
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.048833

ARTICLE

Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud
Computing Environments

Abdulelah Alwabel1,* and Chinmaya Kumar Swain2

1Department of Computer Sciences, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University,
Al-Kharj, 11942, Saudi Arabia
2Department of Computer Science and Engineering, Institute of Management and Information Technology, Cuttack, BPUT,
Odisha, India

*Corresponding Author: Abdulelah Alwabel. Email: a.alwabel@psau.edu.sa

Received: 20 December 2023 Accepted: 07 April 2024 Published: 20 June 2024

ABSTRACT

Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications
better than with cloud computing by placing and processing tasks in close proximity to the data sources. However,
the majority of the fog nodes in this environment are geographically scattered with resources that are limited in
terms of capabilities compared to cloud nodes, thus making the application placement problem more complex
than that in cloud computing. An approach for cost-efficient application placement in fog-cloud computing
environments that combines the benefits of both fog and cloud computing to optimize the placement of applications
and services while minimizing costs. This approach is particularly relevant in scenarios where latency, resource
constraints, and cost considerations are crucial factors for the deployment of applications. In this study, we
propose a hybrid approach that combines a genetic algorithm (GA) with the Flamingo Search Algorithm (FSA)
to place application modules while minimizing cost. We consider four cost-types for application deployment:
Computation, communication, energy consumption, and violations. The proposed hybrid approach is called GA-
FSA and is designed to place the application modules considering the deadline of the application and deploy them
appropriately to fog or cloud nodes to curtail the overall cost of the system. An extensive simulation is conducted
to assess the performance of the proposed approach compared to other state-of-the-art approaches. The results
demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio (TGR)
and total cost.

KEYWORDS
Placement mechanism; application module placement; fog computing; cloud computing; genetic algorithm;
flamingo search algorithm

1 Introduction

In 2014, Cisco proposed fog computing as a new paradigm with the aim of addressing time-
sensitive applications better than with cloud computing by placing and processing tasks closer to the
data sources [1]. Fog computing can curtail various costs such as networking overhead, making it a

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.048833
https://www.techscience.com/doi/10.32604/cmc.2024.048833
mailto:a.alwabel@psau.edu.sa


4128 CMC, 2024, vol.79, no.3

suitable platform for dealing with latency-sensitive tasks [2]. Fog computing is a distributed computing
environment that expands services of cloud systems to users and data sources [3].

Nodes in this environment are preferably located only one hop at a distance from the data to
be handled. Placing nodes in a close location to users allows for processing data locally in the nodes
instead of transferring data to nodes in cloud systems in a remote location, which can cause extra
communication overhead. Fog computing is developed as a middle layer between Internet of Things
(IoT) and cloud computing and is suitable for time-sensitive application placement. The majority,
nonetheless, of the fog nodes are geographically scattered with resources that are limited in terms
of computing capabilities compared to cloud nodes, thus making the application placement problem
more complex than that in cloud computing.

The application placement problem further complicates microservice applications. A microservice
application is a set of interdependent and interconnected modules that might be processed by various
computing nodes [4]. Each module executes a set of instructions to produce the appropriate output
that might be communicated as an input to another module based on the dependency of data between
these modules [5]. This study presents a novel mechanism of application placement for fog-cloud
environments that aims to optimize the overall system utilization by efficiently reducing the cost of
computation, communication, energy, and service level agreement (SLA) violations. The proposed
work combines the genetic algorithm (GA) with the Flamingo Search Algorithm (FSA) to place
application modules to minimize overall cost. The choice of using GA and FSA in a hybrid algorithm
depends on the problem at hand and the characteristics (Complementary Strengths, Multi-objective
Optimization, and Adaptability) of the algorithms being combined. If the problem exhibits feature that
align well with both GA and FSA, a hybrid approach might be more effective. It is worth noting that
the selection of metaheuristic algorithms for a hybrid approach is often empirical and depends on the
characteristics of the optimization problem. Other metaheuristic algorithms could also be considered
for our problem in future. The hybrid approach considers the cost associated with computation,
communication, violation, and energy consumption to place the applications to appropriate fog or
cloud nodes. The violation cost associated with the placement of applications considers the real-world
penalty model adopted by various cloud service providers. The work also focuses on more number of
applications to be executed before their deadline on the considered fog-cloud system.

The major contribution of the paper is as follows:

• A novel hybrid GA-FSA approach is proposed for application placement in a fog-cloud
environment. This hybrid approach is intended to overcome issues such as low convergence
rates and high costs.

• In the proposed model, we consider four cost types (computation, communication, violation,
and energy consumption) associated with application placement.

• The model for violation cost is aligned with the existing penalty models used by the standard
cloud service providers.

• The hybrid approach effectively places the applications to fog or cloud nodes based on the
application parameters, which improves the task guarantee ratio (TGR) while maintaining the
Quality of Service (QoS) and stability of the overall system.

The remainder of this paper is organized as follows. In Section 2, we discuss the state-of-the-art
application placement in cloud and fog models, including the identified gaps in the research. The
problem is formulated and discussed in Section 3. In Section 4, we present the proposed mechanism,
which is evaluated and discussed in Section 5. Finally, in Section 6, we present our conclusions and
future directions for further improvements in the proposed work.



CMC, 2024, vol.79, no.3 4129

2 Related Work

This section discusses the research conducted by different researchers in related areas. A novel
framework was proposed to allocate workload in a fog-cloud system to minimize the power con-
sumption while maintaining an acceptable level of service delay [6]. The proposed framework divides
workload allocation into three subproblems. This framework attempts to solve this problem by
employing a generalized benders decomposition (GBD) mechanism. The results demonstrated that
the power consumption can be optimized within a fog-cloud system. However, they did not thoroughly
investigate the complexion of workloads and resources [7].

