
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.049584

ARTICLE

Distributed Graph Database Load Balancing Method Based on Deep
Reinforcement Learning

Shuming Sha1,2, Naiwang Guo3, Wang Luo1,2 and Yong Zhang1,2,*

1Nanjing NARI Information & Communication Technology Co., Ltd., Nanjing, 210032, China
2State Grid Electric Power Research Institute, Nanjing, 211106, China
3State Grid Shanghai Municipal Eleciric Power Company, Shanghai, 200122, China

*Corresponding Author: Yong Zhang. Email: zhangyong12@sgepri.sgcc.com.cn

Received: 11 January 2024 Accepted: 29 March 2024 Published: 20 June 2024

ABSTRACT

This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies. Unlike indepen-
dent batch tasks, workflows typically consist of multiple subtasks with intrinsic correlations and dependencies. It
necessitates the distribution of various computational tasks to appropriate computing node resources in accor-
dance with task dependencies to ensure the smooth completion of the entire workflow. Workflow scheduling
must consider an array of factors, including task dependencies, availability of computational resources, and the
schedulability of tasks. Therefore, this paper delves into the distributed graph database workflow task scheduling
problem and proposes a workflow scheduling methodology based on deep reinforcement learning (DRL). The
method optimizes the maximum completion time (makespan) and response time of workflow tasks, aiming to
enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan. The experimental
results indicate that the Q-learning Deep Reinforcement Learning (Q-DRL) algorithm markedly diminishes the
makespan and refines the average response time within distributed graph database environments. In quantifying
makespan, Q-DRL achieves mean reductions of 12.4% and 11.9% over established First-fit and Random scheduling
strategies, respectively. Additionally, Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-
learning Network (IDQN) algorithms, with improvements standing at 4.4% and 2.6%, respectively. With reference
to average response time, the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of
workflow tasks, decreasing the average by 2.27% and 4.71% when compared to IDQN and DRL-Cloud, respectively.
The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization, reducing
the average idle rate by 5.02% and 9.30% in comparison to IDQN and DRL-Cloud, respectively. These findings
support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average
response time, thereby substantially improving processing efficiency and optimizing resource utilization within
distributed graph database systems.

KEYWORDS
Reinforcement learning; workflow; task scheduling; load balancing

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.049584
https://www.techscience.com/doi/10.32604/cmc.2024.049584
mailto:zhangyong12@sgepri.sgcc.com.cn


5106 CMC, 2024, vol.79, no.3

1 Introduction

In recent years, the continuous growth in data volume and the expansion of application scenarios
have progressively exposed the limitations of traditional database technologies in handling ultra-large
scale data. Traditional databases encounter bottlenecks in data storage, diminished query efficiency,
and performance constraints in scenarios that demand high real-time responsiveness, low latency, and
high computational efficiency [1]. These limitations become particularly pronounced when processing
complex topological structures and relational queries.

To address such challenges, graph database technology has emerged as a promising solution for
managing large-scale data [2]. Graph databases, with their intuitive and efficient data structuring,
excel at handling and querying complex relationships. They are especially advantageous when dealing
with intricate topological structures and relational queries. To cater to the needs of large-scale data
processing, distributed graph databases have been developed. These databases not only inherit the
advantages of graph databases in processing complex relational queries but also offer scalability,
performance optimization, high availability, and fault tolerance [3].

However, distributed graph databases still face challenges when tasked with handling very large-
scale data and tasks [4]. A significant issue among these is achieving load balancing in a distributed
graph database [5]. Load balancing requires optimizing data storage and queries, rational allocation
of server resources, effective task scheduling in distributed graph databases, and ensuring high
system availability and stability. To resolve this issue, the present study proposes a load balancing
method for distributed graph databases based on deep reinforcement learning (DRL). Owing to the
unique characteristics of graph data structures and their intricate interconnections, distributed graph
databases face challenges in optimizing load balancing effectiveness and enhancing the efficiency of
task scheduling. DRL can effectively meet these challenges through the following avenues:

• Dynamic Adaptation: By continuously assimilating feedback on system performance, DRL is
capable of real-time adjustments to scheduling strategies, thereby improving the balance among
query workloads.

• Strategic Resource Allocation: Utilizing predictive analytics to anticipate load demands
and identify task dependencies, DRL skillfully allocates server resources to enhance system
performance.

• Dependency-Aware Scheduling: The reward function within the DRL framework is meticu-
lously crafted to account for task dependencies, promoting the scheduling of tasks that respect
these constraints while striving to achieve efficiency optimization.

The primary goal of this paper is to develop and present a sophisticated, precise, and robust
load balancing framework, namely Q-learning Deep Reinforcement Learning (Q-DRL), tailored for
distributed graph databases, thereby enabling enhanced system performance. In formulating this
framework, the authors have rigorously analyzed various critical factors, including query optimization
techniques, advanced distributed computing technologies, and overall system stability. The resultant
product is an innovative, adaptive load balancing algorithm that incorporates the principles of DRL.
This algorithm is designed to dynamically modulate the distribution of workload in accordance with
the real-time system dynamics and specific task demands, with the ultimate aim of maximizing system
throughput and optimizing response speed.

This research endeavors to make a significant contribution to the evolution of load balancing
methodologies within the sphere of distributed graph databases. It offers more streamlined and
resilient solutions for handling large-scale data processing challenges. This is particularly pertinent in



CMC, 2024, vol.79, no.3 5107

addressing the burgeoning requirements of big data processing and intelligent analytical applications
in contemporary settings. To validate the efficacy of the proposed methodology, comprehensive
experimental evaluations were conducted within an actual distributed graph database environment.
The findings from these experiments demonstrably show that the proposed DRL-based load balancing
approach substantially improves system performance and efficiency, especially in scenarios involving
the management of ultra-large scale datasets. Furthermore, it ensures the maintenance of system
stability and reliability, underscoring its practical applicability and potential for widespread adoption
in relevant fields.

The main contributions of this paper are highlighted as follows:

• Parallelized multi-workflow task stage division: The paper emphasizes the strategic division of
workflow subtasks into parallel stages. This segmentation is informed by a detailed analysis of
task dependencies and temporal considerations within the workflow, enabling optimized task
execution.

• Reward function with time optimization and load nalancing: A sophisticated reward function
for the DRL agent is meticulously crafted, featuring constraints designed for time optimization
and load balancing. This function is pivotal to the agent’s learning process, guiding it towards
scheduling decisions that not only minimize the maximum completion time (makespan) but
also improve the average response speed of the workflow tasks.

2 Related Works
2.1 Task Scheduling Based on Heuristic Algorithm

Task scheduling methods based on heuristic algorithms are known for their simplicity in rules and
implementation. For instance, the First Come First Service (FCFS) scheduling algorithm schedules
tasks purely based on the order of submission. While this approach is straightforward to implement, it
lacks flexibility, failing to account for task characteristics and machine load status. The Shortest Job
First (SJF) scheduling algorithm prefers shorter tasks, which can lead to a bottleneck for longer tasks,
thus performing poorly when handling complex task scheduling issues.

