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ABSTRACT

High-resolution video transmission requires a substantial amount of bandwidth. In this paper, we present a
novel video processing methodology that innovatively integrates region of interest (ROI) identification and super-
resolution enhancement. Our method commences with the accurate detection of ROIs within video sequences,
followed by the application of advanced super-resolution techniques to these areas, thereby preserving visual
quality while economizing on data transmission. To validate and benchmark our approach, we have curated a
new gaming dataset tailored to evaluate the effectiveness of ROI-based super-resolution in practical applications.
The proposed model architecture leverages the transformer network framework, guided by a carefully designed
multi-task loss function, which facilitates concurrent learning and execution of both ROI identification and
resolution enhancement tasks. This unified deep learning model exhibits remarkable performance in achieving
super-resolution on our custom dataset. The implications of this research extend to optimizing low-bitrate video
streaming scenarios. By selectively enhancing the resolution of critical regions in videos, our solution enables high-
quality video delivery under constrained bandwidth conditions. Empirical results demonstrate a 15% reduction
in transmission bandwidth compared to traditional super-resolution based compression methods, without any
perceivable decline in visual quality. This work thus contributes to the advancement of video compression and
enhancement technologies, offering an effective strategy for improving digital media delivery efficiency and user
experience, especially in bandwidth-limited environments. The innovative integration of ROI identification and
super-resolution presents promising avenues for future research and development in adaptive and intelligent video
communication systems.
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1 Introduction

The rapid development of Internet and communication technology in recent years has gradually
become a popular trend of video applications. As the explosive growth of demand for real-time video
applications and the pursuit of video quality, the real-time video data in the Internet, due to the
real-time video streaming application for broadband and processing delay requirements, network
broadband spending also soared, also led to real-time video to network transmission and data storage
caused a significant burden. Therefore, to realize the high-speed transmission of real-time video
streaming and ensure the user’s viewing experience, a higher video compression technology is usually
needed to support, reduce the bandwidth requirements, reduce the occupation of storage space, and
accelerate the speed of data transmission.

In video compression, the International Telegraph and Telephone Advisory Committee (CCITT)
issued the first international standard for video compression, H.120, in 1984. From the 1990s to the
early 2000s, The International Organization for Standardization (ISO), the International Electrotech-
nical Commission (IEC), and the International Telecommunication Union Telecommunications
Standards Branch (ITU-T) has successively issued the MPEG (moving picture expert group) series
of standards, H 3261, H.263 and H 3263 [1].

With the development of deep learning, the video compression task based on deep learning has
significantly improved in computing power and data scale. Its video compression method greatly
surpasses the traditional statistical model rule method and transfers the video compression task
from local optimization to end-to-end overall optimization. In recent years, the standard compression
algorithms based on deep neural network technology can be roughly divided into two categories: Video
compression technology based on Region of Interest (ROI) region and video compression technology
based on hypersegmentation technology. The video compression technology based on ROI mainly
identifies the area of interest in the video frame image. Usually, the moving target area is the ROI
area, and the stationary target is the non-ROI area. For the image, the area with high contrast is
generally more attractive to the human eye, which can be used as the ROI area. The ROI region can
reduce the resolution of the non-ROI area, thus reducing the overall resolution of the video. However,
the human eye is difficult to detect and does not affect the overall perception of the final video. The
compression algorithm based on the video hyperdivision technology usually uses the video super-
resolution algorithm for the low-resolution video transmitted in the network to perform real-time
resolution enhancement tasks to achieve the output of high-resolution real-time video flow in the
network. However, considering that real-time video super-resolution reconstruction usually sends all
video frames into the network for tasks, which requires many computing resources and increases
the consumption of resources. By video compression technology based on ROI area and through
the technology of video compression technology, we innovative put forward a unified deep neural
network model, introducing Transformer video super task, detection cutting video interest area, for
video interest area time and space of video super-resolution reconstruction, in order to achieve the
video recognition of the area of interest and interest area resolution enhancement effect, to realize the
eye watching real-time video experience improved at the same time.
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Our main work and contributions are mainly reflected in the following three points:

• First, we proposed a unified neural network structure based on the Transformer, proposed a new
loss function, Seamless fusion of ROI region recognition, and super-resolution reconstruction
of the two tasks.

• Second, organize and open source the first dataset based on ROI region identification and
super-resolution reconstruction tasks.

• Thirdly, a full comparative test was done, demonstrating the effectiveness of the new method:
Compared to the video compression method in the ROI region, our method further saves 15%
of the transmission bandwidth, compared to the compression method of the hyper splitting
technique, our method reduces the processing latency by 10%.