The authors of [8] presented a mechanism to map module with an aim to place IoT applications in
a fog-cloud environment. The contribution of this work was to improve resource utilization. Utilization
is improved by sorting and mapping nodes to application modules according to the available capacity
and requirements of these modules and nodes. Then, the mechanism maps the modules when the
requirements are fulfilled. This study, however, considered only CPU and RAM to find an appropriate
candidate. Therefore, the mechanism misses other crucial elements, for instance time requirements of
applications.

The authors of [9] proposed a fog-supported architecture that manages both the computational
and networking costs. The architecture employs an energy-aware algorithm within a fog-based
datacenter. A node is rewarded or penalized according to the idleness state of the node, top frequency,
and highest energy parameters. It, then, computes how many virtual machines might be placed on a
node in different timeslots and according to their frequencies. The reward mechanism is utilized to
minimize power consumption, which could grow aggressively.

The effectiveness of mobility on the behavior of applications was investigated by studying the
problem of scheduling in fog systems [10]. The study reviewed several scheduling approaches with
an aim to reduce the execution time of applications based on their characteristics. This study
demonstrated that the delay-priority policy outperformed the others with regards to reducing network
delay.

A service-based placement mechanism for fog computing was designed by [11] with the aim
of sharing resources in an optimum way in nodes inside IoT systems. The mechanism takes in
consideration both deadline and latency requirements when allocating various modules on machines.
Each machine is identified by computation, memory, and storage elements. The proposed policy tries
to meet QoS demands by prioritizing applications based on expected time to response.

A new technique was developed by [12] to manage applications in order to satisfy different service-
delivery latency requirements in fog computing. iFogsim [13] was used to evaluate the proposed
technique. The technique outperformed other approaches in the literature by assigning modules to
nodes within the required deadlines.

The authors in [14] developed a quality of experience (QoE) mechanism that assigns modules to
fog nodes. The mechanism prioritizes different requests to place module according to the expectations
of different users. In similar fashion, a study on improving quality of experience was proposed by [15].
This approach, however, does not consider resource availability as a factor when placing modules to
nodes. This can be considered a weakness in this context according to [16] in cloud-fog environments.

The authors of [17] presented an optimized placement approach for applications in fog environ-
ments based on a GA. This approach aims at reducing the costs of the computational as well as
exchange of data overheads of tasks assignments while preserving an acceptable level of utilization.
Another study employing a GA was carried out by [18]. This study presented a mechanism to schedule



4130 CMC, 2024, vol.79, no.3

tasks with a focus on cost factor that is based on GA-based algorithm for fog-cloud systems in order
to cut the cost time-aware applications.

Another scheduling mechanism was proposed by [19] that maps tasks to nodes according to
deadline and frequency constraints. The approach employs an auction mechanism, where tasks that
are rejected by one fog node can be accepted by another. It illustrates that the total number of executed
tasks can increase as a consequence of using this mechanism.

A novel placement mechanism was presented by [20] that aims to improve throughput by focusing
on the requirement of computation and networking of applications. The performance was improved
by allocating the maximum number of modules to one area to curtail the networking overheads in fog
computing. Experiments demonstrated that the proposed mechanism outperformed related methods
in terms of throughput improvement. However, the proposed method only minimally addresses saving
energy in fog environments. The authors of [21] proposed a deadline-aware mechanism that plays an
intermediate role for processing tasks in a fog-cloud environment. In addition, the mechanism focuses
on the efficient utilization of resources.

The authors of [22] presented a placement mechanism that takes context of applications in
consideration in fog environments. This mechanism can help in reducing the latency of applications
in IoT systems by mapping IoT machine-level contexts with the specifications of the nodes in a fog
system. The authors of [23] employs mechanism that is based on the grey wolf optimization approach
to curtail the execution costs for IoT applications in a fog environment. This improves the performance
with regard to the application deadlines.

The authors of [24] proposed an algorithm called PACK that maps tasks to fog node according
to locations with an aim to reduce service delay. The travel time between data sources and fog nodes
are minimized by placing these parties close to each other provided the load between working nodes is
balanced. Moreover, PACK ranks fog nodes based on location and reliability as factors for allocating
tasks to nodes. A hybrid mechanism that merges a linear programming method with several heuristic
mechanisms to optimize energy and bandwidth consumption in a fog environment was introduced
by [25].

A load-balancing placement policy for fog and cloud systems on IoT platforms was presented by
[26]. This work enhanced their previous work [27] by employing a software-defined network paradigm
to enhance the outcome of IoT applications in fog-cloud computing. The approach employs a load-
balancing mechanism to distribute tasks between fog nodes to suit the demands of expandability
and time-constraint while avoiding fog nodes being overloaded. This study showed that the delay can
decrease because of this approach. However, load balancing can lead to poor resource utilization and
an increase in power consumption.

The authors of [28] presented a mechanism that coordinates the allocation of tasks as a chain of
services [29] using a deep reinforcement learning approach. A vigorous method was employed to reduce
latency; improve resource usage; and enhance productivity in fog systems. A similar approach was
adopted by [30] to solve the scalability shortcomings of existing schemes for the dynamic placement
of the mechanism.

The authors of [31] proposed an efficient and autonomous scheme to solve the problem of
mapping IoT services to fog nodes using metaheuristic approaches with a shared parallel architecture.
They employ the Archimedes optimization algorithm as a new metaheuristic approach that addresses
the complexity of IoT service allocation to fog nodes as a multi-objective problem. The approach
employed helped reduce the overall costs of fog systems.



CMC, 2024, vol.79, no.3 4131

The authors of [32] presented a novel application placement mechanism for fog computing that
focusing on reducing power consumption. The main contribution of this paper is to reduce the number
of running fog nodes which leads to a cut in the overall energy consumption of the system. However,
this study pays a little attention to the cost of the proposed mechanism. The adoption of mechanism
can increase the SLA violation as a result.