Hyytiä et al. combined the Round-Robin scheduling algorithm with FCFS to study routing to
parallel queue systems, which can serve jobs through either FCFS or a preemptive Last Come First
Served (LCFS) scheduling rule [6]. Seth et al. introduced a scheduling method based on a dynamic
heterogeneous SJF model, aimed at minimizing actual CPU time and the overall system execution
time, thereby improving resource utilization [7]. Békési et al. addressed the job scheduling problem
involving tasks with two subtasks, proposing a First-fit based scheduling approach to optimize both
task scheduling delay and makespan [8]. Gao et al. devised a distributed scheduling approach for
data center networks, named Shortest Remaining Time First. Estimations of the remaining size of the
workflow and the available bandwidth are utilized to calculate the residual time for each data flow,
which in turn aids in setting the workflow priorities [9]. Ajayi et al. designed a weighted round-robin
approach for task scheduling. This method aims to minimize latency and total completion time, taking
into account various classes of workloads but not prioritizing service levels or considering the diversity
in cloud environments [10]. Shirvani et al. proposed a novel hybrid heuristic list scheduling algorithm
specifically designed for use in heterogeneous cloud computing environments. The primary objective
of this algorithm is to optimize the makespan of tasks [11].

However, with the expanding scale of cloud computing and the escalating complexity of task
scheduling, traditional heuristic scheduling methods, which rely on simplistic rule sets, are increasingly



5108 CMC, 2024, vol.79, no.3

challenged to keep pace with the dynamic and complex requirements of cloud environments. This
mismatch can result in diminished resource utilization and a decline in the quality of service,
particularly in distributed graph database contexts.

2.2 Task Scheduling Based on Metaheuristic Algorithm

Metaheuristic algorithms represent a sophisticated advancement over heuristic algorithms,
emerging through an amalgamation of random and local search techniques. Notable examples
include genetic algorithms and Particle Swarm Optimization (PSO). Specifically, PSO exemplifies
this approach by dividing a single problem set into numerous smaller particles, each contributing to a
collective search for optimal or near-optimal solutions to NP-hard problems.

Zhao developed a scheduling approach utilizing the PSO method. This approach focuses on
assigning computational resources to independent tasks to reduce the overall time required for
processing requests [12]. Mansouri et al. introduced FMPSO, a hybrid scheduling algorithm that
fuses fuzzy systems with an enhanced PSO technique to improve load balancing and throughput [13].
Wu et al. refined the standard particle swarm algorithm by integrating a selection operator, addressing
efficiency gaps in existing models [14]. Kumar et al. proposed an efficient resource allocation model
paired with a PSO-based scheduling algorithm, aiming to optimize execution costs and timing during
task scheduling [15]. Dubey et al. advanced a novel multi-objective CR-PSO task scheduling algorithm.
This algorithm, which integrates features of traditional chemical reaction optimization with PSO, aims
to meet specific demands and deadlines, thus reducing costs, energy consumption, and the makespan
of tasks [16]. Meziani et al. formulated a metaheuristic hybrid algorithm that combines PSO with
Simulated Annealing (SA-PSO). This algorithm addresses the challenges encountered in two-machine
flow shop scheduling with coupled operations [17]. Mangalampalli et al. designed a new workflow
task scheduling mechanism based on the whale swarm algorithm, effectively prioritizing subtasks
within a workflow and scheduling them to appropriate virtual resources [18]. Alsaidy et al. improved
upon the standard PSO algorithm by incorporating heuristic methods such as ‘longest task to the
fastest processor’ and ‘minimum completion time’, with the objective of curtailing the makespan
in task scheduling [19]. Qi suggested a task scheduling methodology based on an Improved PSO
algorithm (IPSO), designed to decrease task execution time and enhance service quality [20]. Shok-
ouhifar proposed the FH-ACO algorithm, a fuzzy logic-enhanced ant colony optimization approach
that synergized the rapid convergence characteristic of heuristic algorithms with the high-quality
solutions typical of metaheuristic algorithms. This method effectively addressed the placement and
routing problems of virtual network function (VNF) within network function virtualization (NFV)
environments. Simulation results demonstrated its superiority over existing technologies [21].

While metaheuristic algorithms have advanced beyond the capabilities of heuristic methods,
providing a promising avenue for exploring optimal solutions, they also display inherent instability.
The random nature of the initialization process can lead to significant variations in solution quality
for different instances of the same problem. It is noted that the quality of the initial population
significantly impacts the final outcome achieved by the particles in the system; suboptimal initial
solutions may cause the particles to converge around local optima. Despite their ability to explore
solutions under predefined rules, metaheuristic methods such as particle swarm optimization lack
self-learning capabilities. As artificial intelligence technology rapidly evolves, particularly in managing
complex applications, reinforcement learning, with its enhanced self-learning capacities through
environmental interaction, is increasingly being incorporated into task scheduling technologies.



CMC, 2024, vol.79, no.3 5109

2.3 Task Scheduling Based on Reinforcement Learning Algorithm

In the realm of machine learning, recent advancements have demonstrated significant efficacy in
addressing complex challenges. One notable area is the allocation of tasks to resources in dynamic
cloud environments, a process increasingly being addressed through machine learning techniques.
Khan et al. conducted a comprehensive survey and identified seven adaptive methods driven by
performance and supported by queuing networks. The study underscores the potential role of machine
learning, exploration of the search space, and mixed-integer programming in optimizing fitness
functions, which encompass key performance indicators [22]. Typically, the dynamic and complex
nature of distributed graph databases eludes predefined modeling. Yet, task scheduling approaches
employing Q-learning, a branch of reinforcement learning, circumvent the need for such predefined
cloud environment models. These approaches interact with their environment via agents, continuously
enhancing their understanding of situational contexts and decision-making abilities. Consequently,
they adapt more effectively to the dynamic changes in external environments, thus improving task
scheduling efficiency. Consequently, reinforcement learning emerges as a more suitable approach for
task scheduling problems when compared to other machine learning techniques.

DeepMind’s team utilized a blend of reinforcement learning and deep learning to dramati-
cally cut energy consumption in Google’s data centers. By monitoring operations and creating a
predictive model of energy consumption, which considered around 120 operational variables, they
enhanced energy efficiency, achieving a reduction in server energy usage by approximately 40% [23].
Garí et al. employed a Q-learning-based task scheduling method. This approach includes instant
reward functions and state aggregation to enhance the management of multiple virtual machines,
with a focus on reducing response times in cloud computing settings [24]. Ding et al. crafted a task
scheduling architecture for cloud computing, integrating Q-learning with the M/M/n queue theory
model, specifically to improve response times in task scheduling [25]. However, despite its robust
decision-making capacity, reinforcement learning’s perceptual abilities remain limited, reducing its
effectiveness in dynamic cloud environments. Challenges such as slower convergence rates and the
limited capacity of discrete reward functions to reflect the effectiveness of actions become prominent
as the number of environmental states increases.