2 Related Work

This part mainly discusses the implementation method of video compression technology based
on ROI area and video compression technology through hyperdivision technology and some crucial
contributions.

2.1 Video Compression Method Based on ROI

When dealing with video coding at low bit rates, the primary objective is to maximize video quality
within limited bandwidth constraints. ROI video compression effectively meets this goal by allowing
for different compression ratios in the ROI and background areas of the video.

In the realm of ROI development, two algorithmic models stand out for their classical significance:
The Itti [2] model and the Graph-Based Visual Salience (GBVS) [3] model. The Itti model, introduced
by Itti et al. in 1998, pioneered the concept of image saliency, laying the groundwork for subsequent
ROI research. In 2006, Harel et al. introduced the GBVS model, which innovatively employed Markov
chains to identify salient areas in images, achieving notably effective results.

As video compression technology has advanced, ROI video compression has evolved beyond
being a standalone method for reducing bit rates. It is now frequently implemented as a strategy
for allocating bit rates, often in conjunction with other video compression techniques. This approach
typically involves applying different compression methods to different video regions. Notable examples
include algorithms based on the proportional shift method [4], the max shift method [5], and wavelet
image compression. Additionally, the Feature Correction two-stage Vector Quantization (FC2VQ) [6]
algorithm, which is integrated with vector quantization coding, is another common application in this
field.

In frame images, areas that contain crucial information significantly influence the overall video
quality, making it essential to enhance the informational content in these regions. This can be achieved
by improving the compression quality in the ROI area, potentially at the expense of the background
quality. This strategy not only elevates the overall video quality under certain bandwidth constraints
but also effectively improves the overall compression ratio by selectively reducing the background
quality, which minimally affects the subjective quality of the video.

The ROI video compression typically involves two critical steps. The first step is the accurate
and automated identification of the ROI. This requires leveraging both prior knowledge and image
processing techniques to determine which parts of the video are most likely to capture viewer attention.
Inaccurate ROI identification can adversely affect the compressed video’s quality. Following the ROI
identification, the second step involves applying different coding or processing techniques to various
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regions based on their importance. Different degrees of compression are achieved for these regions by
controlling the bit rate, thereby enhancing the overall video quality.

2.2 Based on the Video-Based Enhancement Method

2.2.1 Video Insertion

Video Frame Interpolation (VFI) [7,8] technology is a process that enhances the temporal
resolution of videos by inserting one or more transitional frames between two consecutive low-
resolution frames. This technique transforms videos with low frame rates into high frame rate outputs.

Typically, video frame technology is approached as a problem of image sequence estimation [9].
For instance, the phase-based method perceives each video frame as a combination of wavelets. It
interpolates the phases and amplitudes across multiple pyramid scales, yet this method has limitations.
It may not effectively represent information in rapidly moving scenes or videos with complex content.

The VFI techniques employing Convolutional Neural Networks (CNN) has three main types:
Optical flow, kernel, and deformable convolution methods. With advancements in optical flow
networks [10–12], many VFI methods predominantly use these networks. The optical flow-based
method estimates the movement between frames to synthesize missing frames, resulting in more precise
alignment. Kernel-based methods [13–17] do not simply interpolate at the pixel level; instead, they
convolve local areas around each output pixel, preserving local textural details more effectively. The
deformable convolution-based method [18,19], leveraging the flexible spatial sampling of deformable
convolution [20], combines elements of both flow-based and kernel-based methods. It adeptly handles
larger motions and complex textures by extracting more intricate feature details through deformable
convolution.

2.2.2 Video Super-Resolution

Video Super Resolution (VSR) enhances the spatial quality of videos by restoring and transform-
ing low-resolution video sequences into high-resolution counterparts. Contemporary deep learning-
based VSR methods [21,22] typically employ strategies that incorporate spatial features from several
aligned frames. This alignment brings the reference frame into congruence with adjacent frames,
accounting for positional changes of the same objects.

In the earlier stages of VSR development, optical flow often achieved explicit time-frame
alignment. This approach involved various techniques for estimating and compensating for motion,
aligning adjacent frames to target frames, and then integrating features to reconstruct high-resolution
videos. Optical flow, first introduced in 1950, has been a prevalent motion estimation and compen-
sation method. It calculates the pixel motion velocity of moving objects in space on the imaging
surface, typically by distorting image or depth features. However, despite its widespread use, optical
flow calculations are resource-intensive and prone to introducing artifacts in alignment frames due to
potential inaccuracies.