In the proposed approach, we formulated the cost model using four types of cost, like computation
cost, communication cost, violation cost, and energy consumption cost. Many researchers have
formulated the model taking at most three types of cost and we included the fourth one, i.e., energy
consumption cost to make the problem more realistic. General optimization techniques are proposed
by different researcher’s for solving this type of problems and we tried with that along with the
hybrid approach to explore the efficacy of the hybrid approach. The hybrid approach we consider
here combines both GA and FSA to place the applications efficiently in fog/cloud nodes to minimize
the overall cost while satisfying the deadline requirements.

3 Problem Formulation

This section defines the problem application placement in fog-cloud environment. In addition, it
presents several cost-type models of application executions in this environment.

3.1 Computing Environment

The considered computing environment consists of a three-layered hierarchical structure, as
displayed in Fig. 1. The uppermost layer is the cloud layer, which consists of servers that we call
datacenters. The middle layer, called the fog layer, links the cloud with device layers. The lowest
layer is the device layer, where user applications are generated. The fog layer resides closer to the
data generation sources and addresses requests in a time-bound manner. Latency-sensitive tasks are
addressed by fog servers rather than cloud servers because the cloud servers are placed distant from
the user request locations. The decentralized feature of fog computing makes it more appropriate for
addressing latency-sensitive tasks that can be submitted to the system in a distributed manner. The
focus of this study is to use computing and communication resources in a collaborative manner to
minimize system utilization costs.

3.2 Machine Environment

In this subsection, we consider a set of m computing nodes M = {M1, M2, · · · , Mm}, which consists
of k cloud nodes and other nodes (m−k) as fog nodes. Each node in the machine environment has the
following characteristics: Mj = < Mrate

j , Mcpu
j , Mmem

j >. The term Mrate
j represents the CPU processing

rate of machine Mj, Mcpu
j represents the CPU capacity, and Mmem

j represents the memory capacity of
machine Mj. Cloud nodes have more computing power than fog nodes and have higher communication
latency because the cloud nodes are distant from the task submission point.

3.3 Task Environment

The set of n tasks T = {T1, T2, T3, . . . , Tn} is submitted to the system, where each task Ti has
the following characteristics: Ti = < insi, cpui, memi, datai, bwi, di >. Term insi represents the number
of instructions for task Ti. The other terms cpui, memi, and bwi represent the CPU, memory, and
bandwidth requirements for task Ti, respectively. The term datai represents the input/output file size
and di represents the deadline of the task. We assume that the sets of tasks/applications submitted to
the system are independent of each other. When a task is submitted to the system, it is scheduled to



4132 CMC, 2024, vol.79, no.3

either a cloud or fog server for execution. The execution time for a task can be computed based on the
number of instructions and rate of CPU processing where the task is scheduled. Herein, we define the
execution time of task Ti when allocated to machine Mj as eij, which can be calculated as follows:

eij = insi

Mrate
j

(1)

Figure 1: Proposed computing environments

3.4 Cost Model

This section defines the different cost-type models associated with fog-cloud environments.

3.4.1 Computational Cost

The primary monetary cost associated with the fog-cloud environment is computational cost.
The computation cost depends on the amount of computational resources required to execute the
application and execution duration [33]. Herein, we consider two computational resources: The CPU
and memory. The computational cost of task Ti scheduled on machine Mj can be calculated as follows:

Compcost
i = (

cp
j × cpui + cm

j × memi

) × eij (2)

where cp
j is the per-unit CPU usage cost per unit time and cm

j is the per-unit memory usage cost per unit
time for machine Mj. Here cpui and memi represent the CPU and memory requirement of the task Ti,
respectively. The term eij represents the expected execution time of the task Ti when allocated to the
machine Mj. Thus, the total computational cost of n tasks can be computed as follows:

Compcost =
n∑

i=1

Compcost
i (3)



CMC, 2024, vol.79, no.3 4133

3.4.2 Communication Cost

In addition to computational cost, the communication cost has a vital role in scheduling because
latency is crucial for IoT application deployment [34,35]. The communication cost depends on the size
of the data file involved in the task and cost of bandwidth usage per data unit of the host server. The
communication cost involved in task Ti can be computed as follows:

Commcost
i = cb

j × bwi (4)

where cb
j is the bandwidth-usage cost per unit of data for machine Mj. The total communication cost

for all n tasks can be obtained using the following equation:

Commcost =
n∑

i=1

Commcost
i (5)

3.4.3 SLA Violation Cost

The fog-cloud service provider must adhere to the SLA signed by the service provider and user.
The service provider must repay compensation proportional to the violation level. Popular penalty
computation methods adopted by different cloud-service providers are presented in Table 1. There are
three popular methods for calculating the penalty: (a) a certain percentage of the total charge paid,
(b) a fixed amount paid for different violation levels, and (c) a specific ratio of downtime [36]. In the
proposed model, we design the violation cost, which depends on the violation level, i.e., the amount of
time the task requires to finish its execution beyond the specified deadline. We formulate the violation
cost model, which is similar to the penalty models of real cloud service providers and can be defined as

Violationcost
i = Vi × Penaltyi (6)

where Penaltyi is the violation cost of task Ti for one percent of the delay violation; Vi can be obtained
using the following equation:

Vi =
⎧⎨
⎩

fi − di

eij

× 100 if fi > di

0 if fi ≤ di

(7)

where fi is the completion time of task Ti. To determine Vi ∈ [0, 100], we assume that if any task
requires more time beyond the deadline than its execution time, then the task must not be allowed to
be executed. Considering the above formulations for penalty calculations, we design the violation cost
of the system as follows:

Violationcost =
n∑

i=1

Violationcost
i (8)

Table 1: Penalty models, reprinted with permission from [33]

