
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.049233

ARTICLE

EG-STC: An Efficient Secure Two-Party Computation Scheme Based on
Embedded GPU for Artificial Intelligence Systems

Zhenjiang Dong1, Xin Ge1, Yuehua Huang1, Jiankuo Dong1 and Jiang Xu2,*

1School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
2School of Computer, Nanjing University of Information Science and Technology, Nanjing, 210044, China

*Corresponding Author: Jiang Xu. Email: 01136@nuist.edu.cn

Received: 31 December 2023 Accepted: 28 March 2024 Published: 20 June 2024

ABSTRACT

This paper presents a comprehensive exploration into the integration of Internet of Things (IoT), big data analysis,
cloud computing, and Artificial Intelligence (AI), which has led to an unprecedented era of connectivity. We delve
into the emerging trend of machine learning on embedded devices, enabling tasks in resource-limited environ-
ments. However, the widespread adoption of machine learning raises significant privacy concerns, necessitating
the development of privacy-preserving techniques. One such technique, secure multi-party computation (MPC),
allows collaborative computations without exposing private inputs. Despite its potential, complex protocols and
communication interactions hinder performance, especially on resource-constrained devices. Efforts to enhance
efficiency have been made, but scalability remains a challenge. Given the success of GPUs in deep learning, lever-
aging embedded GPUs, such as those offered by NVIDIA, emerges as a promising solution. Therefore, we propose
an Embedded GPU-based Secure Two-party Computation (EG-STC) framework for Artificial Intelligence (AI)
systems. To the best of our knowledge, this work represents the first endeavor to fully implement machine learning
model training based on secure two-party computing on the Embedded GPU platform. Our experimental results
demonstrate the effectiveness of EG-STC. On an embedded GPU with a power draw of 5 W, our implementation
achieved a secure two-party matrix multiplication throughput of 5881.5 kilo-operations per millisecond (kops/ms),
with an energy efficiency ratio of 1176.3 kops/ms/W. Furthermore, leveraging our EG-STC framework, we achieved
an overall time acceleration ratio of 5–6 times compared to solutions running on server-grade CPUs. Our solution
also exhibited a reduced runtime, requiring only 60% to 70% of the runtime of previously best-known methods
on the same platform. In summary, our research contributes to the advancement of secure and efficient machine
learning implementations on resource-constrained embedded devices, paving the way for broader adoption of AI
technologies in various applications.

KEYWORDS
Secure two-party computation; embedded GPU acceleration; privacy-preserving machine learning; edge
computing

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.049233
https://www.techscience.com/doi/10.32604/cmc.2024.049233
mailto:01136@nuist.edu.cn

4022 CMC, 2024, vol.79, no.3

1 Introduction

With the rapid development of information technology, private data is experiencing explosive
growth on the internet, termed as the new oil of the data age. Artificial Intelligence (AI) has emerged
as a significant tool to tap into the potential of this data. While centralized machine learning
based on cloud computing has been successful in various fields, it faces challenges in latency, data
privacy, and model confidentiality. Edge computing [1] and edge learning have emerged to address
these issues. They utilize embedded devices to execute machine learning tasks locally, significantly
reducing communication latency. According to a GSMA report [2], the global number of Internet
of Things (IoT) connections is expected to reach 24.6 billion by 2025. The integration of IoT, big
data, cloud computing, and AI has brought unprecedented connectivity and data utilization. Massive
information generated by smart devices, when analyzed, reveals patterns and trends providing deep
insights into user behavior and industrial development. Utilizing embedded devices for machine
learning has become an increasingly popular trend, enabling the execution of machine learning tasks
in resource-constrained environments. Edge computing is a hierarchical distributed cloud-edge-device
AI computing architecture. Data is processed locally or at the closest edge computing server, requiring
only essential model parameter updates to the cloud server during local execution of machine learning
model training and prediction, thus greatly reducing communication delays. As machine learning
and neural network applications become more widespread, the use of private data involving sensitive
information and industrial details for training models has intensified public concerns about privacy
breaches, leading to stringent data protection laws such as the European General Data Protection
Regulation (GDPR) [3].

Against this backdrop, to ensure the safety of AI tasks, a variety of Privacy Enhancing Technolo-
gies [4–6] have been proposed. Among them, Secure Multi-Party Computation (MPC/SMPC) [6–9] is
an emerging cryptographic technology that allows multiple participants to engage in collaborative
computation while preserving the privacy of their individual data. The essence of MPC lies in its
underlying encryption protocols that distribute the computational load among parties, ensuring that
no single party can access the input information of others. During the process of protecting machine
learning training data and models, MPC ensures that while information is shared, individual privacy
is not compromised, meaning that during the computation, each party only knows the result and
remains unaware of input data of other parties. However, the performance of MPC protocols is
often less than ideal due to their involvement in complex computations and frequent communication
between participating parties. Currently, enhancing the performance of MPC is focused mainly on two
directions: On one hand, optimizing algorithms and reducing the number of communications in secure
protocols to decrease computational and communication costs; on the other hand, employing hard-
ware acceleration technologies, such as dedicated encryption processors, to improve computational
efficiency.

Currently, many research efforts [10,11] are exploring algorithmic optimization [12–15] and
performance enhancement of MPC protocols, aiming to advance their practical application through
efficient algorithms and hardware acceleration. Recently, in response to its computationally intensive
nature, some innovative studies have begun to utilize Graphics Processing Units (GPUs) to accelerate
the computational process of MPC. Frederiksen et al. [16] presented a new protocol for mali-
ciously secure two-party computation using a GPU as a massive SIMD (Single Instruction, Multiple
Data) device. Chen et al. [17] proposed the first GPU-based secure machine learning framework.
Srinivasan et al. [18] has implemented a method to accelerate convolution operations using GPUs, then
continuing the remaining computations on CPUs. Tan et al. [19] has customized specific secure three-
party computation protocols for its applications, adapting to the parallel processing capabilities of

CMC, 2024, vol.79, no.3 4023

GPUs. Watson et al. [20] utilized the CUTLASS library to implement parallel computation of general
matrix multiplication (GEMM) and convolutional kernels, significantly boosting the computational
efficiency of MPC on GPUs. Meng et al. [21] explored distributing the computation of a single party
among multiple GPU.

However, these implementations are mostly focused on server-level or desktop-level GPUs, which
typically possess higher computational capabilities and more resources, and thus are not entirely
suitable for resource-constrained and low-power edge computing environments. Edge computing often
relies on embedded GPUs, which to meet the requirements of low power consumption and cost-
effectiveness, usually trim some advanced features such as tensor cores. Therefore, while the existing
GPU-accelerated MPC solutions have made significant strides in improving computational efficiency,
they are not directly applicable to embedded GPU environments. With the continuous development
of IoT technology, high-performance, low-power embedded GPUs are being widely applied in edge
computing devices. These devices, despite their low cost, have computing capabilities comparable
to desktop CPUs, becoming a vital force in supporting edge intelligence. Moreover, many research
efforts [22–24] have focused on leveraging the parallel capabilities of embedded GPUs to accelerate
cryptographic algorithms. Hence, utilizing embedded GPUs to accelerate MPC-based AI tasks on
edge devices is a feasible and practical approach.

1.1 Contributions and Paper Organization

The widespread use of machine learning raises privacy concerns, prompting the development
of privacy-preserving techniques. MPC is one such technique, allowing collaborative computations
without exposing private inputs. Despite MPC having potential, its complex protocols and com-
munication interactions lead to lower performance, especially on resource-constrained devices. The
point of this article is to apply the embedded GPU to the acceleration of the Secure Two-party
Computation Scheme, called embedded GPU-based Secure Two-party Computation (EG-STC). Our
various optimization methods offer more efficient and secure acceleration of machine learning model
training compared to other platforms.

The contributions of this paper are fourfold:

• Firstly, we analyze the complexity of each calculation step and categorize them into two
parts: Simple calculations and complex calculations. Simple calculations such as addition and
subtraction can be performed on the CPU, and complex calculations such as multiplication can
be performed on the GPU, so that it can be effectively to reduce the overhead caused by partial
data communication, only part of the data needs to be transmitted between the CPU and GPU
for subsequent operations.

• Secondly, we will first compress the matrix data that needs to be transmitted between the CPU
and the GPU before transmitting it. Before transmitting, we first determine whether the matrix
change value that needs to be transmitted is sparse. If it is sparse, we only need to transmit the
change value and use compressed sparse rows format (CSR) to store it, and then transmit the
compressed changed values, or directly transmit the original data if it is not sparse.