Beyond optical flow-based super-resolution, recent advancements include the introduction of
deformable convolution for implicit temporal feature alignment. For instance, TDAN [23] employs
dynamic, self-learning deformable convolution for feature distortion, enabling adaptive alignment
between the reference frame and each adjacent frame. Similarly, EDVR [24] integrates deformable
convolution within a multi-scale module, utilizing a three-layer pyramid structure and cascading
deformable convolution modules for frame alignment. This approach significantly enhances feature
alignment and, consequently, the overall quality of the super-resolved video.
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2.2.3 Spatio-Temporal Video Super-Resolution

Spatiotemporal video super-resolution (STVSR) [25] aims to enhance both the spatial and
temporal resolutions of low frame rate (LFR) and low resolution (LR) videos. Initially, STVSR was
executed in two distinct stages, involving a combination of Video Frame Interpolation (VFI) and
VSR networks. However, this method was found to be cumbersome and time-intensive, prompting
researchers to explore more efficient solutions.

In 2002, Shechtman et al. [26] pioneered a method that achieved simultaneous Super Resolution
(SR) reconstruction based time and space by conceptualizing dynamic scenes as 3D representations.
This technique, however, necessitated multiple input sequences of varying spatiotemporal resolutions
to create new sequences. Advancing with CNN research, Haris et al. [27] and the team introduced
the STARnet, an end-to-end network that enhances spatial resolution and frame rate. This network
follows a three-step strategy for Space Time-Super Resolution to reconstruct all LR and HR frames.

Building on these advancements, Xiang et al. [28] and colleagues developed a one-stage framework
named ‘Zooming SlowMo’. This framework initially employs deformable convolution for interpolated
frame alignment, then fuses multi-frame features using a deformable convolution network with long
and short-term memory capabilities. Furthering this concept, Xu et al. [29] and the team added a local
feature comparison module to the Zooming SlowMo framework, enhancing visual consistency.

Drawing inspiration from these developments, we have integrated the ROI concept in spatial
video into a cascading unified network. This integration enables simultaneous spatio-temporal super-
resolution specifically for ROI regions, marking a significant stride in the field of STVSR.

3 Method

The RSTT (Real-time Spatial Temporal Transformer) [30] model has innovatively developed an
end-to-end network architecture reminiscent of the cascaded UNet design. This network uniquely
employs spatial and temporal Transformers, seamlessly integrating the modules for spatial and tem-
poral super-resolution within a single framework. It exploits the inherent link between spatial frame
interpolation and video super-resolution, achieving comprehensive spatiotemporal super-resolution
in videos. This approach contrasts traditional CNN-based methods, as it eschews the separation of
spatial and temporal modeling. Consequently, this avoids the redundant extraction of features from
low-resolution videos. When configured with varying numbers of codecs, the RSTT model achieves
a reduction in parameters to varying extents compared to state-of-the-art (SOTA) models, managing
to maintain or even enhance performance efficiency without compromising on processing speed. The
detailed structure of this innovative architecture is illustrated in Fig. 1.

The RSTT network, as illustrated, primarily consists of four encoders, denoted as E(k) where k
ranges from 0 to 3, and their corresponding decoders, D(k). This network processes four consecutive
low frame rate (LFR) and low resolution (LR) frames from a video, ultimately producing seven high
frame rate (HFR) and high resolution (HR) frames through its encoders and decoders.

The encoders within the RSTT network are divided into four stages. Except for E(3), each Encoder
stage comprises a series of Swin Transformer blocks and stacked convolution layers. These Swin
Transformer blocks utilize patch-shifting, non-overlapping windows, as shown in Fig. 2. Specifically,
these blocks segment the NHWC-sized input video frames into non-overlapping windows. Each Swin
Transformer block consists of a Window partition and a Shifted Window partition. Before being
passed to the attention mechanism block, features undergo normalization using Layer Normalization
(LN). They are then sent to the Window partition for local attention calculation within each
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window. The Shifted Window establishes the connection across windows, introducing cross-window
interactions. In the second Swin Transformer block, apart from translating the input features prior
to window partitioning, all components mirror those in the preceding block. This design enables the
Swin Transformer block to capture long-range dependencies across spatial and temporal dimensions
while optimizing computational efficiency. Finally, the outputs of these stacked the Swin Transformer
blocks are downsampled through a convolutional layer with the stride of two.

Figure 1: The RSTT network architecture

Figure 2: Encoder Swin Transformer block structure
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In the RSTT network, after processing the four Low Frame rate and Low Resolution input frames,
each of the four encoders, denoted as E(k), extracts features that are then used to construct a feature
dictionary. This dictionary is the input for the corresponding decoders, D(k). Concurrently, RSTT
employs a Query Builder, which activates after the feature calculation by E(3). This Query Builder
aims to generate a query feature vector labeled Q, essential for interpolating the High frame rate and
High Resolution frames.