To overcome these limitations, the amalgamation of deep learning with reinforcement learning
into DRL can augment the perceptual and decision-making capabilities of agents, thereby improving
their proficiency in solving complex problems. Li et al. suggested a DRL-based approach for task
scheduling, applying it to cloud data centers to optimize makespan [26]. Li et al. introduced a schedul-
ing algorithm based on generative adversarial reinforcement learning. This method, augmented with
a discriminator network that incorporates task embedding, has significantly improved and stabilized
the learning process [27]. Zhou et al. developed a scheduling framework incorporating a deep learning
algorithm selector (DLS), trained on labeled data, and a DRL algorithm selector (DRLS), trained
on dynamic scenario feedback, for selecting appropriate scheduling algorithms in various scenarios
[28]. Tran et al. introduced a DRL-based task scheduler primarily focused on maintaining service
quality in cloud data center task scheduling processes [29]. Tong et al. merged Q-learning with a deep
neural network to introduce deep Q-learning for task scheduling, aimed at optimizing makespan in
cloud computing workflow scheduling [30]. Swarup et al. addressed task scheduling in IoT within fog
environments, proposing a DRL method utilizing target networks and experience replay techniques
to improve task response speed [31]. Tang et al. presented a DRL-based representation model capable
of adapting to variations in the number of nodes and tasks [32]. Yan et al. devised a DRL method
for handling real-time jobs, concentrating on allocating incoming jobs to suitable virtual machines.
This strategy is aimed at optimizing energy consumption while maintaining high service quality [33].



5110 CMC, 2024, vol.79, no.3

Cheng et al. developed a DRL-based scheduling method (DRL-Cloud) for managing workflow tasks
with dependency constraints in cloud data centers, with a focus on reducing energy consumption
[34]. Dong et al. introduced a DRL-based task scheduling algorithm (RLTS), which dynamically
assigns tasks with priority relations to appropriate cloud servers to minimize task execution time
[35]. Bi et al. established an Improved Deep Q-learning Network (IDQN) for green data center cloud
service providers, aiming to allocate computing resources and schedule user tasks efficiently and
effectively [36].

Methods of task scheduling in reinforcement learning signify a novel application of artificial intel-
ligence within distributed graph databases. These reinforcement learning agents acquire knowledge
about the patterns of distributed graph databases through interaction with the cloud environment,
thereby enhancing the task scheduling process and surpassing traditional fixed scheduling approaches.
Despite its advantages, reinforcement learning’s task scheduling optimization for distributed graph
databases is not yet complete. Deep learning compensates for the perceptual problems of reinforcement
learning, but the introduction of deep learning also brings new issues that need to be addressed.
Task scheduling for distributed graph databases remains a multifaceted challenge, especially as cloud
environments and task models become increasingly complex, making efficient task scheduling more
challenging. DRL methods face several new issues in task scheduling:

(1) Deep learning hinges on a large corpus of labeled data, whereas DRL acquires knowledge
through environmental interactions. During the initial phases, the scarcity of data results in both
limited environmental understanding by the neural network and rudimentary decision-making by the
reinforcement learning agent.

(2) Reinforcement learning operates on scalar rewards, which are characteristically sparse, noisy,
and subject to delays. The efficacy of experience data utilization in DRL is suboptimal, leading to an
underutilization of the inherent value of this data.

The Q-DRL method distinguishes itself from existing methodologies in several key aspects:

• Application of the DRL Framework: The Q-DRL approach employs Double Deep Q-Network
(Double DQN), a DRL algorithm that autonomously learns and optimizes scheduling deci-
sions. Unlike traditional heuristic and metaheuristic algorithms (such as PSO, FCFS, LCFS,
etc.), Q-DRL not only relies on historical data but is also capable of learning and adapting
through real-time interaction with the environment.

• Parallelization of Task Phases: In scheduling workflows, Q-DRL specifically accounts for the
dependencies between tasks and conducts a parallelization of the workflow tasks prior to
scheduling. This division helps to fully utilize computational resources, increasing the level of
task parallelism and system throughput.

• Adaptive Scheduling Strategy: Q-DRL is designed with a dynamically adaptive scheduling strat-
egy. It optimizes scheduling decisions by continually learning from changes in the environment,
allowing the algorithm to better adapt to the evolving workflow loads and system statuses.

• Reward Function Design: The reward function in Q-DRL considers not only the minimization
of the makespan but also aims to minimize response times. This dual consideration enables the
algorithm to reduce task completion times while simultaneously enhancing user experience.

• Load Balancing: The Q-DRL algorithm is specifically tailored for distributed graph databases,
optimizing load balancing to ensure efficient utilization of system resources and stability of the
system.



CMC, 2024, vol.79, no.3 5111

3 Methodology
3.1 Distributed Graph Database Workflow Task Scheduling Model

Distributed graph database tasks typically encompass data management, graph querying, and
graph analysis. Central servers in distributed graph databases must consider the dependencies between
tasks to effectively schedule and distribute tasks across the server network, ensuring the system’s
operational requirements are met and stability is maintained. The distributed graph database workflow
task model combines various sub-tasks into a complete workflow, which is then dispatched to different
servers for execution, thereby enhancing the processing efficiency of the distributed graph database.

The scheduling of distributed graph database workflow tasks refers to the process by which the
central server of the distributed graph database automates the scheduling, allocation, and execution
of tasks. This process can be divided into several steps: First, constructing a Directed Acyclic Graph
(DAG) relationship model for the sub-tasks of the database workflow; then, parallelizing the execution
stages and scheduling sequences of the workflow sub-tasks; and finally, using a depth reinforcement
learning scheduling algorithm with time optimization and load balancing constraints to dispatch the
sub-tasks to the servers for execution.

The structure and attributes of the DAG model assist in task scheduling within distributed graph
databases in the following ways:

• Task Dependencies: The edges in a DAG represent the dependencies between tasks, ensuring
that tasks are executed in the correct order and thereby avoiding circular dependencies and
potential deadlocks.

• Parallelism: DAGs facilitate the clear identification of tasks without dependencies, which can be
executed in parallel. This promotes the parallel utilization of resources in distributed systems,
enhancing execution efficiency.

• Optimization Paths: Utilizing DAGs, various optimization algorithms can be applied to find the
shortest execution path or the most optimal resource utilization path, thus reducing the overall
execution time of the workflow.

• Predictability: Analyzing a DAG can predict the completion time of the entire workflow,
identify potential bottlenecks in advance, and allow for the rational allocation and reservation
of resources.