• Thirdly, we further improve performance by overlapping communication and calculation.
Through observation, we found that the processing of subsequent layers depends on the forward
propagation of the current layer, so the forward propagation reconstruct step of the next layer
cannot be combined with the forward propagation GPU operation of the current layer. But
the reconstruct step in back propagation does not need to wait for subsequent layers, so it
can be performed together with the propagation of the next layer in the pipeline. For the back

4024 CMC, 2024, vol.79, no.3

propagation reconstruct step, part of the calculation depends on the forward propagation GPU
operation step of the same layer, so these calculations can be kept in the back propagation
reconstruct step, and the other part of the calculation depends on the next layer The result
is therefore assigned to the back propagation GPU operation step. Therefore, the forward
propagation reconstruct step of the current layer can overlap with the backward propagation
reconstruct step of the previous layer.

• Finally, we have further optimized the calculation on the CPU and the calculation on the
GPU. We use the advanced random number generator MT19937, which can generate random
numbers concurrently in multiple threads and ensure thread safety. According to the structural
characteristics of embedded GPUs, we experimentally select the fastest batch processing block
size and thread and block configuration method.

The rest of our paper is organized as follows. Section Preliminaries explains some preliminaries
including some cryptographic primitives, secure edge learning, and GPU acceleration and so on.
Section Methodology describes the proposed the insights and strategies of our system implementation.
Section Performance Evaluation performs our optimized implementation and compares it with related
works. Section Conclusion concludes the paper.

2 Preliminaries
2.1 Cryptographic Primitives

Threat Model. According to the behavior of adversaries, security models of MPC protocols can
be categorized into semi-honest, malicious, and covert security models. In the semi-honest security
model, an adversary follows the protocol description but attempts to infer private data information
of other participants from the protocol output records. In the malicious security model, an adversary
is not bound by the protocol constraints and can execute various attacks, such as sending arbitrary
messages, prematurely interrupting protocol execution, or inputting incorrect data sets. The covert
security model falls between the semi-honest and malicious security models, presenting a more
practically applicable security model that achieves a better balance between security and performance.
It can detect malicious behaviors of adversaries with a certain probability. In this paper, our system
falls under the semi-honest security model, assuming that all parties (servers) will comply with the
protocol execution. The system hardware architecture comprises a CPU as the main processor and
an embedded GPU as the coprocessor. All parties communicate with each other through the CPU.
Consequently, our system is suitable for use in both local and wide area networks. Through the
underlying security protocol implementation provided by our system, we can ensure the security of
upper-layer applications or program modules. In this paper, we have successfully accomplished several
secure AI tasks, including operations involving convolutional neural networks.

Secret Sharing. Secret sharing (SS) is one of the basic primitives in MPC, with its concept initially
proposed by Shamir [25] and Blakley [26], respectively. Secret sharing involves the input sharing
(called Share() function), computation, and secret reconstruction (called Reconstruction() function)
phases of secret data. In the threshold secret sharing scheme attributed to Shamir, data holders divide
the secret data S into multiple secret shares in some manner, and the original secret data can be
reconstructed only when a sufficient number of secret shares are combined. Let n denote the number
of participating parties, and t denote a bound on the number of corrupted parties. In the case of
t < n/2, it is referred to as an honest majority; for t ≥ n/2, it is termed a dishonest majority.
Secret sharing protocols have low overhead, are straightforward to implement, and exhibit high
computational efficiency, making them widely applied in MPC protocols. However, their drawbacks

CMC, 2024, vol.79, no.3 4025

include the need for generating and storing numerous random numbers, high communication costs,
and the requirement for point-to-point secure channels for transmitting secret shares.

Additive Secret Sharing. The linear secret sharing (LSSS) MPC protocols primarily employ three
secret sharing schemes: Shamir, additive, and replicated. These secret sharing schemes are mainly
defined over field � but can also be extended to the ring Zn, where n = 2k and k = 32 or 64.
In our work, k = 64. For secret data x ∈ Zn, let < x >i represent the secret sharing shares, then
x = ∑t

i=1 < x >i, where < x >i ∈ Zn, and t represents the minimum required number of shares. In
our work, we employ the 2-out-of-2 additive secret sharing scheme. For secret data x on the ring, a
random number r is chosen such that r ∈ Zn, Set < x >1 = r and < x >2 = x − r, ensuring that
< x >1 + < x >2 = x.

Beaver Multiplicative Triples. Beaver triples [27], introduced in 1991, are pivotal in secure mul-
tiplication computations within Multi-Party Computation (MPC) using secret sharing. They enable
collaborative computation of the product of private values while preserving privacy. Each triple com-
prises three elements (a, b, and c), allowing two parties to jointly compute a×b = c without exchanging
sensitive information. The significance of Beaver triples lies in their role in secure multiplication,
ensuring confidentiality in scenarios like cryptographic protocols and privacy-preserving data analysis.
Their incorporation into MPC schemes enhances the security of multi-party computations, facilitating
complex operations while safeguarding the privacy of individual inputs. They typically encompass the
following two phases:

(1) Offline Phase (Preprocessing Phase):

In this preparatory stage, random numbers (a, b, and c) are chosen such that c = a × b within
field �. All participants P1, P2,..., Pn generate additive secret sharing shares < a >i, < b >i, < c >i,
where 1 ≤ i ≤ n, and each of < a >i, < b >i, < c >i are random numbers in field �.

(2) Online Phase:

Each participant Pi possesses additive secret sharing shares < x >i and < y >i of their respective
secret data x and y. Participant Pi locally computes < x >i − < a >i and < y >i − < b >i

and broadcasts these intermediate values to other participants. Upon receiving these broadcasted
shares, the others aggregate them, deriving x − a and y − b. They then compute zi = (x − a) ×
bi + (y − b) × ai + ci using the available shares. Ultimately, in the secret data reconstruction phase, by
summing up each zi and adding (x − a) × (y − b), they successfully reconstruct x × y.

2.2 Secure Edge Learning

Privacy-Preserving Edge Learning. Privacy-preserving edge learning is an efficient and privacy-
focused computing framework with multi-layer collaboration, performing model training and infer-
ence at the edge layer. It balances local privacy data processing with global model updating. Locally,
it processes data at the source (e.g., edge devices) to train local machine learning models, effectively
protecting data privacy. Meanwhile, edge devices exchange local model-related information (like model
parameters) with cloud computing centers or other edge devices, using encryption or obfuscation
methods for model updates and aggregation, forming a global model. This approach ensures that
neither the cloud nor other edge servers can infer the content of local private data, offering robust
privacy protection. By conducting neural network model training directly on edge devices, the
framework aims to reduce operational latency and mitigate the risks of privacy data leakage. In
model design, reducing neural network parameters is crucial for devices with limited computing
power and memory to achieve high precision and minimize memory use and latency. For hardware
acceleration, integrating resources such as GPUs and CPUs, as demonstrated by NVIDIA [28] GPUs,

4026 CMC, 2024, vol.79, no.3

along with parallel programming platforms like CUDA [29], maximizes the effectiveness of hardware
acceleration.

2.3 GPU Acceleration

NVIDIA Jetson Nano. The NVIDIA Jetson Nano [30] is a powerful single-board computer
launched by NVIDIA, specifically designed for edge computing and AI applications. As shown in
Fig. 1, it displays the main components of the Nano. The Nano is built-in with a quad-core ARM
Cortex-A57 CPU, sharing 4GB LPDDR4 memory with the GPU, ensuring a balanced computing
environment for various applications. The Nano utilizes NVIDIA Maxwell GPU architecture, fea-
turing one Streaming Multiprocessor (SM) with data parallel processing capabilities and containing
128 CUDA cores. NVIDIA provides a comprehensive software stack, including the JetPack SDK,
which contains CUDA-X AI libraries for accelerated computing. Additionally, the Nano is designed
with power efficiency in mind, consuming only a few watts of power while delivering exceptional AI
processing capabilities. The Nano is widely applicable due to its low power consumption and compact
size, making it particularly suitable for deployment in edge devices such as smart cameras, drones, and
other IoT devices requiring on-device AI processing.

Figure 1: Main components of NVIDIA Jetson Nano

CUDA. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model by NVIDIA. It allows developers to utilize NVIDIA GPUs parallel computing
capabilities for accelerating general computing tasks. This architecture adopts the SIMT (Single
Instruction, Multiple Threads) model, breaking down large-scale problems into smaller ones for
simultaneous GPU processing. The many processing units of GPU execute the same instruction
concurrently, enhancing computational performance. CUDA includes memory types like global,
shared, and registers. Optimizing memory access patterns in GPU memory hierarchy enhances
performance. CUDA supports languages such as C/C++, Java, and Python. NVIDIA provides tools
like the CUDA Toolkit, CUDA compiler (nvcc), and runtime libraries for debugging, performance
analysis, and optimization on GPUs. CUDA enables efficient GPU parallel code writing, widely
used in scientific computing and deep learning, offering computational support for a broad range
of applications. Intensive tasks like matrix operations and numerical simulations see significant
performance improvements through CUDA.