For the interpolation of these frames, a specific pattern is followed: The odd-numbered frames are
synthesized using the features processed by E(3), while the even-numbered frames are created using the
averaged features of the adjacent frames. As a result, the network successfully synthesizes a sequence
of seven consecutive High frame rate and High Resolution frames, utilizing the generated feature
vector Q.

Q : =
(

E3,2t−1,
1
2

(
E3,2t−1 + E3,2t+1

)
, E3,2t+1,

1
2

(
E3,2t+1 + E3,2t+3

)
, E3,2t+3,

1
2

(
E3,2t+3 + E3,2t+5

)
, E3,2t+5

)
(1)

The decoder component of the RSTT network mirrors the Encoder in its structure, featuring a
four-stage decoder complemented by a deconvolution layer for feature upsampling. Each decoder,
denoted as D(k), generates the features for each output frame. This is achieved by querying the dic-
tionary, which the Encoder constructs, and leveraging the output from the stack of Swin Transformer
blocks present in the Encoder. The specific design and functionality of the Swin Transformer decoder
are detailed in Fig. 3.

Figure 3: Swin Transformer decoder structure
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In the RSTT network, to produce seven High frame rate and High Resolution frames, each block
in the Swin Transformer decoder performs seven queries. For instance, if each D(k) in the model
comprises three Swin Transformer decoder blocks, the Encoder’s spatiotemporal dictionary undergoes
7 × 3 = 21 queries. This method proves to be more efficient in computation compared to existing
techniques and contributes to a reduction in the model’s size.

The output feature from the final Decoder, D(0), can optionally pass through a reconstruction
module to produce the end frame, as depicted in Fig. 3.

The RSTT model employs the Charbonnier loss function to calculate the discrepancy between
the actual and newly generated frames. This involves computing the square of the difference between
the values of the generated and actual frames, adding a small constant square to this square, and then
taking the square root. The final step is to compute the average of these values. The formula for this
loss function is as follows:

L(ÎH , IH) =
√∥∥∥ÎH − IH

∥∥∥2

+ ε2 (2)

3.1 Region Identification Based on the Transformer

In computer vision, particularly in object detection, the transformer has seen extensive application
in recent years. A standout example is the DETR [31] (Detection Transformer), which employs a
classic Encoder-Decoder architecture. This model uniquely integrates a combined ensemble-based
Hungarian loss. This loss function enforces a distinct prediction for each bounding box through binary
matching. Unlike traditional methods, DETR eliminates the need for non-maximum suppression
(NMS) post-processing steps. It also operates without the prior knowledge and constraints typically
associated with anchor-based systems. By handling the entire objective of end-to-end object detection
within the network, DETR significantly streamlines the target detection pipeline. Its underlying
backbone network is based on a convolutional network, while the Encoder and Decoder are built on
Transformer-based structures. The final output layer of the DETR is a feedforward neural network
(FFN), as illustrated in Fig. 4.

In the DETR network, the feature map of an image, extracted using a CNN backbone, is fed into
the Encoder-Decoder architecture based on the Transformer structure. This network transforms the
input feature map x into a set of object query features. In the prediction layer, a feedforward neural
network (FFN) comprising three linear layers with ReLU (Rectified Linear Unit) activation functions
and a hidden layer is used as the detection head. This FFN serves as the regression branch, predicting
bounding box coordinates, which encode the normalized center coordinates, height, and width. The
predicted class label is then activated using the softmax function.

However, the initialization of the DETR attention module is sparse, leading to prolonged learning
periods and slow convergence, which typically results in extensive training. Additionally, the compu-
tation demand escalates significantly when detecting high-resolution images. This is mainly due to
the Transformer module’s requirement to calculate similarities between each position and every other,
unlike the shared parameters in convolutions that entail frequent computations. Deformable DETR
integrates deformable convolution from DCN (Deformable Convolution Networks) into DETR to
address these challenges. This integration replaces the self-attention in the Encoder and cross-attention
in the Decoder, allowing the attention module to focus on a limited number of crucial sampling points
surrounding a target. This enhancement enables DETR to deliver improved performance, particularly
in detecting smaller targets.
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Figure 4: The DETR network architecture

He et al. [32] built upon the foundations laid by DETR and Deformable DETR, we have developed
TransVOD, a target detector specifically designed for video applications. TransVOD is an end-to-end
object detection system operating on the spatial-temporal Transformer framework. As depicted in
Fig. 5, the TransVOD takes multiple frames as input for a given current frame and directly generates
the detection results for that current frame through its architectural design.