Cloud provider Calculation method Service credit Penalty cap

Amazon EC2 Ration of total charge < 99.95%–10% N/A
< 99%–30%

IBM Softlayer Ration of downtime Each 30 min downtime, 5% of the fees N/A

(Continued)



4134 CMC, 2024, vol.79, no.3

Table 1 (continued)

Cloud provider Calculation method Service credit Penalty cap

Windows Azure Ration of total charge < 99.95%–10% N/A
< 99%–25%

VPS.net Ration of downtime 10 × downtime 100%
Google GCE Ration of total charge < 99.95%–10% N/A

< 99%–25%
< 99%–50%

Rackspace Ration of downtime Each 30 min downtime, 5% of the fees 100%
GoGrid Ration of downtime 10 × downtime 100%

3.4.4 Energy Consumption Cost

In this section, we formulate the energy cost of the system under consideration to execute the
set of tasks submitted to the system. The energy consumption cost depends on the total number of
servers required to execute the tasks. To compute the energy consumption of each server/node (Mj),
the following formula is used:

Ej = Estatic
j + Edynamic

j (9)

where Estatic
j is the energy consumed by the server/node Mj when it is ideal and Edynamic

j is the energy
consumed by the server while executing any task. The term Estatic

j is constant for a particular
machine/server; however, the term Edynamic

j varies and depends on the computational resource utilization
over time. Herein, we formulate the dynamic component of the energy consumption using two types of
computational resources: CPU and memory utilization. This model could be extended by considering
additional resources. Similar assumptions were made in [37]. Dynamic energy consumption (Edynamic

j )
is computed as follows:

Edynamic
j = (

α × UCPU
j + β × Umem

j

) × Emax
j (10)

where α and β are positive constants and α + β = 1. The terms UCPU
j and Umem

j represent the CPU and
memory utilization of the machine Mj, respectively. Herein, Emax

j represents the energy consumption
of the machine when operating at its maximum capacity. Thus, the total energy consumption cost of
the system under consideration can be computed as follows:

Energycost =
TimeDuration∑

t=0

m∑
j=1

Pj × ce
j (11)

where ce
j is the energy consumption per server unit. The total cost (Totalcost) of the system is computed

as follows:

Totalcost = Compcost + Commcost + Violationcost + Energycost (12)

where Compcost is the computational cost, Commcost is the communication cost, Violationcost is the
violation cost, and Energycost is the energy-related cost of the system under consideration.



CMC, 2024, vol.79, no.3 4135

3.5 Optimization Goal

The main objective of this study is to schedule a set of latency-sensitive independent tasks to
fog/cloud servers such that the total cost is minimized. The final optimization formula for the stated
problem is defined as an Mixed-Integer Linear Programming (MILP) problem and is expressed as
follows:

Minimize(Totalcost), (13)

subject to

Task Constraint:
n∑

i=1

xij = 1, ∀j ∈ {1, . . . , m} (14)

and

CPU Constraint:

xij × cpui ≤ Mcpu
j , ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , m} (15)

and

Memory Constraint:

xij × memi ≤ Mmem
j , ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m} (16)

Binary decision variable xij is defined as

xij =
{

1 if task Ti is allocated to machine Mj

0 Otherwise
(17)

Eq. (14) states that one task will be allocated to only one server and the term xij is a binary variable
which takes the value 1 when task (Ti) is allocated to a machine (Mj) otherwise the value is 0. Eqs. (15)
and (16) are the CPU and memory constraints for each machine, respectively. The total CPU and
memory required for the set of tasks allocated to a machine must be less than the total available
resources.

4 Proposed Mechanism

There are three layers in a fog-cloud computing environment. The lower layers, called the IoT
device layers, are generated from the user tasks and sent to either the fog layer (middle layer) or cloud
layer (top layer). The tasks submitted to the cloud layer must pass through the middle layer because
the fog broker decides whether to allocate the tasks to the nodes/servers deployed in the fog layer or
the cloud layer. The main functions of a fog broker are threefold: (a) request receiver, (b) resource
monitoring, and (c) task scheduling. The proposed scheduling process is displayed in Fig. 2, where
the requests from IoT devices are received by the fog broker unit through gateways. The fog broker
analyzes the task parameters and schedules the tasks to the appropriate servers in the fog or cloud
layer to minimize costs and optimize QoS.

In this case, we designed a hybrid approach by combining the GA [38] with the FSA [39], which
we call GA-FSA. The proposed model efficiently schedules tasks to fog/cloud nodes to meet the QoS
and minimize cost.

GA is a popular evolutionary algorithm widely used in different optimization problems [38]. This
algorithm was inspired by Darwin’s evolutionary principle based on gene simulations. The GA follows



4136 CMC, 2024, vol.79, no.3

predefined steps such as (a) initial population generation, (b) evaluation of the fitness function for an
individual population, (c) selection of the best possible populations to reproduce a new generation,
(d) crossover operation for producing new generations from the parent population, and (e) mutation
operation to produce a new child and avoid the algorithm from being trapped in a local optimum.
These steps are repeated until the algorithm converges or the maximum number of iterations is
achieved, as indicated in Fig. 3.

Figure 2: Proposed approach for task scheduling

Similarly the FSA was inspired by the migratory and foraging behaviors of flamingos. The FSA
algorithm uses migratory and foraging behaviors to select the optimal solution, as indicated in Fig. 4.

Figure 3: Flowchart for GA Figure 4: Flowchart for FSA



CMC, 2024, vol.79, no.3 4137

In this study, we propose a hybrid algorithm called GA-FSA to effectively schedule tasks to servers
in the fog and cloud layers. A flowchart of the combined approach is displayed in Fig. 5. The proposed
approach follows the GA to generate the initial population and encoded form of the population, as
indicated in Fig. 6. The chromosomes of the population represent the tasks, and the gene value of each
chromosome is considered as the server where a task is scheduled.