The Communication of GPGPUs. GPGPU communication is an integral aspect of heterogeneous
computing, where both CPUs and GPUs collaborate rather than operating in isolation. In this

CMC, 2024, vol.79, no.3 4027

paradigm, a single GPU alone cannot handle all computational tasks independently; instead, the
CPU orchestrates and schedules these operations. The CPU, termed the host, and the GPU, providing
acceleration, known as the device, each possess their dedicated DRAM and are interconnected via the
PCIe bus. The GPU’s storage space is referred to as VRAM (Video RAM). Notably, communication
between these devices with GPUs necessitates involving the CPU in data transfers.

In our research, we employ MPI (Message Passing Interface) to manage communication between
parallel programs. MPI, a standard and library for developing parallel applications, streamlines
communication by exchanging messages between distinct processes, enabling collaboration among
multiple processes. It furnishes a suite of standard library functions catering to message passing,
process management, and collective communication. Each process operates within its own address
space and communicates through a unique rank identifier. MPI accommodates parallel computing
with numerous processes, capable of running on the same or different networked machines. The library
provides essential message-passing functions such as MPI_Send and MPI_Recv for point-to-point
communication, further supporting asynchronous communication and non-blocking operations to
augment performance and efficiency. Widely adopted in distributed computing environments, MPI
plays a pivotal role in large-scale, high-performance parallel computing.

2.4 Matrix Compression

CSR. Compressed Sparse Row (CSR) is a sparse matrix storage format designed to efficiently
represent matrices with a significant number of zero elements. The fundamental idea behind CSR
is to store only the non-zero values of the matrix along with their corresponding column indices,
while the row information is represented implicitly through a row pointer array. The key steps for
implementing CSR involve extracting the non-zero elements and their column indices, computing
row pointers to denote the starting position of each row in the value and column index arrays, and
storing these arrays compactly. This format is particularly advantageous for sparse matrices, offering
reduced storage requirements and more efficient matrix-vector multiplication operations. The CSR
representation is widely used in numerical computations and linear algebra algorithms, contributing
to improved computational efficiency when dealing with large, sparse datasets.

3 Insights and Methodology

Multi-party computing divides the data into multiple servers. Each server contains only a part of
the encrypted data to prevent data leakage. Unfortunately, the more participants, the more obvious
the performance decline, which is due to the increased cost of computing and communication costs. In
recent years, there have been many work studies applying GPU in high performance computing and
machine learning. As the most widely used accelerator in machine learning, GPU has been used for the
performance acceleration of two-party computation. However, applying GPUs to machine learning
training in secure multi-party computation introduces potential challenges, including increased data
transfer and communication overhead, adaptability of algorithms to GPU architectures, concerns
regarding privacy and security and so on. To address these issues, this section details a holistic
approach that considers factors such as algorithmic complexity, secure communications, and potential
information leakage risks, emphasizing a careful balance between performance gains and security
considerations. The layer architecture of our scheme is shown in Fig. 2. The device layer abstracts
GPU-specific code, the protocol layer implements various MPC protocols along with their secret
sharing schemes and adversary models, while the application layer employs these protocols for high-
level computations in an undifferentiated manner.

4028 CMC, 2024, vol.79, no.3

Figure 2: The layer architecture of EG-STC

3.1 Optimizing Two-Party Interactions

3.1.1 Two-Party Calculation Optimization

For safe machine learning details based on two calculation, we chose to illustrate the approach
using the machine learning method of Multi-Layer Perceptron (MLP) neural networks and Modified
National Institute of Standards and Technology database (MNIST) dataset as an example. We can
observe the offline stage data distribution step and the last calculation step spent the most time, so
we can try to use GPU to accelerate these steps. Below are details on how we can leverage GPU
acceleration for these specific steps:

Early Data Distribution: 1) Utilize the parallel processing power of GPU for data preprocessing
tasks. Tasks like normalization, resizing, or augmentation can be performed efficiently on GPU,
reducing the time spent on preparing the data for training. 2) Leverage GPU parallelism for batch
processing. Processing multiple batches simultaneously on the GPU can enhance data distribution
efficiency.

Final Calculation Step: 1) Ensure that the layers of the MLP are parallelized effectively on the
GPU. Modern deep learning frameworks automatically distribute computations across GPU cores,
but optimizing the model architecture can further enhance parallel processing. 2) Experiment with
mixed precision training on GPU. By using lower precision data types, the training process can
potentially be accelerated without sacrificing too much model accuracy. 3) Monitor and optimize
GPU memory usage. Ensure that the GPU memory is efficiently managed during training to prevent
unnecessary overhead.

Additional Considerations: 1) Manage GPU resources effectively, especially when dealing with
large datasets. This includes optimizing the data loading pipeline to keep the GPU fed with data. 2)
Experiment with batch sizes to find the optimal balance between computation efficiency and memory
usage. Larger batch sizes often lead to more efficient GPU utilization. By implementing these GPU
acceleration strategies, you can significantly reduce the time spent on the data distribution step and
the final calculation step, thereby improving the overall efficiency of training an MLP neural network
on the MNIST dataset.

CMC, 2024, vol.79, no.3 4029

The principle of implementing matrix multiplication on GPUs using additive secret sharing
and multiplication triplets primarily relies on decomposing the involved matrices through additive
secret sharing. In this process, a matrix X is divided into multiple shares, for instance, < X >1,
< X >2, . . . , < X >n, such that the sum of these shares equals the original matrix X. This allows
for individual processing of each share without revealing information about the original matrix.
Additionally, the concept of multiplication triplets plays a crucial role. In the preprocessing stage, a set
of random matrix pairs (A, B, C) is generated, where C is the product of A and B. These triplets are used
during the multi-party computation to facilitate calculations without directly handling the original
data. When the multiplication of two secret matrices X and Y is required, they are first decomposed
into shares of additive secret sharing. Subsequently, each party calculates the difference matrices
< e >i = < X >i − < A >i and < f >i = < Y >i − < B >i and exchanges these matrices among the
participants. Leveraging the high parallel processing capability of GPUs, each participant can quickly
compute their respective partial products and sums. Ultimately, by combining these partial products,
the product of the secret matrices X and Y can be reconstructed. The advantage of this method lies
in its combination of the efficiency of GPUs with the privacy protection characteristics of additive
secret sharing and multiplication triplets. Through this approach, complex matrix multiplication
operations can be securely and efficiently performed even in distributed and potentially untrusted
environments. This is particularly useful in scenarios that require processing large volumes of data
with strict privacy and security requirements, such as financial analysis, medical data processing, and
secure multi-party computation. Additionally, this method significantly reduces computation time
and resource consumption when handling large datasets compared to traditional secure computing
methods, thereby enhancing overall efficiency.

Algorithm 1: Offline stage: Generation of multiplicative triples (a, b, c)
Output: (a, b, c) → [< a >0, < a >1], [< b >0, < b >1], [< c >0, < c >1];

Step(1):
1: for i = 0 to 1 do
2: < a >i= intRand(0, Rand_MAX);

< b >i= intRand(0, Rand_MAX);
3: end for

Step(2):
4: a = ∑1

i=0 < a >i;
b = ∑1

i=0 < b >i;
Step(3):

5: CopyHtoD(gpu_a, a, row1 × col1);
CopyHtoD(gpu_b, b, row2 × col2);

6: gpu_c = GPU_Mul(a, b);
7: CopyDtoH(c, gpu_c, row1 × col2);

Step(4):
8: for i = 0 to row1 × col2 do
9: < c[i] >1= intRand(0, Rand_MAX);
10: < c|i| >2= c|i|− < c|i| >1;
11: end for

Since two-party computing includes offline and online parts, GPU acceleration can also be
divided into offline and online parts. For the offline part, the goal is to prepare encrypted data for
both servers. As shown in Fig. 3, the user inputs matrix X and matrix Y , and then performs various

4030 CMC, 2024, vol.79, no.3

processing on these two matrices in the offline part. Matrix X is divided into matrices < X >0 and
< X >1 and matrix Y is divided into matrices < Y >0 and < Y >1, where matrix X >0 and < Y >0 is
randomly generated and where <> is used to represent the input secret sharing value. This step only
takes a short time. a and b in the randomly generated triplet (a, b, c) are divided into < a >0, < a >1

and < b >0, < b >1, respectively, this step takes a very short time, and among them the matrix c is
obtained by multiplying them. This step takes a long time, accounting for more than 90% of the total
offline time. This step includes dense matrix multiplication calculations that can be accelerated using
GPUs. Algorithm 1 shows the entire process of generating multiplication triples and spliting them.
After completing this step, the data with index 0 is distributed to server 0, and the data with index 1 is
distributed to server 1.