In distributed graph databases, DAGs effectively model, schedule, and execute sub-tasks such as
graph queries and analyses. By identifying sub-tasks that can be parallelized, the processing efficiency
of the database is improved.

Given that the tasks within the distributed graph database workflow are interconnected with
dependencies, meaning some tasks must be executed after others, a DAG is utilized to construct the
associated model of the distributed graph database workflow tasks. The workflow under consideration
is represented by a specific structure DAG W (T , D), where vertices represent sub-tasks, T =
{t1, t2, . . . , tn} includes a set of sub-tasks within the workflow and directed edges represent dependencies
between tasks, D = {Dik|i, k ≤ n} is the set of these directed edges, indicating dependencies where
Dik implies that there is a directed edge from ti to tk, with tk being a sub-task of ti. Each sub-task
ti = (jobid, taskid, datai, mi, ci, stime) includes the workflow task number jobid, the sub-task number taskid,
the data volume datai of the sub-task, and the demand for memory mi and CPU resources ci, with stime

representing the time when the user or application submits the distributed graph database workflow
task to the central server, also known as submission time.



5112 CMC, 2024, vol.79, no.3

An example of a distributed graph database workflow task model with six sub-tasks is shown as
Fig. 1. Except for the initial task (Task1, denoted as tstart), the other five tasks need to wait for all parent
tasks to finish before they can begin execution, with the parent task set of task ti denoted as PT (ti),
and the final task as Task6, denoted as tend.

Figure 1: An example of a distributed graph database workflow task model containing 6 subtasks

The inherent total resources of a distributed graph database server can be modeled as V =
{v1, v2, . . . , vm}, where m represents the number of servers in the distributed graph database. The
resource configuration of any given server is represented as vi = (mipsi, cpui, memi, diski), where mipsi

indicates the processing speed of the CPU, cpui denotes the number of CPU cores, memi the size of the
memory, and diski the disk capacity. If task ti is scheduled to execute on server vk, the execution time
for each task, denoted as ti, is outlined in Eq. (1).

ET (ti) = datai

mipsk

(1)

The total scheduling time for a workflow task comprises both its execution time and transmission
time hi, the latter referring to the bidirectional communication time between the central and local
servers. The completion time ECT (ti) of task ti can be represented by Eq. (2). If tstart has no parent
tasks, its completion time is simply the combined amount of the execution time and the transmission
time. If the task has dependencies, its completion time is the highest value of the completion times in
the parent task set PT (ti) plus its own execution time and transmission time.

ECT (ti) =
{

ET (ti) + hi, PT (ti) = ∅

maxtk∈PT(ti) {ET (tk) + hk} + ET (ti) + hi, PT (ti) �= ∅
(2)

Eq. (3) defines the makespan of the workflow, specifically marking the completion time of the
final task, tend. The max function is employed here to account for the possibility that tend may have
multiple parallel sub-tasks.

MSjobid
= max (ECT (tend)) (3)

Since the completion of the workflow hinges on the conclusion of all its sub-tasks due to their
interdependencies, the response time of the entire workflow is used as the standard for measurement.
The central server schedules the sub-tasks of the workflow task to other servers, and the response
time of the workflow is the total time from the central server starting to schedule the sub-tasks to the
point when all tasks have signaled completion. If a workflow task cannot be completed due to issues
with some sub-tasks, then using the time it began execution as the response time is not practically



CMC, 2024, vol.79, no.3 5113

significant. Therefore, the scheduling start time stime of the first task tstart is taken as the workflow task’s
scheduling start time, and the response time of the workflow task is represented by Eq. (4). In scenarios
where multiple workflow tasks coexist, the average response time is represented by Eq. (5).

RTjobid
= MSjobid

− stime (4)

RTave =
∑n

id=1 RTjobid

n
(5)

In the context of scheduling tasks in a distributed graph database workflow, to accommodate the
simultaneous presence of multiple workflow tasks, the concept of makespan MS for the central server
of the distributed graph database is also defined, as shown in Eq. (6). Here, STk = uk − start (vk)

denotes the completion time of server vk, with uk representing the time when all tasks of multiple
workflows scheduled to the k-th server are completed, and start (vk) being the time when the k-th
server begins executing tasks, across m servers.

MS = max ({ST0, ST1, . . . , STm}) (6)

After the scheduler dispatches tasks to a server, it will immediately occupy the CPU and other
relevant resources according to the tasks’ resource requirements. The resources that remain idle on the
server are then denoted as remaink = (

mipsremain
k , cpuremain

k , memremain
k , diskremain

k

)
, with the server’s resource

idleness rate represented as shown in Eq. (7).

RIk = remaink

vk

(7)

3.2 Workflow Task Scheduling Optimization Design Based on Deep Reinforcement Learning

In the task scheduling of distributed graph database workflows, the key objective is to employ a
rational scheduling strategy to minimize the completion time of distributed graph database tasks and
maximize scheduling efficiency. Fig. 2 illustrates the workflow task scheduling algorithm framework
proposed in this study, which is based on DRL. Upon the arrival of a new workflow, the tasks are first
subjected to parallelization division, determining both the execution stages and scheduling sequences
of the subtasks. Subsequently, the DRL workflow task scheduling algorithm, which incorporates
time optimization and load balancing constraints, is employed to schedule the subtasks to servers
to optimize execution time and achieve load balancing.

3.2.1 Parallelized Multi-Workflow Task Stage Division

A parallelization division strategy is used in the scheduling of distributed graph database workflow
tasks to enhance the scheduling process by dividing it into parallel execution stages and scheduling
sequences. Outlined below are the sequential steps constituting the complete scheduling process:

1. Task Submission: Users or applications submit workflow tasks W(T , D) to the central server
of the distributed graph database. Each workflow W(T , D) comprises multiple subtasks interlinked
by dependency relations D.

2. Workflow Prioritization: The central server of the distributed graph database sorts the work-
flows based on their submission time, forming a queue of workflows awaiting scheduling, Ltbs =
{W1, W2, . . . , Wn}, where Wn denotes the nth workflow. Workflows submitted earlier are prioritized
in the queue for scheduling.



5114 CMC, 2024, vol.79, no.3

Figure 2: A framework for scheduling algorithms in distributed graph database workflows, utilizing
DRL techniques

3. Parallelization Division:

a) Parallelization of execution stages:

For each workflow Wi (T , D) in the queue Ltbs, the central server parallelizes the execution stages
based on the dependency relations D, dividing workflow Wi into multiple executable stages. Each stage
Mij = {tik|PT (tik) ⊆ ∪j−1

l=1Mil}, ∀k contains a set of tasks that can be executed in parallel. Here, tik refers
to the k-th task in workflow Wi, PT (tik) represents the parent task set of the kth task in workflow Wi,
and the tasks in Mij are those whose all parent tasks are in the previous j − 1 stages, indicating that
there are no dependencies between them. Thus, Mij is the j-th parallel executable task stage in the i-th
workflow.

b) Parallelization of scheduling sequences

The central server collects feature information of each task and its parent tasks PT (tik), estab-
lishing a parallelized scheduling sequence Pij = {Mi1, Mi2, . . . , Mik}, where i represents the workflow
index, and j represents the index of parallel executable task stages within the workflow. Hence, Pij is
the scheduling sequence for the j-th parallel executable task stage in the i-th workflow.