Figure 5: Hybrid GA and FSA approach

Figure 6: Individual solution encoding of GA

From the entire set of populations based on fitness values (using Eq. (12)), two best elites are
chosen using the roulette wheel process. Assume, the two elites are G1 and G2. G1 is used for the
crossover operation through the GA. The other elite, G2, is used by the FSA to generate the optimal
solution. The best elites from GA and FSA are promoted for the two-point crossover operation
(Fig. 7) and one point mutation operation (Fig. 8). The results of this series of crossover and mutation
operations produce an effective task scheduling.

Figure 7: Illustration of two-point crossover operation



4138 CMC, 2024, vol.79, no.3

Figure 8: Illustration of one-point mutation operation

4.1 Hybrid GA-FSA Scheduling Approach

User applications are the inputs for the proposed approach. The steps involved in our hybrid
approach are depicted in Algorithm 1:

Algorithm 1: Hybrid Approach (GA-FSA)
1. Initialize parameter values
2. Initialize chromosome encoding for crossover and mutation operation
3. Evaluate fitness function using Eq. (13)
4. if maximum iteration is reached then
5. Perform selection operation
6. Select two elites G1 and G2 based on fitness value for the next process
7. Select elite G1 for crossover operation
8. end if
9. while termination condition is not matched
10. Select other elite G2 for FSA
11. Promote two best solutions G1 and G2 for crossover and mutation operation
12. end while
13. return optimal solution

Herein, we use a two-point crossover operation where a new solution is obtained by swapping the
genes of the chromosomes, as illustrated in Fig. 7. After the crossover operation, the chromosomes
undergo a single-point mutation operation where a new solution is obtained by flipping the digit of
the string, as indicated in Fig. 8. Through this hybrid approach, we can obtain effective scheduling of
tasks to the fog/cloud servers. The pseudocode for the proposed approach is presented in algorithm 1.

5 Experimental Evaluation

The proposed hybrid approach, GA-FSA, was implemented using Python to evaluate its efficacy
against other state-of-the-art approaches. GA-FSA was compared with approaches such as the GA,
Min-CCV, and Min-V mechanisms. The performances of the approaches were evaluated based on
the computation cost, communication cost, energy consumption cost, SLA violation cost, total cost,
makespan, and TGR. TGR is defined as follows [40]:

TGR = Number of tasks executed before deadline
Number of admitted tasks

(18)

GA is a metaheuristic approach for finding a suitable solution that supports multi-objective
optimization problems [41]. Min-CCV [42] is a cost-aware scheduling approach that allocates tasks to
nodes to minimize cost. Min-V [42] is a heuristic scheduling approach that minimizes delay violations.



CMC, 2024, vol.79, no.3 4139

5.1 Simulation Setup

The simulation was performed to understand the efficiency of the proposed hybrid approach by
varying three parameters: The number of tasks, number of fog nodes, and number of cloud nodes.
We conducted these experiments to investigate the influence of these parameters on the optimization
goal stated earlier. We performed the experiments in different phases. In the first phase, we varied the
number of tasks from 100 to 500 and fixed them with 20 cloud nodes and 50 fog nodes. In the second
phase of the experiment, we fixed the number of tasks to be constant, i.e., 500, and the number of
cloud nodes to 20. Subsequently, we performed experiments by varying the number of fog nodes from
10 to 50. The third phase of the experiment was conducted by varying the number of cloud nodes from
5 to 20, holding the number of tasks (500) and fog nodes (50) constant. The experimental settings of
the simulations are listed in Table 2.

Table 2: Experimental settings

Phases Characteristics Parameters

Tasks Fog nodes Cloud nodes

1 Varying tasks [100, 500] 50 20
2 Varying fog nodes 500 [20, 50] 20
3 Varying cloud nodes 500 50 [5, 20]

In the proposed method, the tasks were submitted to the system with the characteristics described
in Table 3. The computing environment discussed previously consisted of fog and cloud nodes with
heterogeneous characteristics. The values for the different parameters were selected randomly and set
for experimental purposes. The node attributes of fog/cloud environment are listed in Table 4.

Table 3: Task settings

Parameter Values Unit

Size [1028, 4280] MI
Required CPU [1, 4] Integer
Required memory [50, 200] MB
Data size [0.5, 2] MB
Deadline [500, 2500] ms
Penalty [0.1, 0.5] G$%

The simulation was written in the Python programming language and conducted on an INTEL
CORE i7 7th gen, CPU @ 3.0 GHz, 8 GB RAM, and 64-bit operating system. The parameter for the
GA-FSA experiments was reported in Table 5.



4140 CMC, 2024, vol.79, no.3

Table 4: Node settings

Parameter Values Unit

Fog node Cloud node

CPU processing rate [500, 2000] [3000, 10000] MIPS
CPU usage cost [0.2, 0.5] [0.05, 0.1] G\$/s
Memory [200, 300] [512, 4096] MB
Memory usage cost [0.01, 0.04] [0.02, 0.06] G\$/MB
Delay [1, 5] [1.5, 2.5] ms
Bandwidth usage cost [0.01, 0.02] [0.05, 0.1] G\$/MB
Static energy consumption [1, 5] [5, 10] kWh
Dynamic energy consumption [1, 3] [1, 6] kWh
Energy cost 0.1 0.1 G\$/kWh

Table 5: GA-FSA parameters setting

Parameter Values

Population size [50]
Crossover rate [0.6]
Mutation rate [0.015]
Number of iterations [100]

5.2 Simulation Result by Varying the Number of Tasks

In this experiment, we varied the number of tasks from 100 to 500 and reported the results in
Figs. 9 to 15. A lower makespan value implies that the proposed approach is more efficient. It can be
observed that the proposed approach (GA-FSA) demonstrated a lower makespan value than the other
state-of-the-art approaches for all task counts (indicated in Fig. 9). Fig. 10 indicates the TGR of each
approach; in this case a higher value of TGR is better. GA-FSA provided a higher TGR value than the
other approaches. Figs. 11 to 15 report the result of different costs associated with the models. In these
cases, the lower the cost, the better the performance. This phenomenon was observed for the proposed
approach (GA-FSA) in terms of computation, communication, violation, energy consumption, and
total cost.