Figure 5: The original TransVOD network

TransVOD is structured around four principal components, each critical in video object detection.
Firstly, the Spatial Transformer is employed for single-frame object detection. It extracts object queries
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and compresses feature representations, creating a memory for each frame. Secondly, the Temporal
Deformable Transformer Encoder (TDTE) is integrated. This component fuses with the memory
outputs from the Spatial Transformer, thereby enhancing the memory with temporal context.

Thirdly, the Temporal Query Encoder (TQE) links objects from each frame along the time
dimension. This linking process is crucial for understanding the temporal dynamics of objects across
different frames. Lastly, the Temporal Deformable Transformer Decoder (TDTD) is used to derive
the final prediction results for the current frame.

The network architecture of TransVOD, as illustrated in Fig. 6, begins with a CNN backbone that
extracts features from multiple frames. These features are then processed through several shared Spatial
Transformer Encoders (STE), with the encoded feature memory subsequently relayed to the TDTE.
This provides essential location cues for the final Decoder’s output. The TDTE’s key innovation lies in
its focus on several pivotal sampling points around a reference point, enabling more efficient feature
aggregation across different frames. Concurrently, the Spatial Transformer Decoder (STD) decodes
the spatial object query.

Figure 6: The network of the TransVOD

On the other hand, the TQE connects the Spatial Object Queries from each frame through a
temporal Transformer. This process aggregates these queries, learning the temporal context across
frames and modeling the interrelationships between different queries. The outputs from the TDTE
and TQE feed into the TDTD, which assimilates the temporal context from different frames to predict
the final output for the current frame accurately.

The original DETR avoids post-processing and employs a single one-to-one labeling rule to match
the STD/TDTD predictions with the actual value using the Hungaria algorithm. Thus, the training
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process of the Spatial Transformer is consistent with the original DETR. The temporal transformer
Uses a similar loss function to predict the target box and category of the two FFN outputs, and the
loss function is as follows:

Laux =
J∑

j=1

[
λcls · Lcls + λL1 · LL1 + λgiou · Lgiou

]
(3)

3.2 Reconstruction Loss

When people watch the video, they only focus on the ROI area, so the overall effect of video
enhancement in other areas could be better. In order to improve the speed of model inference and
realize the optimization of computation quantity, we hope that the model can enhance the video only
for the ROI region.

The RSTT provides us with a perfect backbone. Through the Encoder and Decoder of the
transformer, we realize the modeling of temporal and spatial relations. The modeling information
can be used both to realize the ROI region identification of video or to do SR.

In Fig. 7, we propose a new loss function, combining the ROI loss function proposed in TransVOD
and the loss function of SR proposed in RSTT, to reconstruct the loss function as follows:

L = (1 − α) Lall + αLroi (4)

where, for the loss of the whole graph, for the loss of the ROI, take the constant of 0.5. Through the
loss function of ROI, first guide the attention of the model to the ROI area, and then in the identified
ROI area for SR enhancement, we do under the number of different RSTT backbone models, proved
that the new loss function, not only can bring better SR effect, to some extent, alleviate the image is
too smooth, and can reduce the overall number of the model by 15%, the speed of model inference
increased by 10%.

Figure 7: The ROI_Loss guide
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4 Experiments
4.1 Dataset

The ImageNet VID [33] dataset is a large-scale benchmark dataset in video target detection. It
contains 3862 training videos, 555 verification videos, 937 test videos, and the target object boundary
box information XML file in the video, which contains 30 basic categories, such as aircraft, antelope,
bear bicycle, and motorcycle.

4.1.1 Dataset Generation

In order to make the format of the ROI region loss boot of the dataset consistent, we modified
the dataset based on ImageNet VID. In RSTT training, the whole picture should be randomly
cut to the set size and sent to the network, so the data size during training should be uniform. We
first took the videos in the training set one by one, output the image size of the video frames larger
than seven frames, and recorded the video with the image size of 1920 × 1080 to sep_train list. The txt
file is used for partitioning the training set data.

Read the sep_train list. In the text file, all the videos recorded in the file are downsampled to
obtain the low-resolution images and their lmdb format data, which are saved separately to generate
training set files. The training set file consists of 82 HR images and LR images with the size of 1920
× 1080 videos and their corresponding XML annotation files. Then, read the video with a data set
frame number of more than seven and a resolution of 1280 × 720, and save the original video and the
downsampled video to generate a test set, which consists of 138 HR images and LR images with the
size of 1280 × 720 videos.