4. Multi-Workflow Scheduling: The central server retrieves the parallelized scheduling sequence
Pij for each workflow Wi, comprising multiple stages Mij that can be executed in parallel. The
server then schedules tasks within these stages, distributing them across different servers for parallel
execution. This study introduces a novel task scheduling algorithm utilizing DRL, primarily aimed at
optimizing execution time and facilitating load balancing within distributed systems.

5. Task Execution and Monitoring: Servers commence the execution of the allocated tasks. The
central server of the distributed graph database actively monitors the execution status of all tasks.
As soon as a task is completed, the central server immediately checks its child tasks. The algorithm
activates a dependent task once all its prerequisite parent tasks have been completed, thus advancing
it into the scheduling phase for subsequent processing.

6. Workflow Completion and Removal: Once all subtasks of a workflow are completed, the
workflow Wi is considered complete. The central server removes it from the queue of workflows
awaiting scheduling, Ltbs = {W ∈ Ltbs|W �= Wi}, and begins scheduling the next workflow.



CMC, 2024, vol.79, no.3 5115

This process repeats continuously until the queue Ltbs is empty, meaning all workflows have
been processed. Throughout this procedure, the central server not only realizes parallel processing
of tasks within workflows but also facilitates parallel processing across different workflows, thereby
significantly enhancing the parallel processing capabilities and overall execution efficiency of the
distributed graph database.

3.2.2 Deep Reinforcement Learning Workflow Task Scheduling Algorithm with Time Optimization and
Load Balancing Constraints

The study addressed the optimization of the makespan of distributed graph database workflow
tasks, while also considering the response time of the workflow tasks. Given the strong dependency
relationships between subtasks within a workflow task, response time is a crucial metric for successful
task completion. The DRL model employed in this research is the Double DQN. The paper first
outlines the design and definition of the state and action spaces for distributed graph database
workflow task scheduling. Subsequently, it introduces an intelligent agent reward function with con-
straints for time optimization and load balancing, enhancing the perception of workflow completion
response time.

During the scheduling process, the concept of online learning is utilized, meaning that the
algorithm is always running. As new workflow tasks arrive, they are processed immediately, and the
scheduling strategy is updated. The agent refines the action selection policy continuously, aiming to
optimize the makespan value MS of the distributed graph database workflow tasks and reduce the
average response time RTave, thus achieving load balancing across distributed graph database servers
and enhancing processing efficiency.

The specific steps of the proposed DRL workflow task scheduling algorithm, constrained by time
optimization and load balancing, are as follows:

1. Definition and initialization:
a) Define the state space S

The state of the distributed graph database servers is defined as Vstate = (V1, V2, V3, . . . , Vk), where
Vstate = (V1, V2, V3, . . . , Vk) includes the server’s resource configuration vk, the completion time of
tasks already allocated on the server ECTalloc = {ECT (t1) , ECT (t2) , . . . , ECT (tn)}, and the server’s
idle resource rate RIk.

The state of subtasks within the workflow is defined as Twait = (T1, T2, T3, . . .), where Ti =
(ti, PT (ti)) includes the remaining subtasks ti pending in the current workflow, along with the
execution information of each subtask’s parent task PT (ti), to determine if the subtask can be
scheduled.

The server state information and pending task information are combined into a set of state space
collections S = (S1, S2, S3, . . .), where each state space Si = (Vstate, Twait).

b) Define action space A

The action space is a set of scheduling operations that the scheduler can perform, defined by the
number of available distributed graph database servers, i.e., A = (1, 2, 3, . . . , k).

c) Initialize the evaluation network Q(s, a, θ) and the target network Q (s, a, θ−)

In Double DQN, the Q value is calculated by a neural network, commonly referred to as the Q
network. Its input is the state of the environment, and its output is the expected return of each action,



5116 CMC, 2024, vol.79, no.3

i.e., the Q value. The Double DQN method incorporates two distinct Q networks: the evaluation
network, which is responsible for guiding the agent, choosing actions, and calculating loss, and the
target network, which is tasked with determining the Temporal Difference (TD) target value TDtarget.

A target network Q (s, a, θ−) is constructed with the same structure as the evaluation network
Q(s, a, θ) but different parameters, where θ �= θ−, s is the current state, a is the action taken in state s,
θ is the parameters of the evaluation network, and θ− is the parameters of the target network.

2. Online learning process:

(1) Waiting stage: If no new workflow task is present, the algorithm remains in a waiting state
until a new workflow task arrives.

(2) Upon the arrival of a new task: When a new workflow task arrives, the following steps are
executed.

For each iteration of the scheduling algorithm:

a) The agent observes the current state s and selects an action a (a ∈ A), executes action a,
transitions to the next state s′, and receives a reward r. The reward r is derived from a reward function
with constraints for time optimization and load balancing, considering both the optimization of the
distributed graph database workflow task scheduling’s makespan MS and the average response time
RTave, as shown in Eq. (8):

R = ϕ1 ∗ 1
MS

+ ϕ2 ∗ 1
RTave

(8)

where ϕ1 and ϕ2 are weights, and ϕ1 + ϕ2 = 1.

b) Store the tuple (s, a, r, s′), representing the learned experience of the agent, in the experience
replay unit.

c) Randomly sample a minibatch of transitions (s, a, r, s′)label from the experience replay unit.

d) For each sampled transition (s, a, r, s′)label:

1© If s′ is a terminal state, set TDtarget = r.

2© Otherwise, the evaluation network Q(s, a, θ) is used to find the action a′ that produces the
maximum Q value as shown in Eq. (9):

a′ = argmaxa∈AQ (s′, a, θ) (9)

Then, the target network Q (s, a, θ−) is used to calculate the target Q value TDtarget as shown in
Eq. (10):

TDtarget = r + γ ∗ Q
(
s′, a′, θ−)

(10)

where γ is the discount factor, used to balance the weight of immediate rewards and future rewards.

e) The loss L (θ) is calculated to measure the discrepancy between the predicted Q value Q(s, a, θ)

by the evaluation network and the target Q value TDtarget. The calculation formula for L (θ) is shown
in Eq. (11):

L (θ) = E

[(
TDtarget − Q (s, a, θ)

)2
]

(11)

After calculating L (θ), gradient descent is used to compute the gradient of the loss function with
respect to the parameters θ , as shown in Eq. (12):



CMC, 2024, vol.79, no.3 5117

∇θ = ∂L (θ)

∂θ
= E

[(
y − Q (s, a, θ)

Q (s, a, θ)

∂θ

)]
(12)

The gradient of the loss function with respect to θ , ∇θ , is then used to update the parameters θ ,
as shown in Eq. (13):

θ = θ + ∇θ (13)

f) The initial value for the target network update interval C is defined, setting a threshold for the
gradient, and the maximum Cmax and minimum Cmin values for the update interval are established, along
with the adjustment step size ∇C. The model achieves a dynamic adjustment in the target network’s
update frequency through the update interval parameter C and the gradient, thereby enhancing the
network’s learning efficiency. The specific update strategy is as follows:

1© If the value of the gradient is less than the threshold, indicating that the network is converging,
the number of update intervals can be reduced. That is, when the second norm of the gradient ‖∇θ‖ <

threshold, and C > Cmin, then C = C − ∇C.

