model,
has the potential to greatly enhance the factory’s responsiveness to machine breakdowns and overall
operational efficiency.

4.4 Discussion

The evaluation of the proposed method across four diverse experiments underscores its superior
performance over current approaches used in electronic manufacturing industries in handling machine
faults under varied conditions. This method consistently outperformed the current strategies, marking
notable advancements in response times and manpower efficiency, and presenting a compelling case
for its wider adoption in industrial settings. NSGA III + Dispatch’s prominence is particularly
notable in scenarios marked by frequent machine faults and constrained resources. Its capability to
deliver enhanced operational efficiency while curtailing labor requirements offers a tangible solution
to some of the prevalent challenges in manufacturing. The decreased response times and reduced
delayed repairs further accentuate its utility, offering a pragmatic approach to machine and manpower
allocation.

A deep dive into the outcomes generated by NSGA III + Dispatch reveals an existent gap in the
current practice, especially in assigning maintenance personnel to high-frequency fault machines. This
inadequacy not only impacts operational efficiency but also escalates operational costs. NSGA III +
Dispatch, with its nuanced resource allocation, mitigates these challenges, prompting a reevaluation
of the prevailing practices in the factory.

The empirical evidence supports the integration of NSGA III + Dispatch in the manufacturing
setup, especially in scenarios marked by resource constraints and frequent machine faults. The insights
gleaned from the method’s solutions not only offer immediate remedial strategies but also pave the
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way for future skill development initiatives for operators. In a nutshell, the adoption of NSGA III
+ Dispatch transcends immediate operational enhancements, offering a strategic pathway for future
skill and resource optimization. Its implementation promises not just elevated operational efficiency
and reduced costs, but also a competitive edge in a market where efficiency and cost-effectiveness are
integral to sustained success.

This model’s practical implications for manufacturing practitioners include customizable mainte-
nance planning, optimized operator allocation, cost savings, and adaptability in diverse operational
conditions. Pilot testing, staff training, accurate data collection, and iterative optimization are
essential for effective implementation. These findings offer a comprehensive, applicable framework
for maintenance optimization, potentially extending beyond manufacturing to sectors like healthcare,
transportation and energy.

While the proposed model shows promise for broad applicability across various manufacturing
sectors, its effectiveness in different contexts would benefit from further empirical validation. Adap-
tations to the model may be necessary to accommodate the unique characteristics and constraints of
different manufacturing environments or industries. We recommend that users of the model consider
these limitations and assumptions, and where possible, conduct pilot studies to gauge its effectiveness
in their specific context before full-scale implementation.

5 Conclusions

In this study, we addressed the critical challenge of optimizing maintenance dispatch systems
within manufacturing environments. Our focus was on striking a balance between the urgent needs
of corrective maintenance and the overarching goal of cost-effectiveness. We introduced a novel
multi-objective optimization model that revolutionizes the way maintenance personnel dispatching
and station selection are approached. The essence of our model lies in its integration of the spatial
distribution of machinery with the diverse expertise of maintenance operators. This integration allows
for a highly precise and effective approach to planning maintenance tasks, aiming to minimize total
response times and optimize the number of operators involved. To effectively solve this complex
model, we developed the NSGA III + Dispatch method, an innovative adaptation of the Non-
Dominated Sorting Genetic Algorithm III (NSGA-III). This method is specifically tailored for the
intricate challenges of multi-objective optimization in locating maintenance stations and efficient
operator dispatching. It excels in handling multiple objectives, a crucial aspect in the dynamic
field of maintenance scheduling and resource allocation. The key elements of the NSGA III +
Dispatch, including the coding method, crossover operator, and mutation operator, were carefully
designed to enhance its performance in managing multiple objectives. We empirically validated this
model through a series of experiments that simulated diverse scenarios, such as varying machine
failure frequencies and different operator availability. These experiments utilized real-world data from
Taiwanese electronic equipment manufacturers, ensuring the practical applicability of our findings.

Our experimental results demonstrate the NSGA III + Dispatch algorithm’s effectiveness and
versatility. Key findings include:

1. Low-Frequency Failures: The NSGA III + Dispatch method significantly improved response
times by up to 23% and enhanced human resource utilization compared to existing practices
in low-frequency failure scenarios.

2. High-Frequency Failures: The algorithm effectively reduced response times by up to 28.23% in
high-frequency failure scenarios, even with fewer operators, highlighting its ability to manage
intensive maintenance demands efficiently.



3544 CMC, 2024, vol.79, no.3

3. Selective High-Frequency Failures (A and B): In selective failure scenarios, the algorithm
customized solutions based on specific machine breakdown patterns, improving response times
and enabling strategic, cost-effective operator allocation.

4. Workforce Optimization: In scenarios with an increased operator pool, the NSGA III +
Dispatch method achieved similar or better response efficiency with fewer operators than the
current practices, showcasing its potential in workforce optimization.

These results affirm the NSGA III + Dispatch model as a powerful tool in manufacturing
maintenance management, adeptly addressing dual objectives of minimizing maintenance response
times and optimizing human resource usage across various operational contexts. This study presents
a theoretical and practical contribution to maintenance optimization, offering an effective framework
for enhancing operational efficiency. Future research should focus on refining the algorithm to better
handle uncertainties in real-world maintenance scenarios, such as fluctuating machine conditions and
unpredictable maintenance durations. Additionally, the development of dynamic scheduling strategies
to effectively respond to unforeseen operational changes, like simultaneous machine failures or unex-
pected maintenance extensions, is vital. These improvements could substantially reduce production
downtime and significantly enhance overall maintenance management efficiency.
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