4.1.2 ROI

When reading the dataset video frame, the box bounding box region corresponding to the frame
image is loaded simultaneously. Depending on the data type, the high-resolution image is read from
the LMDB database or file system, and the data set XML file is resolved to read the bounding box
information of the corresponding frame image. Because RSTT training needs to cut pictures into
multiple blocks of the same size in the network training, the box area must also be transformed. After
the image is randomly cut, the cropped image and the cut bounding box list are transformed according
to the cropped position and the position of the original box.

When loading the data, in order to improve the model performance, we rotated the image, flipped
it, and performed other data enhancement operations to increase the diversity of the data set. At the
same time, we need to increase the corresponding image box transformation and the corresponding
box adjustment to ensure that they are correct in the image position and size.

For the subsequent calculation of loss for convenience, we also need to generate the mask of the
ROI region. According to the box boundary box of the video frame image ROI, we set the region
setting 0 within the box and the box outside to 1 to generate a mask, extend the generated mask, and
copy it to three channels to align with the image. In the subsequent loss of the ROI area, we only need
to multiply the predicted image and the original image by the ROI_mask to calculate the loss.

We implemented ROI recognition at the edge, compared to method proposed in which first
recognizes the ROI at the cloud server side and then transmits video content at different compression
ratios, our newly proposed computation allocation protocol can achieve two benefits: First, it reduces
the amount of computation at the cloud server side, which can further reduce processing latency on
the cloud server side. Although it increases the amount of computation at the edge side, because of
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our designed end-to-end ROI and SR unified network, the overall amount of computation in the
process is actually reduced. According to our performance tests, the overall computational latency is
reduced by 10%. Second, since ROI recognition and super-resolution are allocated to the edge side, the
cloud server side can lower the overall resolution of the gaming video to the minimum. Compared to
method FRSR (Foveated Rendering Super Resolution) [34], this can save up to 15% in bandwidth, this
is affected by the size of the ROI region. According to our subjective experiments, under the condition
of not affecting user experience, the transmission bandwidth saved is about 10%–15%.

The testbed for our computer graphics project utilized four devices configured as depicted in
Fig. 8: An advanced desktop computer (Intel i7 CPU, RTX 3090 GPU) functioned as the central
cloud server, while a less powerful desktop (Intel i5 CPU, RTX 3060 GPU) acted as the edge server.
To represent an end-user client device, we used a basic laptop (Intel i3 CPU, integrated graphics).
Lastly, an additional laptop was incorporated to provide network connectivity between the cloud
and edge machines. In our simulation environment, the end-to-end delay is 100∼200 ms, that is 10%
improvement compared with method FRSR in the same simulation setting.

Figure 8: Some functions of x

4.2 Training Details

Pytorch was deployed to implement all the trainings. We explicitly modeled the ROI of the video
frame of the training set and detected the ROI region in the LR video frame. During training, the
image was randomly cut into multiple 256,256 blocks, and the box size was changed. Meanwhile, we
also cut the HR picture of the corresponding area to calculate the reconstruction loss. In addition, the
random rotation of 90°, 180°, and horizontal flipping to increase the model’s generalization ability
can help the model detect more targets.
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As Fig. 9 shows, during the training phase, several key parameters were carefully selected to
optimize the learning process and achieve the desired outcomes. The choice of a batch size of 8 was
determined based on considerations of computational efficiency and model stability. A batch size of 8
strikes a balance between utilizing parallel processing capabilities and ensuring that the model receives
a diverse set of samples in each iteration.

Figure 9: The training details

The decision to run the training for a total of 150,000 epochs was driven by empirical experimenta-
tion and iterative model refinement. Extensive testing revealed that this number of epochs allowed the
model to converge to a stable state and attain satisfactory performance on the given task. Additionally,
monitoring training curves and validation metrics supported the choice of this epoch count as an
optimal point for achieving convergence.

The introduction of a newly defined hyperparameter, alpha, set to 0.5, serves the purpose of
controlling the proportion of ROI (Region of Interest) loss during training. This choice was motivated
by the need to strike a balance between emphasizing the importance of regions containing critical
information and maintaining a fair contribution from non-ROI areas. The value of 0.5 for alpha was
found to be optimal through sensitivity analysis and experimentation, ensuring that the model gives
appropriate consideration to both ROI and non-ROI regions in the learning process.

These parameter settings were fine-tuned through a systematic process of experimentation and
evaluation, aiming to achieve optimal model performance while addressing computational constraints
and maintaining a balanced consideration of key regions in the input data.