2© In cases where the gradient remains significant despite reaching the update interval C, it is
feasible to incrementally increase the value of C for better results. That is, when ‖∇θ‖ ≥ threshold,
and C < Cmax, then C = C + ∇C.

3© If the current iteration step is an exact multiple of C, then θ− = θ , allowing the parameters of
the evaluation network to be copied to the target network so that the target network’s Q value can be
used to calculate a more accurate.

The study addressed the optimization of the makespan of distributed graph database workflow
tasks, while also considering the response time of the workflow tasks. Given the strong dependency
relationships between subtasks within a workflow task, response time is a crucial metric for successful
task completion. The DRL model employed in this research is the Double DQN. The paper first
outlines the design and definition of the state and action spaces for distributed graph database
workflow task scheduling. Subsequently, it introduces an intelligent agent reward function with con-
straints for time optimization and load balancing, enhancing the perception of workflow completion
response time.

The core idea of the Q-DRL scheduling algorithm is to optimize the scheduling strategy through
autonomous learning by an agent. This algorithm involves the following key aspects:

• Architecture: The architecture used is Double Deep Q-Network (Double DQN), which includes
two neural networks: An evaluation network and a target network. The evaluation network
selects actions according to the current policy and computes loss, while the target network is
used to stabilize learning objectives.

• Training Process: The training process involves defining the state space and action space, as well
as designing the agent’s reward function, which includes constraints for time optimization and
load balancing. The agent learns by interacting with the environment, collecting experiences,
and using experience replay to update the networks, continuously optimizing its action selection
strategy.

• Adaptability: The Q-DRL algorithm can adapt to dynamic changes within the distributed graph
database, such as variations in task load or server performance fluctuations. The agent processes
new workflow tasks in real time through online learning and updates the scheduling strategy to
optimize the completion time of distributed graph database workflow tasks, while also reducing
response times and achieving server load balancing.



5118 CMC, 2024, vol.79, no.3

In this manner, the Q-DRL scheduling algorithm is capable of learning and adjusting strategies
in a dynamically changing environment, optimizing task scheduling performance, and enhancing the
overall efficiency of distributed graph databases.

The specific implementation of Q-DRL is illustrated in Algorithm 1. Throughout the execution of
the algorithm, scheduling decisions for each workflow task are obtained, which determine on which
server each sub-task should be executed.

Algorithm 1: Implementation of Q-DRL.
Input:

The state space S; the action space A.
Output:

Scheduling decisions for each workflow task.
Initialization

1 Initialize evaluation network Q(s, a, θ), target network Q (s, a, θ−), replay memory U ;
2 Set discount factor γ , update interval C, gradient threshold threshold.

Online Learning Process
Wait Stage:

3 If no new workflow task, wait.
New Task Arrival:

4 for each new workflow task
5 Observe the current state s.
6 Select an action a from A.
7 Execute action a, observe reward r and next state s′.
8 Store the transition (s, a, r, s′) in U .
9 Sample a minibatch from U .
10 for each sample in minibatch
11 a: Calculate TDtarget:
12 If s′ is terminal, then TDtarget = r.
13 Else TDtarget = r + γ ∗ Q (s′, a′, θ−).
14 b: Update the evaluation network with gradient descent.
15 end for
16 Adjust the target network update interval C:
17 If ‖∇θ‖ < threshold and C > Cmin, then C = C − ∇C.
18 If ‖∇θ‖ ≥ threshold and C < Cmax, then C = C + ∇C.
19 If the current iteration steps can be divided by C, then θ− = θ .
20 end for
21 end

4 Experiment
4.1 Experimental Setup

In this subsection, the proposed algorithm was experimentally validated in a simulated distributed
graph database environment. The hardware platform configuration for the experiment consisted of an
i9-10980XE CPU, 64 GB of RAM, 8 TB of hard disk space, and an RTX 2080. The software platform
was established on a Windows 10 operating system using Python and TensorFlow for algorithm
simulation experiments. The dataset used in the experiments was derived from the cluster-trace-v2018



CMC, 2024, vol.79, no.3 5119

workflow dataset publicly available from the Alibaba Data Center, which includes task information
containing DAG dependencies. To assess the performance of the proposed method, it was compared
with four other scheduling methods: Random Scheduling, First-fit Scheduling, DRL-Cloud, and
IDQN Scheduling. This subsection conducted multiple group experiments to compare and validate
the performance of the proposed algorithm under different workflow load quantities and machine
elasticity change counts. The proposed algorithm is referred to as Q-DRL for convenience in legend
plotting.

4.2 Analysis of Experimental Results

Initially, the algorithm’s scheduling efficacy was evaluated across varying quantities of workflow
task loads. Each workflow contained several sub-tasks with interdependencies, with each task having
varying resource requirements and instance counts. A virtual machine environment consisting of four
units with 1000 MIPS, 1 CPU, and 1 GB each of memory and disk was constructed. Subsequently, the
workflow load quantity was dynamically increased for multiple group experiments.

The experimental results for the makespan are illustrated in Fig. 3. Initially, when the number of
workflow tasks in the system is small, the difference in the scheduling outcomes of various algorithms
is negligible due to the relative abundance of machine resources. However, as the number of workflows
in the scheduling process gradually increases, so does the number of subtasks within each workflow,
leading to more complex dependencies and parallelisms. The experimental findings indicate that with
an increase in the number of workflows, the makespan of both the First-fit and Random scheduling
methods rapidly escalates, with the Random method exhibiting instability in its scheduling outcomes
due to its inherent randomness. Q-DRL, through its parallel stage division of workflows and the design
of a novel reward function, achieves better results. When compared to First-fit and Random methods,
Q-DRL achieves an average improvement of 12.4% and 11.9% in makespan, respectively. Compared
to other reinforcement learning methods, under the constraints of limited machine resources, Q-
DRL enhances the parallel partitioning and execution of workflow tasks. Motivated by the newly
designed reward function with time optimization and load balancing constraints, Q-DRL attains lower
makespan results than DRL-Cloud and IDQN, with an average performance improvement of 4.4%
and 2.6%, respectively. The findings indicate that the suggested approach is capable of delivering
efficient scheduling in response to a surge in the number of tasks in distributed graph database
workflows, thereby maintaining consistent service functionality.