Figure 3: Data preparation stage and part of the data reconstruction process

For the online part of the calculation, the matrix multiplication operation still takes up a large
proportion of the time. The main calculations are shown in Algorithm 2. The function intRand()
in steps 2 and 9 serves the purpose of generating random numbers of integer type. The functions
CopyHtoD() and CopyDtoH() facilitate the transfer of data between the GPU and CPU and the
function GPU_Mul() indicates performing multiplication operations on the GPU. The calculations
related to the online part are the step (4) and (5) in Algorithm 2. The calculation amount of step (4)
is small, and the calculation amount of step (5) is large, so the CPU is used to process step (4) and the
GPU is used to process step (5). Because the GPU is used to process step (5), the matrices e, f , < X >i,
< Y >i, and < c >i need to be sent to the GPU. Therefore, we transplant the matrix multiplication
operation to the GPU and divide the matrix into n sub-matrices to make full use of the cache and
use the parallel performance of the GPU to calculate the results of each matrix block separately, and
summarize the results of each part to obtain the final matrix multiplication result as shown in step (6)
in Algorithm 2 to improve the performance of matrix calculations. Among them, in order to further
improve cache utilization, we performed a matrix transpose on one of the matrices before calculation.

Algorithm 2: Online stage: The main calculation steps of matrix
Input: Server i takes as input < X >i, < Y >i, < a >i, < b >i, < c >i distributed by the client;
Output: Server i outputs a partial result of the final result of X × Y ;

Compute with triples:
1: for i = 0 to 1 do
2: < e >i=< X >i − < a >i;

< f >i=< Y >i − < b >i;
3: end for

(Continued)

CMC, 2024, vol.79, no.3 4031

Algorithm 2 (continued)
Reconstruct e, f through communication:

4: e = ∑1

i=0 < e >i;
f = ∑1

i=0 < f >i;
The two servers get e, f and calculate separately on GPU:

5: < Z >i= (−i) × e × f + < a >i ×f + < b >i ×e+ < c >i;
The client calculates the final result:

6: Z = ∑1

i=0 < Z >i= X ∗ Y ;

3.1.2 Two-Party Communication Optimization

In order to calculate e and f , servers need to communicate < e >i and < f >i, and from the step
(2) in Algorithm 2 we can know that < e >i and < f >i depend on < X >i and < Y >i as shown
in Fig. 3. In machine learning tasks, the above matrices X and Y can be model parameters, and their
iteration matrices are usually sparse. Let < X >i,j and < Y >i,j represent the j-th iteration of X and
Y on server i, so < X >i,j+1 and < Y >i,j+1 can be expressed as Eq. (1), where δ

<X/Y>

ij represents the
change between two iterations, that is, the gradient. If δ<X>

ij and δ<Y>

ij are sparse (the default setting is
that 75% of the elements in the matrix are 0), then use the CSR [31] to store it and then transmit the
compressed δ<X>

ij or δ<Y>

ij . If not sparse, the original data is transferred. Experiments have shown that
the overhead caused by communication can be greatly reduced by first performing a sparsity check
similar to the above on the matrix that needs to be transmitted to the GPU before transmitting it, and
the checking time is negligible.

< X >i,j+1 = < X >i,j +δ<X>

ij , < Y >i,j+1 = < Y >i,j +δ<Y>

ij (1)

After getting the expressions of < X >i,j and < Y >i,j, we can get the expressions of < e >i,j and
< f >i,j as shown in Eqs. (2) and (3). So, if we can tell ahead of time that δ

<X/Y>

ij is sparse, then we only
need to transfer changing values of δ

<X/Y>

ij between the two servers.

< e >i,j+1 = < X >i,j+1 − < a >i = < X >ij +δ<X>

ij − < a >i = < e >ij +δ<X>

ij (2)

< f >i,j+1 = < Y >i,j+1 − < b >i = < Y >ij +δ<Y>

ij − < b >i = < e >ij +δ<Y>

ij (3)

3.1.3 Communication and Computing Parallelism

After conducting an in-depth analysis of various machine learning tasks, particularly those
associated with deep learning, two prominent characteristics have been identified. Firstly, these tasks
often involve multiple interconnected neural network layers, each contributing to the extraction of
complex nonlinear relationships. Secondly, machine learning tasks encompass both forward propaga-
tion and back propagation phases. To address the intricacies of these tasks, a parallel computing and
communication propagation design [17] has been employed. This design aims to exploit parallelism
and overlap specific steps across different layers, thereby optimizing the overall efficiency of the
machine learning process.

In the context of deep learning, where the number of neural network layers is typically determined
empirically and exceeds two layers to capture intricate nonlinear patterns, it becomes crucial to
streamline the forward and backward propagation phases. Notably, the forward propagation of
a given layer serves as a prerequisite for the subsequent layers, creating a sequential dependency.
However, this limitation is mitigated during the back propagation phase, where certain steps, such

4032 CMC, 2024, vol.79, no.3

as the reconstruct step, do not necessarily need to wait for the completion of subsequent layers.
During the back propagation reconstruct step, a portion of the calculations relies on the forward
propagation GPU operation step of the same layer. These calculations are seamlessly integrated
into the backward propagation reconstruct step. Meanwhile, another portion of the calculation is
contingent upon the next layer. Consequently, the allocation of computational tasks is strategically
managed, with some computations assigned to the backward pass GPU operation step. This strategic
distribution of computational tasks enables the concurrent execution of the forward propagation
reconstruct step of the current layer with the backward propagation reconstruct step of the previous
layer. This intricate overlap, as illustrated in Fig. 4, optimizes the computational workflow, leveraging
parallelism and communication propagation to enhance the overall efficiency of the machine learning
process. This design ensures that certain steps are synchronized and executed concurrently, maximizing
the utilization of computational resources and minimizing idle time during the training of deep neural
networks.

Figure 4: Overlapping reconstruction steps of different layers

3.2 Hardware Optimization

3.2.1 Optimization of Related Calculations on CPU

As discussed in Section 3.1.1, we ported the compute-intensive parts to GPUs and the rest to
CPUs. The main computational tasks on the CPU include: 1) generating the random matrices X0, Y0,
a0, a1, b0 and b1, and 2) calculating the matrices X1, Y1, a and b by addition and subtraction. We optimize
related calculations performed on the CPU, including optimization of random number generation and
optimization of matrix addition and subtraction to reduce the cost of computing time using the CPU
and we optimize these operations in parallel to fully utilize the CPU computing resources.

Random Number Generation Optimization. EG-STC involves random number generations. To
generate random numbers concurrently in multiple threads, we applied a thread-safe random number
generator, the Melson Twisted 19937 Generator (MT19937) [32], from the C++11 random library.
Melson Twister is a widely used pseudorandom number generator (PRNG) known for its long period
and good statistical properties. The 19937 in its name refers to its 32-bit word size and a state space of
219937 − 1.

Matrix Addition and Subtraction Optimization. The addition and subtraction operations of
matrices in EG-STC mainly involve steps (2) and (4) in Algorithm 1 and step (2) in Algorithm 2. These
operations are completed by using a for loop to traverse two matrices, and can be directly optimized
into multi-threaded for loop parallel operations. When ParSecureML [17] writes the calculation results
into the sum-difference matrix, it needs to avoid the overhead caused by multiple threads writing to
the same cache line. Each cache line can store 16 FP32 values, and cache line write contention can be

CMC, 2024, vol.79, no.3 4033

avoided by scheduling at least 16 cyclic tasks per thread. In addition, to reduce the overhead caused
by opening multiple parallel regions, multiple parallel regions should be merged.

3.2.2 GPU Optimization

In order to further improve the performance of GPU, we first analyze the GPU utilization
process. We use the Jtop performance analysis tool provided by Jetson Systems to collect and view
GPU activities, including kernel execution, data transfer, and CUDA API calls. We collected GPU
performance data for EG-STC from both client and server and observed three main activities: CUDA
memory copy from host to device, general matrix multiplication (GEMM) operations, and CUDA
memory copy from device to host. Since the CUDA memory copy overhead between host and device
depends on the memory transfer channel, we mainly performed GEMM optimization operations.