CMC, 2024, vol.79, no.3 4141

Figure 9: Makespan (Lower value is better) Figure 10: TGR (Higher value is better)

Figure 11: Computation cost (Lower value is
better)

Figure 12: Communication cost (Lower value is
better)

Figure 13: Violation cost (Lower value is better) Figure 14: Energy cost (Lower value is better)



4142 CMC, 2024, vol.79, no.3

Figure 15: Total cost (Lower value is better)

5.3 Simulation Result by Varying the Number of Fog Nodes

In this case, the number of fog nodes was varied, while maintaining a constant number of tasks
(500) and cloud nodes (20). As the number of fog nodes varied, the results exhibited varying trends for
different performance parameters. Figs. 16 to 22 report the different parameters for the approaches.
Fig. 16 indicates that the proposed approach (GA-FSA) outperformed the other approaches as its
value was less compared to the others. As the number of fog nodes increased, the TGR value improved
for all cases; GA-FSA had a higher value than the other approaches (as indicated in Fig. 17). The costs
associated with the different models are displayed in Figs. 18 to 22. The proposed approach incurred
a lower cost than the other approaches, as indicated in the different figures.

Figure 16: Makespan (Lower value is better) Figure 17: TGR (Higher value is better)

Figure 18: Computation cost (Lower value is
better)

Figure 19: Communication cost (Lower value is
better)



CMC, 2024, vol.79, no.3 4143

Figure 20: Violation cost (Lower value is better) Figure 21: Energy cost (Lower value is better)

Figure 22: Total cost (Lower value is better)

5.4 Simulation Result by Varying the Number of Cloud Nodes

In this subsection, we varied the number of cloud nodes from 5 to 20, while holding the number
of tasks (500) and fog nodes (50) constant. Figs. 23 to 29 report the results for different performance
parameters. In this case, the communication cost varied as the cloud nodes were distant from the
data source, and hence influenced the TGR. However, in all cases, GA-FSA had a higher TGR value
(Fig. 24) compared to the other approaches. The cost associated with GA-FSA was also lower than
that associated with the other approaches (Fig. 29).

Figure 23: Makespan (Lower value is better) Figure 24: TGR (Higher value is better)



4144 CMC, 2024, vol.79, no.3

Figure 25: Computation cost (Lower value is
better)

Figure 26: Communication cost (Lower value is
better)

Figure 27: Violation cost (Lower value is better) Figure 28: Energy cost (Lower value is better)

Figure 29: Total cost (Lower value is better)

In addition to reporting the results in terms of different parameters, we also report (Table 6) the
running times of the different approaches. The proposed approach, GA-FSA, required less time than
the other approaches. Although the time difference was small, it makes sense that by requiring less
time, the proposed approach outperformed the other approaches for the different parameters.



CMC, 2024, vol.79, no.3 4145

Table 6: Running time of different approaches

Approach Run time (seconds)

GA 21
Min-CCV 22
Min-V 23
GA-FSA 19

5.5 Statistical Analysis of Variance (ANOVA) Results

ANOVA [43] was employed to test the difference in terms of means between two or more cases.
SPSS software was used to conduct the statistical analysis. The null hypothesis, which was presumed
to be the means of the four populations, was equal. We demonstrated, mathematically, that H0 was
μ1 = μ2 = μ3. In the alternative hypothesis, we presumed that at least one of the means differed from
the others. We conducted ANOVA for the synthetic datasets with α = 0.05. Table 6 lists the results of
the ANOVA test.

Table 7 demonstrates that the F-value > F was critical for the synthetic dataset, indicating that
we rejected the null hypothesis. This inferred that the means of the population of the four different
datasets were not equal because the p-value was considerably less than 0.5. Consequently, we can
conclude that the performance achievement gained by GA-FSA against GA, Min-CCV, and Min-V
was not by chance.

Table 7: ANOVA test results for GA-FSA, GA, Min-CCV, and Min-V for synthetic datasets

Source of variation df Sum of square Mean square F-value p-value F critical

Between groups 3 58256.05 19455.01 3.8743 0.0101 2.6497
Within groups 186 985562.98 5132.74
Total 189 1043819.03

6 Conclusion and Future Direction

The proposed approach, GA-FSA, outperformed the other state-of-the-art approaches (GA,
Min-CCV, and min-V) with respect to different parameters (makespan, TGR, and cost). The objective
of this study was to minimize cost while satisfying the QoS, which was achieved by the proposed
approach. For latency-sensitive tasks (where the deadline of a task matters), the proposed approach
demonstrated improved performance by reducing the different costs associated with scheduling tasks
in a fog-cloud environment. In the future, we would like to study load-balancing and security issues
while scheduling tasks. Real-world fog-cloud-based deployment of tasks should be studied and the
efficacy of the proposed approach evaluated.

Acknowledgement: Not applicable.

Funding Statement: This study is supported via funding from Prince Sattam bin Abdulaziz University
Project Number (PSAU/2024/R/1445).



4146 CMC, 2024, vol.79, no.3

Author Contributions: Study conception and design: Abdulelah Alwabel and Chinmaya Swain; analysis
and interpretation of results: Chinmaya Swain; draft manuscript preparation: Abdulelah Alwabel. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: From architecture to edge

computing and big data processing,” J. Supercomput., vol. 75, no. 4, pp. 2070–2105, 2019. doi:
10.1007/s11227-018-2701-2.