Figure 3: The value of makespan when the number of workflow loads changes

The average response times for workflow tasks, as depicted in Fig. 4, reveal that Q-DRL
consistently outperforms both IDQN and DRL-Cloud methods across various workflow loads.



5120 CMC, 2024, vol.79, no.3

As the number of workflow loads increases, so does the count of interdependent subtasks within
each workflow, leading to an overall rise in the number of tasks. The response time curves, as a
function of workflow load, indicate that the Random scheduling method, due to its stochastic nature,
yields unpredictable results and generally results in the longest average response times. The First-fit
scheduling method fares slightly better, yet still lags behind other strategies.

Figure 4: The value of the average response time when the number of workflow loads changes

More specifically, at a workflow count of seven, Q-DRL’s average response time is approximately
2.03% and 4.74% lower than that of IDQN and DRL-Cloud, respectively. As the workflow count
decreases to six, the gap widens, with Q-DRL outperforming IDQN and DRL-Cloud by around 2.71%
and 4.88%, respectively. With five workflows, the improvement in average response time offered by Q-
DRL is approximately 1.96% and 4.53% over IDQN and DRL-Cloud. This trend continues as the
number of workflows reduces to four, with Q-DRL maintaining a lead of approximately 1.56% and
4.17% over IDQN and DRL-Cloud, respectively. At a workflow count of three, the difference is 1.86%
and 3.51%, and at two workflows, Q-DRL’s advantage over IDQN and DRL-Cloud peaks at 3.52%
and 6.43%.

Q-DRL exhibits a substantial advantage in handling both smaller and larger workflow loads.
The method’s ability to efficiently parallelize the scheduling of workflow tasks, coupled with a
reward function that constrains the optimization process, results in lower average response times for
workflows compared to First-fit, Random, DRL-Cloud, and IDQN. Consequently, the proposed Q-
DRL approach is adept at optimizing workflow response times while upholding completion deadlines,
thus ensuring stable service quality in distributed graph databases, even as system workflow loads
increase.

During the experiments, the idle rate of machine resources at each time point was also recorded,
and the average idle rate of cluster machine resources throughout the entire scheduling process was
calculated, as illustrated in Fig. 5, there is a notable change in performance with increasing workflow
volume, the degree of task parallelism also begins to increase, and the resource idle rate starts to
decrease but does not continue to drop to zero. This is because the dependency constraints within the
workflows mean that resources cannot be fully utilized at all times. When the number of workflows
is low, some tasks can only wait to be scheduled due to dependency relationships, leading to gaps in
resource utilization. Concurrently, a rise in workflow loads correlates with an increase in the number
of parallelizable subtasks, and machine resources are progressively more utilized, leading to a decrease
in idle rates.



CMC, 2024, vol.79, no.3 5121

Figure 5: Average idle rate of the cluster under different workload loads

The experimental outcomes demonstrate a superior performance of the Q-DRL algorithm in
maintaining lower average idle rates when compared to IDQN and DRL-Cloud across all evaluated
workflow scenarios. With two workflows, Q-DRL’s idle rate is 22.4%, presenting reductions of 4.3%
and 8.2% relative to IDQN and DRL-Cloud, respectively. For three workflows, the idle rate for
Q-DRL is at 19%, yielding a 4.2% improvement over IDQN and 8.2% over DRL-Cloud. At four
workflows, Q-DRL registers an 18% idle rate, outperforming IDQN and DRL-Cloud by margins of
5.3% and 10%, respectively. With five workflows, Q-DRL achieves a 17% idle rate, surpassing IDQN
by 5.6% and DRL-Cloud by 10.5%. For six workflows, Q-DRL exhibits a 16.6% idle rate, which is 6.2%
more efficient than IDQN and 10.8% more than DRL-Cloud. At seven workflows, Q-DRL continues
to outperform with a 14.7% idle rate, 4.5% better than IDQN and 8.1% better than DRL-Cloud.
Under varying workflow loads, the idle rate for Q-DRL remains consistently lower than that for First-
fit, Random, DRL-Cloud, and IDQN scheduling methods, demonstrating that its task scheduling is
more parallel than other methods and can utilize system resources more fully and efficiently. Although
the method proposed in this paper exhibits excellent performance in the experimental environment, its
efficacy in real-world applications will require validation through more extensive testing. Furthermore,
future research may revolve around the aforementioned potential domains to further enhance the
practicality and robustness of the scheduling approach.

5 Conclusion

This article departs from the scheduling of workflow tasks in distributed graph databases with
dependencies and targets the prolonged completion and response times of workflow tasks caused by
task dependencies and insufficient parallel partitioning. A method for workflow task scheduling in
distributed graph databases, predicated on the principles of DRL, is hereby proposed. Initially, the
method employs DAG to build a workflow task model for distributed graph databases to capture the
inter-task dependencies. Following this, it partitions the workflow tasks in parallel, extracting feature
information of each task and its parent from the workflow task model to establish a sequence for paral-
lel task scheduling. The study then formulates a time-optimized and load-balanced constrained DRL
workflow task scheduling model, modeling both the state and action spaces, and introducing a novel
reward function. Comprehensive experimental tests were conducted in environments with varying
workflow task loads and differing numbers of cluster machines. The efficacy of the proposed algorithm
is compared with that of established methods, providing a comprehensive analysis of its performance.
The empirical results unequivocally demonstrate that our proposed method not only ensures minimal



5122 CMC, 2024, vol.79, no.3

makespan for workflow scheduling but also significantly diminishes the average response time for
workflows. This denotes a marked superiority in performance relative to comparative methodologies.

Acknowledgement: The authors would like to express their gratitude for the valuable feedback and
suggestions provided by all the anonymous reviewers and the editorial team.

Funding Statement: This research was funded by the Science and Technology Foundation of State Grid
Corporation of China (Grant No. 5108-202218280A-2-397-XG).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Shuming Sha, Wang Luo; dataset preparation and data preprocessing: Naiwang Guo; analysis
and interpretation of results: Shuming Sha, Naiwang Guo, Wang Luo, Yong Zhang; draft manuscript
preparation: Shuming Sha, Wang Luo, Yong Zhang; manuscript review and finalisation: Shuming
Sha, Wang Luo, Yong Zhang. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The training data used in this paper were obtained from cluster-
trace-v2018. Available online via the following link: https://github.com/alibaba/clusterdata/tree/
master/cluster-trace-v2018.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Besta et al., “The graph database interface: Scaling online transactional and analytical graph workloads

to hundreds of thousands of cores,” in Proc. SC, 2023, pp. 1–18.
[2] C. Feng, X. Xu, L. Chen, M. Yu, and X. Guo, “The core technique and application of knowledge graph

in power grid company administrative duty,” in Proc. ISAEECE, 2023, vol. 12704, pp. 249–254. doi:
10.1117/12.2680494.