Experiments on the GPU using the Adam optimizer to optimize the network, thus minimizing
the loss value of the network training. The initial learning rate was set to 210 (−4). Using a significant
learning rate swings the weight gradient back and forth. Reconstruction loss during training does not
reach the global minimum. Using the cosine annealing learning rate function to gradually reduce the
learning rate, the learning rate is reset to the initial learning rate at the end of each cycle; when the
learning rate reaches at 400000, 800000, 1200000 and 1600000 iterations. Also, at each restart point,
learning rates will all be reset to half of the initial learning rate, this calculation method helps us to
approach the global optimum gradually.
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4.3 Evaluation Indicators

In selecting experimental evaluation indicators, we compare the performance of the test set images
and the images under different methods and parameter Settings on the Y channel. Peak signal-to-noise
ratio (PSNR) (unit: DB) and structural similarity (Structure Similarity, SSIM [35]) are two indicators
commonly used to evaluate this performance quantitatively.

PSNR measures the image reconstruction quality by calculating the error between the correspond-
ing pixels, and the higher value of the peak SNR indicates the smaller the image distortion, i.e., the
reconstructed image is more similar to the original high-resolution image. SSIM comprehensively
measures the similarity of images from three perspectives: Brightness, contrast, and structure.

(1) PSNR

PSNR is an engineering term that expresses the ratio of the maximum possible power of a signal
to the power of destructive noise that affects the accuracy of its representation. Because many signs
have a wide dynamic range, the peak signal-to-noise ratio is expressed in logarithmic decibel units.

To calculate PSNR, we must know the value of MSE (Mean Squared Error) first. Two m × n
monochrome images I and K, if one is a noisy approximation of the other, then their mean square
error is defined as:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I (i, j) − K (i, j)]2 (5)

When the difference between the real value y and the predicted value f (x) is greater than 1, the
error will be amplified; When the difference is less than 1, the error will be reduced, which is determined
by the square operation. MSE will give a larger punishment for larger errors (>1), and a smaller
punishment for smaller errors (<1). The concept of MSE is well known, which is also a common
loss function. And PSNR is obtained by MSE, the formula is as follows:

PSNR = 10 × log10

(
MAX2

I

MSE

)
= 20 × log10

(
MAXI√

MSE

)
(6)

MAXI is the maximum value that represents the color of the image point. If each sampling point
is represented by 8 bits, then it is 255. The numerator in log is the maximum value representing the
color of image points. If each sampling point is represented by 8 bits, it is 255. The larger the PSNR,
the better the image quality.

(2) SSIM

The image quality assessment, the effect of local calculation of the SSIM index is better than
global. First, the statistical features of the image are usually unevenly distributed in space; second, the
distortion of the image also varies in length; third, within an average viewing distance, people can only
focus on one area of the picture, so the local processing is more in line with the characteristics of the
human visual system; fourth, the local quality detection can obtain the mapping matrix of the spatial
quality change of the picture, and the result can be used in other applications.

SSIM (x, y) =
(
2μxμy + c

) (
σxy + c2

)
(
μ2

x + μ2
y + c1

) (
σ2

x + σ2
y + c2

) (7)
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In formula (7), μx and μy represent the average value of x and y, respectively. σ x and σ y represent
the standard deviation of x and y, respectively. σ xy represent the covariance of x and y. c1 and c2 are
constants respectively to avoid system errors caused by 0 denominator.

4.4 Compared with the Effect of Doing SR

We downsampled the frame images of the videos in the data set, obtained the LR images,
performed the super-resolution reconstruction of the LR images, and applied our method to the LR
images, which can get the visual qualitative contrast of the low-resolution images only SR and the
effect of our method. We selected 138 animal videos moving in front of the stationary camera. We
extracted the fifth frame image of the crocodile crawling video as an example, and the contrast effect
is shown in Fig. 10.

Figure 10: The contrast effect

It can be seen that compared to the whole LR image SR operation, our method when applied
to the frame image, image intercepts the interest area clearly than the original LR and restores more
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texture details and edge contour, but the non-interest area did not do super processing, so the interest
area still fuzzy and artifacts, reflected in the figure can see more clear crocodile skin texture. However,
when observing the overall effect of the image through the human eye, because the human eye will pay
more attention to the crocodile area when observing the image, the observation effect of the human
eye is not much different from the image effect after direct SR operation on the whole image.