To optimize the GEMM operations in EG-STC on the NVIDIA Nano native GPU without uti-
lizing Tensor Cores, we adopt a different approach. Tensor Cores are programmable matrix-multiply-
and-accumulate units designed for enhanced performance, but since the NVIDIA Nano GPU may not
have dedicated Tensor Cores, we focus on conventional techniques. In our implementation, we employ
standard GPU operations without invoking Tensor Cores. Specifically, we use the available CUDA
libraries and functions suitable for the GPU architecture of NVIDIA Nano, ensuring compatibility
and efficiency in matrix multiplication tasks. This alternative approach optimizes GEMM operations
on the NVIDIA Nano without relying on Tensor Cores, making the implementation tailored to the
capabilities of the GPU within the NVIDIA Nano platform.

Memory Layout Optimization. Memory layout optimization is a critical aspect in enhancing
the performance of General Matrix Multiplication (GEMM) operations on the NVIDIA Nano
platform. The primary goal is to improve access efficiency and minimize memory transfer overhead
by strategically arranging data in memory. Given the limited memory bandwidth of the NVIDIA
Nano, effective utilization of shared memory becomes pivotal in achieving optimal performance. One
key strategy is to carefully choose the size of shared memory, ensuring it aligns with the specific
requirements of the GEMM operations. Additionally, designing a data layout that takes advantage
of shared memory locality is essential. This involves organizing data in a way that maximizes the
reuse of shared memory, thereby reducing the reliance on slower global memory access. To further
enhance performance, it is crucial to avoid write conflicts in shared memory. Conflicts can occur when
multiple threads attempt to write to the same location simultaneously, leading to inefficiencies. By
implementing synchronization mechanisms or optimizing the algorithm to minimize such conflicts,
the overall performance of GEMM operations can be significantly improved. Another important
consideration is the judicious utilization of shared memory for frequently accessed data. By identifying
and prioritizing the most critical data for storage in shared memory, the algorithm can exploit the
faster access times offered by shared memory, thus reducing latency and improving overall efficiency.
Furthermore, constant memory can be leveraged for immutable data shared across the entire thread
block. This allows for efficient sharing of read-only data among threads without incurring the
overhead associated with redundant storage in shared memory.

Batch Processing. Batch processing necessitates a judicious decision-making process regarding
the selection of an appropriate block size, a crucial determinant in achieving optimal performance
through effective utilization of GPU parallelism. The configuration of block size and grid size can
be subjected to experimentation, tailored to the unique characteristics of the problem at hand and
the underlying GPU architecture. On the NVIDIA Nano platform, the careful selection of a block
size for computations involves a nuanced understanding of GPU architecture, considerations for

4034 CMC, 2024, vol.79, no.3

thread-level parallelism, shared memory utilization, and optimal register usage. In the pursuit of
optimizing collaborative thread execution, it is imperative to comprehend the specific nuances of the
GPU architecture, given the sensitivity of the NVIDIA Nano GPU to thread-level parallelism. The
block size plays a pivotal role in orchestrating parallel threads, and a well-chosen size can significantly
impact overall performance. Striking the right balance requires a keen awareness of how the GPU
architecture handles parallel execution, ensuring that the selected block size aligns seamlessly with
the inherent characteristics of the computational workload. Moreover, the thoughtful consideration
of shared memory and register usage is paramount to prevent exceeding hardware resource limits.
Efficient utilization of shared memory is crucial for facilitating communication and data exchange
among threads, while judicious register allocation ensures optimal usage of on-chip resources. This
delicate balancing act is essential for preventing bottlenecks and resource contention that could
hamper the parallel processing capabilities of the GPU. The nature of the computational task and
its associated memory access patterns also introduces considerations into the determination of the
ideal block size. Adapting the block size to the specific memory requirements and access patterns of
the application ensures that the GPU can seamlessly access and process data, minimizing latency and
maximizing throughput.

Thread and Block Configuration. In the context of EG-STC utilizing the CUDA dim3 structure
on the NVIDIA Nano platform for configuring thread blocks and grids efficiently, the optimization
process involves a systematic exploration of diverse thread block sizes through experimentation and
iteration. The objective is to observe and quantify the impact of various thread block configurations
on overall performance. To facilitate this exploration, the Jetson Stats performance analysis tool
is leveraged, enabling real-time data collection on different configurations and contributing to the
identification of optimal setups. The iterative optimization process adopted by EG-STC encompasses
a range of considerations. First and foremost, task parallelism is a key factor, ensuring that the chosen
configurations align with the nature of the computational tasks at hand. This involves assessing how
tasks can be effectively parallelized across threads within a block and across different blocks in the
grid. Avoidance of thread conflicts is another crucial aspect of the optimization process. Conflicts
can arise when multiple threads attempt to access or modify the same data simultaneously, leading
to inefficiencies and performance bottlenecks. The iterative testing helps identify configurations that
mitigate or eliminate these conflicts, enhancing overall execution efficiency. Memory access patterns
are also evaluated during the optimization process. Understanding how data is accessed and shared
among threads within a block and across blocks is essential for maximizing throughput. The chosen
configurations aim to align with these access patterns, minimizing latency and optimizing data
transfer within the GPU’s memory hierarchy. Importantly, the optimization process is tailored to the
architecture of the NVIDIA Nano GPU. This involves considering the specific features, limitations,
and strengths of the GPU architecture to ensure that the selected thread block and grid configurations
make efficient use of the available resources. By adopting this comprehensive approach, EG-STC
can dynamically adjust thread block and grid configurations based on the specific requirements of
different computational tasks. This adaptability maximizes GPU utilization and, in turn, achieves
optimal performance for a diverse range of scenarios. The synergy of task parallelism, conflict
avoidance, consideration of memory access patterns, and alignment with GPU architecture collectively
contributes to the effectiveness of EG-STC’s dynamic thread and block configuration strategy.

Utilizing the features of the Jetson Nano, which boasts 128 CUDA cores suitable for handling
extensive computational requests, we conducted experiments involving matrix multiplication tasks
sized at 1000 × 1000. This particular size choice aligns with the parallel processing capabilities of
the GPU, maximizing its computational efficiency. Through rigorous experimentation and analysis,

CMC, 2024, vol.79, no.3 4035

we identified the optimal thread block configuration to be block(32,32), ensuring a balance between
parallel processing capability and memory utilization. Thread block size plays a pivotal role in
determining the efficiency of parallel computation on the GPU. Larger thread blocks can exploit data
locality, reducing the need for accessing global memory frequently. However, they may also lead to
excessive usage of shared memory, potentially hindering performance. To address this, we carefully
adjusted the thread block size to strike a balance between memory access patterns and computational
efficiency. In determining the dimensions of the computation grid, we employed a fixed value derived
from the thread block size and the dimensions of the matrices. This ensured that each output element
received adequate computational resources, even if the matrix dimensions did not perfectly align
with the thread block size. This approach optimized resource allocation and minimized wastage,
contributing to overall performance enhancement.

In summary, selecting the correct thread block configuration is crucial for efficient resource
utilization and performance optimization on the GPU. By meticulously adjusting thread block sizes
and computation grid dimensions, we were able to harness the full potential of the Jetson Nano
computational prowess for our matrix multiplication tasks.

4 Performance Evaluation

In this section, we primarily evaluate the implementation performance of EG-STC, including the
performance of executing various secure machine learning tasks on the GPU, and compare it with
related works.

4.1 Experiment Setup and Evaluation Methods

Our experimental platform configuration is shown in Table 1. On the embedded NVIDIA Nano
GPU, the CPU and GPU share 4GB of memory. This setup provides ample computing resources and
reasonable memory sharing in a limited environment. In the field of cryptography, we typically focus on
the throughput and computation latency of cryptographic calculation requests, which are commonly
used performance metrics. Additionally, in edge computing environments composed of resource-
constrained embedded devices, power consumption becomes a significant performance metric closely
related to production costs and standby times. Therefore, to comprehensively assess the experimental
results, we introduce a additional performance metric: Energy efficiency ratio. The performance
metrics used in this experiment are evaluated as follows:

• Throughput: The amount of data the system can process in a unit of time, commonly used to
measure system workload capacity and performance level.

• Latency: The time required to complete a specific computational task, reflecting the total
duration from the start to the completion of the task, used to measure system response speed
and real-time performance.

• Energy Efficiency Ratio: The efficiency of the system in completing work per unit of energy
consumed, commonly used to measure the relationship between energy consumption and
performance, and is an important indicator for evaluating system environmental friendliness
and cost-effectiveness.