[2] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A. Zanni, “A survey on fog computing for
the Internet of Things,” Pervasive Mob. Comput., vol. 52, pp. 71–99, 2019. doi: 10.1016/j.pmcj.2018.12.007.

[3] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things realize its potential,”
Computer, vol. 49, no. 8, pp. 112–116, Aug. 2016. doi: 10.1109/MC.2016.245.

[4] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task allocation in fog computing systems,”
IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 85–97, 2019. doi: 10.1109/TNET.2018.2880874.

[5] A. Samanta, Y. Li, and F. Esposito, “Battle of microservices: Towards latency-optimal heuristic scheduling
for edge computing,” in Proc. 2019 IEEE Conf. Netw. Softw.: Unleash. Pow. Netw. Softw., pp. 223–227.

[6] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in fog-cloud computing
toward balanced delay and power consumption,” IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
2016. doi: 10.1109/JIOT.2016.2565516.

[7] R. K. Naha et al., “Fog computing: Survey of trends, architectures, requirements, and research directions,”
IEEE Access, vol. 6, pp. 47980–48009, 2018. doi: 10.1109/ACCESS.2018.2866491.

[8] M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud computing
Paradigm,” in 2017 IFIP/IEEE Symp. Int. Netw. Service Manag. (IM), 2017, pp. 1222–1228.

[9] Z. Pooranian, M. Shojafar, P. G. V. Naranjo, L. Chiaraviglio, and M. Conti, “A novel distributed fog-based
networked architecture to preserve energy in fog data centers,” in Proc.14th IEEE Int. Conf. Mob. Ad Hoc
Sens. Syst., 2017, pp. 604–609.

[10] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware appli-
cation scheduling in fog computing,” IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35, Mar. 2017. doi:
10.1109/MCC.2017.27.

[11] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware fog service placement,” in 2017
IEEE 1st Int. Conf. Fog Edge Comput. (ICFEC), 2017, pp. 89–96.

[12] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application module management for
fog computing environments,” ACM Trans. Internet Technol., vol. 19, no. 1, pp. 1–21, Feb. 2019. doi:
10.1145/3186592.

[13] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling and simulation
of resource management techniques in the Internet of Things, edge and fog computing environments,”
Softw. Pract. Exp., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[14] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience (QoE)-aware
placement of applications in Fog computing environments,” J. Parallel Distr. Comput., vol. 132, pp. 190–
203, Oct. 2019. doi: 10.1016/j.jpdc.2018.03.004.

[15] H. Nashaat, E. Ahmed, and R. Rizk, “IoT application placement algorithm based on multi-dimensional
QoE prioritization model in fog computing environment,” IEEE Access, vol. 8, pp. 111253–111264, 2020.
doi: 10.1109/ACCESS.2020.3003249.

https://doi.org/10.1007/s11227-018-2701-2
https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/TNET.2018.2880874
https://doi.org/10.1109/JIOT.2016.2565516
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1145/3186592
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1109/ACCESS.2020.3003249


CMC, 2024, vol.79, no.3 4147

[16] F. Saeik et al., “Task offloading in edge and cloud computing: A survey on mathematical, artificial
intelligence and control theory solutions,” Comput. Netw., vol. 195, no. 3, pp. 108177, Aug. 2021. doi:
10.1016/j.comnet.2021.108177.

[17] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “Meet genetic algorithms in monte carlo: Optimised placement
of multi-service applications in the fog,” in 2019 IEEE Int. Conf. Edge Comput. (EDGE), 2019, pp. 13–17.

[18] T. S. Nikoui, A. Balador, A. M. Rahmani, and Z. Bakhshi, “Cost-aware task scheduling in fog-
cloud environment,” in 2020 CSI/CPSSI Int. Symp. Real-Time Embed. Syst. Technol. (RTEST), 2020,
pp. 1–8.

[19] M. Louail, M. Esseghir, and L. Merghem-Boulahia, “Dynamic task scheduling for fog nodes based on
deadline constraints and task frequency for smart factories,” in Proc. 11th Int. Conf. Netw. Future, 2020,
pp. 16–22.

[20] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Throughput-aware partitioning and
placement of applications in fog computing,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2436–2450,
2020. doi: 10.1109/TNSM.2020.3023011.

[21] A. V. Postoaca, C. Negru, and F. Pop, “Deadline-aware scheduling in cloud-fog-edge systems,” in Proc.
20th IEEE/ACM Int. Symp. Cluster, Cloud Int. Comput., 2020, pp. 691–698.

[22] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-aware placement of industry 4.0
applications in fog computing environments,” IEEE Trans. Ind. Inform., vol. 16, no. 11, pp. 7004–7013,
Nov. 2020. doi: 10.1109/TII.2019.2952412.

[23] M. Salimian, M. Ghobaei-Arani, and A. Shahidinejad, “Toward an autonomic approach for Internet of
Things service placement using gray wolf optimization in the fog computing environment,” Softw. Pract.
Exp., vol. 51, no. 8, pp. 1745–1772, Aug. 2021.

[24] T. Lähderanta et al., “Edge computing server placement with capacitated location allocation,” J. Parallel
Distr. Comput., vol. 153, no. 150055, pp. 130–149, Jul. 2021. doi: 10.1016/j.jpdc.2021.03.007.

[25] N. Godinho, H. Silva, M. Curado, and L. Paquete, “A reconfigurable resource management frame-
work for fog environments,” Future Gener. Comput. Syst., vol. 133, no. 99, pp. 124–140, 2022. doi:
10.1016/j.future.2022.03.015.

[26] E. Batista, G. Figueiredo, and C. Prazeres, “Load balancing between fog and cloud in fog of things based
platforms through software-defined networking,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 9, pp.
7111–7125, Oct. 2022.