4.5 Subjective Experiments

We also used subjective quality evaluation to measure model quality to analyze the end-to-end
performance of our model, especially the user’s perception of the visual quality and smoothness of
video frames and whether there was any delay in application, etc. We chose two live broadcasts of
different natures, game broadcasting and shopping broadcasting, which are provided to the client
through the Internet. To avoid server overload, we only allow one client to connect to the server and
control each live broadcast time within 30 min. We invited 10 participants with an age distribution
ranging from 20 to 50 years. Each participant watches two live videos in the experiment, in which the
original video is played 10 min before the live game, the video of the RSTT model in the first 10 to
20 min, and the video after the ROI in the next 10 min; the video after the ROI in the first 10 min,
the video of the RSTT model in the next 10 to 20 min, and the original video in the next 10 min.
Participants will be kept from the handling of the live video. At each live broadcast, participants need
to score the effect of the live video every 5 min and score from 1 to 5 according to ACR (Absolute
Category Rating). One indicates that the live video is naughty, and there is a lot of damage, blur, and
lag. A score of 5 indicates the quality of live video without any noticeable lag or distortion.

Table 1 summarizes our mean opinion score (MOS) from the 10 participants. The results showed
that the ROI overscore-based model significantly improved the perceived quality of participants in
all scenarios. For example, for the live game, RSTT after live video and introducing ROI model after
the video effect are significantly higher than the original video MOS 3.1 (average), at the same time
because the RSTT model in real-time video processing consumption, causing some live video lag, so
our method will MOS from using RSTT model of 3.9 (good) to 4.3 (very good). The MOS also reached
4.4 in our model (perfect). The improvement in inference efficiency brought about by the new method
is mainly due to the guidance of ROI_loss. To test our idea, we performed the ablation experiments.

Table 1: Results of the subjective study

Live video Original video RSTT ROI

The game live 3.1 3.9 4.3
Shopping live 2.8 4.1 4.4

The experimental design performed super-resolution reconstruction of the test images using a
benchmark model without introducing ROI_loss and an ROI_loss-guided model, respectively. We
evaluated the effect of the new method by calculating the PSNR, PSNR-Y, SSIM, and SSIM-Y values
between the processed images and the original images. The evaluation indicators are considered higher
values to indicate better results. Tables 2 and 3 below show the index comparison of the whole map
region and the ROI region between the benchmark model and the ROI_loss guided model, respectively.
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Table 2: Compares the indicators for the full map region

Model PSNR/dB PSNR-Y/dB SSIM/dB

BaseLine 33.561162 35.194215 0.898359
Loss guide 33.66501 35.291742 0.898814

Table 3: Index comparison of the ROI regions

Model PSNR/dB PSNR-Y/dB SSIM/dB

BaseLine 31.466041 33.176593 0.862325
Loss guide 31.528319 33.226039 0.863035

Looking at the data in the table, we can find that the Los-guided model is higher than the
benchmark model in the whole map area and ROI area, which indicates that the Los-guided method
has some advantages in noise suppression, brightness information retention, and image structure. The
ROI-guided model can focus more on the ROI region of the image, which can reduce the redundant
computation and processing of non-ROI regions, thus improving the inference efficiency while being
reflected in metrics such as PSNR and SSIM. Fig. 11 shows the effect comparison diagram of the
ablation experiment.

Figure 11: The effect comparison diagram of the ablation experiment
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4.6 Limitations

The model’s advantages in this paper must be addressed, but simultaneously, the model still has
relative limitations, such as long training time. As with other Transformer-based methods, the training
time required for the RSTT is relatively long. Two Nvidia Quadro RTX 6000 cards will take more than
25 days to converge. Meanwhile, the RSTT lacks the flexibility to interpolate at arbitrary timestamps.
Unlike TMNet, the model needs more flexibility to interpolate intermediate frames within arbitrary
timestamps because the query Q defined in RSTT is fixed. However, a deep study of the model can
be achieved by slightly rewriting the query Q of the decoder D3. We only need to query if we want to
interpolate n-1 frames between two frames, such as E3, 2t − 1 and E3, 2t + 1. In this way, the flexibility
of RSTT model interpolation at arbitrary timestamps.

5 Conclusion

We define a new video-related task: To identify the region of interest in the video and achieve
overdivision for the region of interest to compress the video transmission bandwidth and improve
the video enhancement efficiency without affecting the user’s perception. We modified the data set
adapted to this new task based on the image video. We combined two state-of-the-art transformer
models of video object detection and video hypersegmentation. We realized a new unified model that
can complete both tasks at the same time, achieving the optimal ratio of bandwidth compression and
video enhancement efficiency. In future, we consider to integrate temporal and spatial information for
joint spatiotemporal modeling. By designing models capable of simultaneously capturing inter-frame
relationships and spatial features, enhance super-resolution effects in a more comprehensive manner.
This involves a deep understanding of spatiotemporal characteristics and appropriate model design.
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