4036 CMC, 2024, vol.79, no.3

Table 1: The platform configuration of EG-STC

Type Model

OS Linux Ubuntu 18.04
Tool chain CUDA 10.0
CPU 4-core ARM Cortex-A57 64-bit CPU
GPU NVIDIA Tegra X1 with SM×1 (128 CUDA Cores/MP)
Memory 4GB 64-bit
Power About 5 W

Experimental Benchmarks. We have chosen 5 typical AI components or tasks as benchmarks
for the experiment to comprehensively evaluate our system performance. The following are brief
descriptions of these benchmark tasks:

• Matrix multiplication is a classic linear algebra operation. In neural networks, matrix multipli-
cation is used for multiplying weights with input data. Suppose we have an input vector x and
a weight matrix W; the output y obtained through matrix multiplication is the corresponding
weighted sum. Matrix multiplication provides a foundation for implementing complex models
and algorithms. Our work, based on secret sharing and secure triplet generation, has imple-
mented secure matrix multiplication and further enhanced performance by utilizing the parallel
computing capabilities of GPUs. We use this benchmark to evaluate system performance in
handling secure matrix operations.

• CNNs [33] are particularly suited for tasks such as image classification, object detection, and
face recognition. The core function of CNNs is to efficiently abstract and represent images by
learning local features and structural information within the images. Compared to traditional
neural networks, CNNs introduce key components like convolutional layers. Convolutional
layers capture local features in images through the sliding operation of kernels. The convolution
operation in CNNs can be implemented through matrix multiplication. We choose CNNs as a
benchmark to examine system learning and inference capabilities on complex visual data.

• MLP [34] is a classic type of feedforward neural network structure, widely used in tasks
such as classification, regression, and pattern recognition. MLP learns by training a model
to map relationships from inputs to outputs. During the training process, MLP uses the
backpropagation algorithm for optimization, adjusting the connection weights to minimize
model error. We use MLP as a benchmark task to evaluate the system adaptability to complex
nonlinear data.

• Linear regression [35] is a basic statistical method used to model linear relationships, widely
applied in regression analysis. It is a common predictive model in the field of artificial
intelligence. By establishing a linear relationship, it models the association between input
features and output targets. We use linear regression as a benchmark to understand system
performance level in handling linear relationship modeling tasks.

• Logistic regression [36] is a classic method used for modeling binary classification problems. It
establishes a linear decision boundary and applies a logistic function to map linear outputs
to probability values between 0 and 1. During training, the model adjusts parameters by
maximizing the likelihood function or minimizing the cross-entropy loss. We choose logistic

CMC, 2024, vol.79, no.3 4037

regression as a benchmark task to evaluate system effectiveness in handling binary classification
problems.

Dataset. In the experiments of this paper, considering that the NVIDIA Nano has only 4 GB of
memory, we chose to use the MNIST dataset for secure machine learning tasks. The MNIST dataset
contains 60,000 training images and 10,000 testing images, each a grayscale image with a size of 28×28
pixels. The dataset is commonly used in tasks involving image recognition and classification. In edge
computing scenarios, using a relatively small and lightweight dataset helps to conduct efficient model
training and inference under limited resources. As a classic handwritten digit recognition dataset,
MNIST has a moderate size and sufficient representativeness, effectively validating secure machine
learning tasks on edge devices.

4.2 Experiment Results

In a multi-party edge computing environment where resources are limited and data privacy is
strictly required, we have successfully implemented secure matrix multiplication computation and its
associated secure AI tasks on an embedded GPU platform. While ensuring the security and practicality
of the algorithm, we have thoroughly evaluated the performance of the system, particularly in terms
of peak throughput, based on our designed GPU core optimization scheme. As shown in Fig. 5a,
we assessed the performance of secure matrix multiplication involving two parties by executing the
multiplication of two N ×N matrices. For smaller matrices with a dimension of N = 10, the impact of
data transfer overhead (that is, copying data from the host to the device and back to the host) on overall
performance is particularly significant, indicating that the performance gains from GPU acceleration
are relatively limited for small-sized matrices. Conversely, as the dimension of the matrix increases,
which means the problem size is getting larger, the impact of GPU acceleration on performance
enhancement becomes more pronounced. Specifically, for matrix multiplication with a dimension of
N = 1000, the latency is reduced compared to the case of N = 500.

Figure 5: Performance of secure matrix multiplication and machine learning tasks

As indicated in Table 1, the NVIDIA Nano is equipped with 128 CUDA cores, making it
particularly suitable for large-scale computational requests. The overall performance gain from GPU
acceleration is influenced by the configuration of parallel execution, which includes the sizes of thread
blocks and grid dimensions. Specifically, the product of the grid and thread block sizes determines the
size of the batch being processed. The size of a thread block refers to the number of threads it contains;
for example, block(16,16) indicates a thread count of 16 × 16 = 256. Thread blocks are typically set
to 16 × 16, 32 × 32, or other values divisible by the thread warp size. In most NVIDIA GPUs, a warp
consists of 32 threads. The size of the thread block influences parallel computing capability on the
GPU. Larger thread blocks can reduce the number of global memory accesses but may also lead to

4038 CMC, 2024, vol.79, no.3

excessive use of shared memory, thus affecting performance. When computing grid dimensions, fixed
values determined by the sizes of the thread blocks and the matrix row and column dimensions ensure
that each output element is processed by at least one thread, even when the matrix dimensions are not
multiples of the thread block size.

As shown in Fig. 5b, we conducted a comprehensive experimental evaluation of secure matrix mul-
tiplication for N = 1000 using different thread block configurations: Block(32,32), block(24,24), and
block(16,16). The results indicated an increasing trend in throughput as the sizes of the thread blocks
increased. Specifically, when the number of thread blocks was set to 1024, we etobserved a throughput
of 5881.5 kops/ms, a latency of 170.02 ms, and an energy efficiency ratio of 1176.3 kops/ms/W. As
demonstrated in Fig. 5c, we extended our experimental scope to evaluate the performance of secure
AI tasks with thread block configurations of block(8,8) and block(16,16).The results revealed that,
generally, as the number of thread blocks increased, the execution time of tasks tended to decrease.
Choosing the right thread block configuration when optimizing computing resource allocation is
crucial, and generally, larger thread block configurations can more efficiently process data and reduce
latency.

4.3 Performance Comparison

Table 2 summarizes our implementation and compares it with other works.

Table 2: Secure AI tasks performance comparison

Platform AI tasks Run-time (sec)

Mohassel et al. [37] 2 Intel(R) Xeon(R) CPU
E5-2670 v3 TDP 120 W

Linear regression 62.94
Logistic regression 63.29
CNN 74.77
MLP 114.85

Chen et al. [17] NVIDIA Tesla V100 GPU
with 80 SMs
64 CUDA Cores/MP, 250 W

Linear regression 6.62
Logistic regression 6.77
CNN 16.88
MLP 8.48

Chen et al. [17] NVIDIA Tegra X1 with 1 SM
128 CUDA Cores/MP, 5 W

Linear regression 15.52
Logistic regression 14.85
CNN 36.3
MLP 29.11

Ours NVIDIA Tegra X1 with 1 SM
128 CUDA Cores/MP, 5 W

Linear regression 8.66
Logistic regression 8.2
CNN 22.31
MLP 25.16

4.3.1 Comparison vs. CPU Implementations

SecureML [37] is the first secure two-party privacy-preserving machine learning system based
on MPC. It adopts a semi-honest security model and supports the secure training and prediction of

CMC, 2024, vol.79, no.3 4039

machine learning models. However, SecureML is about twice as slow as traditional plaintext machine
learning, which somewhat limits its widespread application in practice. Additionally, SecureML has
not released its source code implementation. Nevertheless, recent work Chen et al. [17] has built
upon SecureML to implement related machine learning tasks and conducted experiments on high-
performance server-grade processor nodes equipped with 2 Intel(R) Xeon(R) CPU E5-2670 v3 and
128 GB of memory. Compared to SecureML running only on CPUs, our secure two-party machine
learning scheme based on embedded GPU acceleration opens up new possibilities for secure machine
learning at edge nodes, greatly enhancing its feasibility for practical applications. Our method not only
enhances computational power but also speeds up processing, making it possible to carry out complex
machine learning tasks in edge computing environments.

In terms of performance, our method has shown great advantages. We deeply tested it on
four different secure machine learning tasks. As shown in Fig. 6, Fig. 6a compares the overall time
consumption between SecureML and our EG-STC. Fig. 6b focuses on their time consumption in the
online phase. Compared to SecureML running on high-performance server-grade CPUs, our EG-
STC system, based on embedded GPUs, achieved a substantial improvement in performance, with the
overall time acceleration ratio reaching 5−6×. Particularly in the online phase, involving computation-
intensive secure matrix operations, the performance was notably enhanced by the parallel acceleration
provided by GPUs. However, in the offline phase, as it accounts for only a small portion of the overall
time and involves lower computational load, it was not suitable for GPU acceleration.