[27] E. Batista, G. Figueiredo, M. Peixoto, M. Serrano, and C. Prazeres, “Load balancing in the fog of things
platforms through software-defined networking,” in 2018 IEEE Int. Conf. Int. Things (iThings) IEEE
Green Comput. Commun. (GreenCom) IEEE Cyber, Phy. Soc. Comput. (CPSCom) and IEEE Smart Data
(SmartData) Halifax, NS, Canada, Feb. 2019, pp. 1785–1791.

[28] Y. Zhang, F. Zhang, S. Tong, and A. Rezaeipanah, “A dynamic planning model for deploying service
functions chain in fog-cloud computing,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 10, pp. 7948–
7960, Nov. 2022.

[29] X. Gao, R. Liu, and A. Kaushik, “Virtual network function placement in satellite edge computing with a
potential game approach,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 2, pp. 1243–1259, Jun. 2022. doi:
10.1109/TNSM.2022.3141165.

[30] H. Xu et al., “Dynamic SFC placement scheme with parallelized SFCs and reuse of initialized VNFs: An
A3C-based DRL approach,” J. King Saud Univ.-Comput. Inf. Sci., vol. 35, no. 6, pp. 101577, Jun. 2023. doi:
10.1016/j.jksuci.2023.101577.

[31] Z. Zhang, H. Sun, and H. Abutuqayqah, “An efficient and autonomous scheme for solving IoT service
placement problem using the improved Archimedes optimization algorithm,” J. King Saud Univ.-Comput.
Inf. Sci., vol. 35, no. 3, pp. 157–175, Mar. 2023. doi: 10.1016/j.jksuci.2023.02.015.

[32] A. Alwabel and C. K. Swain, “Deadline and energy-aware application module placement in fog-cloud
systems,” IEEE Access, vol. 12, pp. 5284–5294, 2024. doi: 10.1109/ACCESS.2024.3350171.

https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1109/TNSM.2020.3023011
https://doi.org/10.1109/TII.2019.2952412
https://doi.org/10.1016/j.jpdc.2021.03.007
https://doi.org/10.1016/j.future.2022.03.015
https://doi.org/10.1109/TNSM.2022.3141165
https://doi.org/10.1016/j.jksuci.2023.101577
https://doi.org/10.1016/j.jksuci.2023.02.015
https://doi.org/10.1109/ACCESS.2024.3350171


4148 CMC, 2024, vol.79, no.3

[33] C. K. Swain, B. Gupta, and A. Sahu, “Constraint aware profit maximization scheduling of
tasks in heterogeneous datacenters,” Computing, vol. 102, no. 10, pp. 2229–2255, Oct. 2020. doi:
10.1007/s00607-020-00838-1.

[34] X. Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E. Huh, “A cost- and performance-effective approach
for task scheduling based on collaboration between cloud and fog computing,” Int. J. Distrib. Sens. Netw.,
vol. 13, no. 11, pp. 155014771774207, Nov. 2017. doi: 10.1177/1550147717742073.

[35] B. M. Nguyen, H. Thi Thanh Binh, T. The Anh, and D. Bao Son, “Evolutionary algorithms to optimize
task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment,”
Appl. Sci., vol. 9, no. 9, pp. 1730, Apr. 2019.

[36] X. Y. Yuan, H. Y. Tang, Y. Li, T. Jia, T. C. Liu, and Z. H. Wu, “A competitive penalty model for availability
based cloud SLA,” in 2015 IEEE 8th Int. Conf. Cloud Comput., 2015, pp. 964–970.

[37] A. Uchechukwu, K. Li, and Y. Shen, “Improving cloud computing energy efficiency,” in 2012 IEEE Asia
Pacific Cloud Comput. Cong. (APCloudCC), 2012, pp. 53–58.

[38] C. Su, Y. Gang, and C. Jin, “Genetic algorithm based edge computing scheduling strategy,” in 2021 4th Int.
Conf. Data Sci. Inform. Technol., 2021, pp. 130–134.

[39] Z. H. Wang and J. H. Liu, “Flamingo search algorithm: A new swarm intelligence optimization algorithm,”
IEEE Access, vol. 9, pp. 88564–88582, 2021. doi: 10.1109/ACCESS.2021.3090512.

[40] C. K. Swain and A. Sahu, “Interference aware workload scheduling for latency sensitive tasks in cloud
environment,” Computing, vol. 104, no. 4, pp. 925–950, Apr. 2022. doi: 10.1007/s00607-021-01014-9.

[41] B. V. Natesha and R. M. R. Guddeti, “Adopting elitism-based genetic algorithm for minimizing multi-
objective problems of IoT service placement in fog computing environment,” J. Netw. Comput. Appl., vol.
178, no. 5, pp. 102972, Mar. 2021. doi: 10.1016/j.jnca.2020.102972.

[42] F. Hoseiny, S. Azizi, M. Shojafar, and R. Tafazolli, “Joint QoS-aware and cost-efficient task scheduling
for fog-cloud resources in a volunteer computing system,” ACM Trans. Internet Technol., vol. 21, no. 4, pp.
1–21, Nov. 2021.

[43] K. E. Muller and B. A. Fetterman, “Testing hypothesis in multiple regression,” in Regression and ANOVA:
An Integrated Approach Using SAS Software, 1st ed. Cary, NC, USA: John Wiley & Sons, Inc., 2003, vol.
5, pp. 70–92.

https://doi.org/10.1007/s00607-020-00838-1
https://doi.org/10.1177/1550147717742073
https://doi.org/10.1109/ACCESS.2021.3090512
https://doi.org/10.1007/s00607-021-01014-9
https://doi.org/10.1016/j.jnca.2020.102972

	Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Proposed Mechanism
	5 Experimental Evaluation
	6 Conclusion and Future Direction
	References