Figure 6: Comparison of time costs between EG-STC and SecureML

From our observations and analysis, we have reached the following conclusions: 1) In common
secure machine learning tasks, EG-STC achieved a performance improvement of about 5–6×. This
shows that using embedded GPUs to accelerate MPC-based privacy-preserving machine learning tasks
in resource-limited edge computing environments is very effective; 2) Despite the MNIST dataset is
relatively small and may not fully utilize the parallel computing power of GPUs, the experimental
results show that using GPUs still significantly speeds up performance. The size of the MNIST dataset
is also suitable for edge computing scenarios; 3) The overall improvement in time performance mainly
comes from significant enhancements in the online phase. This substantial improvement not only
proves the efficiency of GPU acceleration in ensuring the security of two-party computations but also
opens a new path for enhancing the processing efficiency of machine learning tasks in edge computing
environments that protecting data privacy.

4040 CMC, 2024, vol.79, no.3

4.3.2 Comparison vs. GPU Implementations

Recent studies [17, 19, 20] in privacy-preserving machine learning based on MPC have also
begun to utilize GPU acceleration. However, in the field of edge computing, our work is the first to
explore the potential of using embedded GPUs to accelerate computation-intensive modules in secure
computing. Specifically, ParSecureML [17], a parallel secure machine learning architecture running
on GPUs focusing on two-party computations, is closely related to our research. Since Chen et al. [17]
used the high-end NVIDIA Tesla V100 GPU, designed for scientific computing, directly comparing
it with our embedded GPU might not be entirely fair. Therefore, when comparing with advanced
GPUs, we consider not only performance but also power consumption. To comprehensively compare
the performance of the two systems, we ran the ParSecureML system from Chen et al. [17] on
our embedded GPU platform and used the same dataset to compare four different secure machine
learning tasks like CNNs in the same experimental environment. As shown in Fig. 7, Fig. 7a shows
the difference in overall time consumption between ParSecureML and our EG-STC, while Fig. 7b
introduces Relative Time Consumption as an evaluation metric, indicating the time our system takes
to complete tasks compared to the system from Chen et al. [17]. The experimental results show that
on the same platform, for machine learning tasks requiring extensive secure matrix operations, our
system relative time consumption is about 60% to 70%. This means our system can complete tasks in
60% to 70% of the time required by the system of Chen et al. [17], demonstrating higher efficiency. This
not only proves the effectiveness of our proposed GPU optimization method but also indicates that
our approach is more advanced than the approach of Chen et al. [17]. To enhance the adaptability
and universality of our system, we have employed the PTX ISA instruction set and meticulously
adjusted the parallel computing parameters. This strategy enables our system to not only operate
efficiently on specific embedded GPUs but also to be compatible and adaptable to various other
embedded GPU platforms, such as NVIDIA TX2 or AGX GPUs series. By doing so, we ensure
that our system performs well in different hardware environments and can be seamlessly integrated
into various application scenarios. Moreover, the flexibility offered by the PTX ISA instruction set
allows us to optimize and adjust according to the distinct characteristics of different hardware, further
enhancing the efficiency and stability of our system when handling complex tasks.

Figure 7: Comparison of time costs between EG-STC and ParSecureML

In real-world scenarios, the EG-STC framework finds application across various domains within
edge computing. For instance, in intelligent surveillance systems, where real-time video analysis is
crucial for anomaly detection or object recognition, EG-STC ensures secure computation of video

CMC, 2024, vol.79, no.3 4041

data between edge devices while preserving user privacy. Similarly, in healthcare, where edge devices
gather and process sensitive medical data like heart rate or blood pressure monitoring, EG-STC
guarantees secure computation of this information, facilitating tasks such as patient diagnosis or
disease prediction while maintaining patient confidentiality. Moreover, in smart traffic systems,
EG-STC enables secure computation of traffic data among edge devices, facilitating tasks such as
traffic flow prediction or vehicle identification while safeguarding user privacy. Lastly, in industrial
automation, where edge devices monitor and control various sensors and actuators, EG-STC ensures
secure computation of industrial data, allowing tasks like quality control or fault diagnosis to be
performed securely while protecting enterprise trade secrets and intellectual property. These cases
highlight the flexibility and efficiency of the EG-STC framework in tackling security and privacy
issues across various edge computing applications.

4.4 Discussion

Comparison. Through our extensive experimental evaluations, compared to the first server-
grade CPU-based MPC privacy-preserving machine learning solution, SecureML [37], its processing
speed is slower due to additional computational and communication costs, limiting its practicality.
ParSecureML [17] improved upon SecureML, reducing the performance gap to 5.8 times, but it still
relies on server-grade GPU resources. While this improvement is a step forward for environments that
can access high-performance computing resources, it is not suitable for resource-constrained edge
computing environments. In contrast to these existing solutions, our EG-ETC scheme is specifically
designed for embedded GPU platforms, targeting the needs of privacy-preserving machine learning
in edge computing environments. On the same embedded GPU platform, The operational time of
EG-ETC is only 60% to 70% of what ParSecureML requires, significantly improving processing speed
while maintaining privacy protection features.

Scalability. The EG-etc scheme leverages GPU-accelerated secure matrix multiplication to balance
security and efficiency in machine learning tasks. This approach is not only applicable to the
machine learning tasks tested in this paper but also extends to other programs that involve similar
matrix operations. Thus, our scheme can ensure both security and efficiency for a broader range of
applications.

Limitation. Our solution is tailored for resource-constrained edge computing environments,
particularly for embedded systems, which necessitates a focus on smaller-scale datasets. This focus
inherently limits the applicability of our scheme to handling large-scale datasets typically processed in
server-grade GPU clusters. However, for the context of edge computing environments, smaller datasets
are often sufficient to meet the operational needs.

5 Conclusion

In this paper, we present a solution for secure two-party computation on embedded GPUs,
named EG-STC, designed for executing secure AI tasks at edge computing nodes. To the best of
our knowledge, this is the first effort to use embedded GPUs for efficient and secure two-party
computation. EG-STC offers a more efficient and practical approach to secure matrix multiplication
and secure AI tasks compared to other works in the field. On an embedded GPU with a power
draw of 5 W, our implementation achieved a secure two-party matrix multiplication throughput of
5881.5 kops/ms and an energy efficiency ratio of 1176.3 kops/ms/W. Leveraging our EG-STC frame-
work, we have attained an overall time acceleration ratio of 5 − 6× compared to solutions running

4042 CMC, 2024, vol.79, no.3

on server-grade CPUs; on the same platform, our solution required only 60% to 70% of the run-
time of the previously best-known methods. In edge computing environments, due to the limited
resources such as memory, we generally perform small-scale machine learning tasks, such as image
recognition and sensor data processing in smart manufacturing. Therefore, our scheme for secure AI
tasks based on embedded GPUs is effective. The practical implications of EG-STC extend beyond the
technical achievements presented in this paper. This innovative framework holds significant potential
for various industries and scenarios, offering enhanced security and efficiency in AI tasks at the edge.
The adaptability and performance gains showcased by EG-STC make it a promising solution for real-
world applications, particularly in contexts where edge computing plays a crucial role.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work was supported in part by Major Science and Technology Demonstration
Project of Jiangsu Provincial Key R & D Program under Grant No. BE2023025, in part by the
National Natural Science Foundation of China under Grant No. 62302238, in part by the Natural
Science Foundation of Jiangsu Province under Grant No. BK20220388, in part by the Natural Science
Research Project of Colleges and Universities in Jiangsu Province under Grant No. 22KJB520004, in
part by the China Postdoctoral Science Foundation under Grant No. 2022M711689.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception and
design: Z. Dong, J. Dong; data collection: X. Ge; analysis and interpretation of results: X. Ge, H. Yue,
J. Xu; draft manuscript preparation: Z. Dong, J. Xu. All authors reviewed the results and approved
the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Jiang Xu, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia, “Fog computing: A

comprehensive architectural survey,” IEEE Access, vol. 8, pp. 69105–69133, 2020. doi: 10.1109/AC-
CESS.2020.2983253.

[2] R. Ande, B. Adebisi, M. Hammoudeh, and J. Saleem, “Internet of things: Evolution and technologies from
a security perspective,” Sustain. Cities Soc., vol. 54, pp. 101728, 2020. doi: 10.1016/j.scs.2019.101728.

[3] P. Regulation, “Regulation (EU) 2016/679 of the European parliament and of the council,” Regulation
(EU), vol. 679, pp. 2016, 2016.

[4] M. M. Yang, T. L. Guo, T. Q. Zhu, I. Tjuawinata, J. Zhao and K. Y. Lam, “Local differential privacy
and its applications: A comprehensive survey,” Comput. Stand. Inter., vol. 89, pp. 103827, 2023. doi:
10.1016/j.csi.2023.103827.

[5] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. thesis, Stanford Univ., USA, 2009.
[6] A. C. Yao, “Protocols for secure computations,” in 23rd Annu. Symp. Found. Comput. Sci. (SFCS 1982),

Chicago, IL, USA, 1982, pp. 160–164.
[7] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl and P. Scholl, “Efficient pseudorandom correlation

generators: Silent OT extension and more,” in Adv. Cryptol.–CRYPTO 2019: 39th Annu. Int. Cryptol. Conf.,
Santa Barbara, CA, USA, Aug. 18–22, 2019, vol. 39, pp. 489–518.

https://doi.org/10.1109/ACCESS.2020.2983253
https://doi.org/10.1016/j.scs.2019.101728
https://doi.org/10.1016/j.csi.2023.103827

CMC, 2024, vol.79, no.3 4043

[8] M. Keller, “MP-SPDZ: A versatile framework for multi-party computation,” in Proc. 2020 ACM SIGSAC
Conf. Comp. Commun. Secur., 2020, pp. 1575–1590.

[9] P. Rindal, “libOTe: An efficient, portable, and easy to use oblivious transfer library,” 2018. Accessed: Oct.
15, 2023. [Online]. Available: https://github.com/osu-crypto/libOTe

[10] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure computation for neural network
training,” in Proc. Priv. Enhanc. Technol., vol. 2019, no. 3, pp. 26–49, 2019. doi: 10.2478/popets-2019-0035.

[11] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via MiniONN transforma-
tions,” in Proc. 2017 ACM SIGSAC Conf. Comput. Commun. Secur., Dallas, TX, USA, 2017, pp. 619–631.

[12] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim and L. van der Maaten , “CrypTen:
Secure multi-party computation meets machine learning,” Adv. Neural Inf. Process Syst., vol. 34, pp. 4961–
4973, 2021.

[13] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi and R. Sharma, “CryptFlow: Secure Tensor-
Flow inference,” in 2020 IEEE Symp. Secur. Priv. (SP), San Francisco, CA, USA, IEEE, 2020, pp. 336–353.

[14] D. Rathee et al., “CryptFlow2: Practical 2-party secure inference,” in Proc. 2020 ACM SIGSAC Conf.
Comput. Commun. Secur., 2020, pp. 325–342.

[15] Y. Li and W. Xu, “PrivPy: General and scalable privacy-preserving data mining,” in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., Anchorage, Alaska, USA, 2019, pp. 1299–1307.

[16] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster maliciously secure two-party computation using
the GPU,” in Secur. Cryptogr. Netw.: 9th Int. Conf., Amalfi, Italy, 2014, pp. 358–379.

[17] Z. Chen, F. Zhang, A. C. Zhou, J. Zhai, C. Zhang and X. Du, “ParSecureML: An efficient parallel secure
machine learning framework on GPUs,” in Proc. 49th Int. Conf. Parallel Process., Edmonton, Alberta,
Canada, 2020, pp. 1–11.

[18] W. Z. Srinivasan, P. Akshayaram, and P. R. Ada, “DELPHI: A cryptographic inference service for neural
networks,” in Proc. 29th USENIX Secur. Symp., Santa Clara, CA, USA, 2019, pp. 2505–2522.

[19] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CryptGPU: Fast privacy-preserving machine learning on the
GPU,” in 2021 IEEE Symp. Secur. Priv. (SP), San Francisco, CA, USA, IEEE, 2021, pp. 1021–1038.

[20] J. L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU platform for secure computation,” in 31st
USENIX Secur. Symp. (USENIX Security 22), Boston, MA, USA, 2022, pp. 827–844.

[21] Y. Meng, S. Wang, and A. Schedel, “Multi-GPU for piranha, a multiparty computation framework,” 2022.
Accessed: Nov. 25, 2023. [Online]. Available: https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-
F22/projects/reports/project8_report_ver3.pdf

[22] J. Dong, G. Fan, F. Zheng, T. Mao, F. Xiao and J. Lin, “TEGRAS: An efficient tegra embedded GPU-
based RSA acceleration server,” IEEE Internet Things J., vol. 9, no. 18, pp. 16850–16861, 2022. doi:
10.1109/JIOT.2022.3152203.

[23] J. Dong, P. Zhang, K. Sun, F. Xiao, F. Zheng and J. Lin, “EG-FourQ: An embedded GPU based efficient
ECC cryptography accelerator for edge computing,” IEEE Trans. on Industrial Informatics, vol. 19, no. 6,
pp. 7291–7300, 2023. doi: 10.1109/TII.2022.3205355.

[24] J. Dong, S. Lu, P. Zhang, F. Zheng, and F. Xiao, “G-SM3: High-performance implementation of GPU-
based SM3 hash function,” in 2022 IEEE 28th Int. Conf. Parallel Distrib. Sys. (ICPADS), Xi’an, China,
IEEE, 2023, pp. 201–208.

[25] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979. doi:
10.1145/359168.359176.

[26] G. R. Blakley, “Safeguarding cryptographic keys,” in Manag. Require. Knowl., Int. Workshop on, Orlando,
FL, USA, IEEE Computer Society, 1979, pp. 313–313.

[27] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Adv. Cryptol. CRYPTO 91:
Proc. 11, Santa Barbara, CA, USA, Springer, 1992, pp. 420–432.

[28] “NVIDIA,” 2024. Accessed: Dec. 31, 2023. [Online]. Available: https://www.nvidia.com/en-sg/
[29] “NVIDIA CUDA,” 2017. Accessed: Dec. 31, 2023. [Online]. Available: https://docs.nvidia.com/cuda/doc/

index.html.

https://github.com/osu-crypto/libOTe
https://doi.org/10.2478/popets-2019-0035
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F22/projects/reports/project8_report_ver3.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F22/projects/reports/project8_report_ver3.pdf
https://doi.org/10.1109/JIOT.2022.3152203
https://doi.org/10.1109/TII.2022.3205355
https://doi.org/10.1145/359168.359176
https://www.nvidia.com/en-sg/
https://docs.nvidia.com/cuda/doc/index.html
https://docs.nvidia.com/cuda/doc/index.html

4044 CMC, 2024, vol.79, no.3

[30] “NVIDIA Jetson Nano,” 2024. Accessed: Dec. 31, 2023. [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-nano/product-development/.

[31] S. AlAhmadi, T. Muhammed, R. Mehmood, and A. Albeshri, “Performance characteristics for sparse
matrix-vector multiplication on GPUs,” in Smart Infrastructure and Applications: Foundations for Smarter
Cities and Societies, 2020, pp. 409–426. doi: 10.1007/978-3-030-13705-2_17.

[32] J. di Mauro, E. Salazar, and H. D. Scolnik, “Design and implementation of a novel cryptographically
secure pseudorandom number generator,” J. Cryptogr. Eng., vol. 12, no. 3, pp. 255–265, 2022. doi:
10.1007/s13389-022-00297-8.

[33] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convolutional neural-network
approach,” IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 98–113, 1997. doi: 10.1109/72.554195.

[34] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, classifiaction,” 1992. Accessed: Dec. 31, 2023.
[Online]. Available: http://library.isical.ac.in:8080/jspui/bitstream/10263/4569/1/308.pdf

[35] D. C. Montgomery, E. A. Peck, and G. G. Vining, “Introduction to linear regression analysis,” in
Introduction to Linear Regression Analysis, 6th ed. Hoboken, NJ, USA: Wiley, 2021.

[36] F. C. Pampel, “Logistic regression: A primer,” in Logistic Regression: A Primer, 1st ed. Thousand Oaks,
CA, USA: Sage Publications, 2020.

[37] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-preserving machine learning,” in
2017 IEEE Symp. Secur. Priv. (SP), San Jose, CA, USA, IEEE, 2017, pp. 19–38.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://doi.org/10.1007/978-3-030-13705-2_17
https://doi.org/10.1007/s13389-022-00297-8
https://doi.org/10.1109/72.554195
http://library.isical.ac.in:8080/jspui/bitstream/10263/4569/1/308.pdf

	EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems
	1 Introduction
	2 Preliminaries
	3 Insights and Methodology
	4 Performance Evaluation
	5 Conclusion
	References