[3] R. Sun and J. Chen, “Design of highly scalable graph database systems without exponential performance
degradation,” in Proc. BiDEDE, 2023.

[4] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database engines via query partitioning,” in
Proc. ISSTA, 2023, pp. 140–149.

[5] M. V. D. Boor, S. C. Borst, J. S. H. V. Leeuwaarden, and D. Mukherjee, “Scalable load balancing in
networked systems: A survey of recent advances,” SIAM Rev., vol. 64, no. 3, pp. 554–622, 2022. doi:
10.1137/20M1323746.

[6] E. Hyytiä and S. Aalto, “On round-robin routing with FCFS and LCFS scheduling,” Perform. Eval., vol.
97, pp. 83–103, 2016. doi: 10.1016/j.peva.2016.01.002.

[7] S. Seth and N. Singh, “Dynamic heterogeneous shortest job first (DHSJF): A task scheduling approach for
heterogeneous cloud computing systems,” Int. J. Inform. Technol., vol. 11, no. 4, pp. 653–657, 2019. doi:
10.1007/s41870-018-0156-6.

[8] J. Békési, G. Dósa, and G. Galambos, “A first fit type algorithm for the coupled task scheduling problem
with unit execution time and two exact delays,” Eur. J. Oper. Res., vol. 297, no. 3, pp. 844–852, 2022. doi:
10.1016/j.ejor.2021.06.002.

[9] C. Gao, V. C. S. Lee, and K. Li, “D-SRTF: Distributed shortest remaining time first schedul-
ing for data center networks,” IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 562–575, 2018. doi:
10.1109/TCC.2018.2879313.

[10] O. Ajayi, F. Oladeji, C. Uwadia, and A. Omosowun, “Scheduling cloud workloads using carry-on weighted
round robin,” in Proc. AFRICOMM, Lagos, Nigeria, 2018, pp. 60–71.

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://doi.org/10.1117/12.2680494
https://doi.org/10.1137/20M1323746
https://doi.org/10.1016/j.peva.2016.01.002
https://doi.org/10.1007/s41870-018-0156-6
https://doi.org/10.1016/j.ejor.2021.06.002
https://doi.org/10.1109/TCC.2018.2879313


CMC, 2024, vol.79, no.3 5123

[11] M. H. Shirvani and R. N. Talouki, “A novel hybrid heuristic-based list scheduling algorithm in heteroge-
neous cloud computing environment for makespan optimization,” Parallel Comput., vol. 108, pp. 102828,
2021. doi: 10.1016/j.parco.2021.102828.

[12] G. Zhao, “Cost-aware scheduling algorithm based on PSO in cloud computing environment,” Int. J. Grid
Distrib. Comput., vol. 7, no. 1, pp. 33–42, 2014. doi: 10.14257/ijgdc.2014.7.1.04.

[13] N. Mansouri, B. M. H. Zade, and M. M. Javidi, “Hybrid task scheduling strategy for cloud computing by
modified particle swarm optimization and fuzzy theory,” Comput. Ind. Eng., vol. 130, pp. 597–633, 2019.
doi: 10.1016/j.cie.2019.03.006.

[14] D. Wu, “Cloud computing task scheduling policy based on improved particle swarm optimization,” in Proc.
ICVRIS, 2018, pp. 99–101.

[15] M. Kumar and S. C. Sharma, “PSO-COGENT: Cost and energy efficient scheduling in cloud environment
with deadline constraint,” Sustain. Comput.: Inform. Syst., vol. 19, pp. 147–164, 2018.

[16] K. Dubey and S. C. Sharma, “A novel multi-objective CR-PSO task scheduling algorithm with deadline
constraint in cloud computing,” Sustain. Comput.: Inform. Syst., vol. 32, pp. 100605, 2021.

[17] N. Meziani, M. Boudhar, and A. Oulamara, “PSO and simulated annealing for the two-machine flowshop
scheduling problem with coupled-operations,” Eur. J. Ind. Eng., vol. 12, no. 1, pp. 43–66, 2018. doi:
10.1504/EJIE.2018.089877.

[18] S. Mangalampalli, G. R. Karri, and G. N. Satish, “Efficient workflow scheduling algorithm in cloud
computing using whale optimization,” Procedia Comput. Sci., vol. 218, pp. 1936–1945, 2023. doi:
10.1016/j.procs.2023.01.170.

[19] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization of PSO task scheduling algorithm
in cloud computing,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 6, pp. 2370–2382, 2022. doi:
10.1016/j.jksuci.2020.11.002.

[20] W. Qi, “Optimization of cloud computing task execution time and user QoS utility by
improved particle swarm optimization,” Microprocess. Microsyst., vol. 80, pp. 103529, 2021. doi:
10.1016/j.micpro.2020.103529.

[21] M. Shokouhifar, “FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual net-
work function placement and routing,” Appl. Soft Comput., vol. 107, pp. 107401, 2021. doi:
10.1016/j.asoc.2021.107401.

[22] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong and R. Buyya, “Machine learning (ML)-centric resource
management in cloud computing: A review and future directions,” J. Netw. Comput. Appl., vol. 204, pp.
103405, 2022. doi: 10.1016/j.jnca.2022.103405.

[23] J. Gao, “Machine learning applications for data center optimization,” Google White Paper, vol. 21, pp.
1–13, 2014.

[24] Y. Gari, D. A. Monge, and C. Mateos, “A Q-learning approach for the autoscaling of scientific workflows
in the cloud,” Future Gener. Comput. Syst., vol. 127, pp. 168–180, 2022. doi: 10.1016/j.future.2021.09.007.

[25] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin and J. Zeng, “Q-learning based dynamic task scheduling
for energy-efficient cloud computing,” Future Gener. Comput. Syst., vol. 108, pp. 361–371, 2020. doi:
10.1016/j.future.2020.02.018.

[26] F. Li and B. Hu, “DeepJS: Job scheduling based on deep reinforcement learning in cloud data center,” in
Proc. ICBDC, 2019, pp. 48–53.

[27] J. Li, X. Zhang, J. Wei, Z. Ji, and Z. Wei, “GARLSched: Generative adversarial deep reinforcement learning
task scheduling optimization for large-scale high performance computing systems,” Future Gener. Comput.
Syst., vol. 135, pp. 259–269, 2022. doi: 10.1016/j.future.2022.04.032.

[28] G. Zhou, R. Wen, W. Tian, and R. Buyya, “Deep reinforcement learning-based algorithms selectors for the
resource scheduling in hierarchical cloud computing,” J. Netw. Comput. Appl., vol. 208, pp. 103520, 2022.
doi: 10.1016/j.jnca.2022.103520.

[29] M. N. Tran and Y. Kim, “A cloud QoS-driven scheduler based on deep reinforcement learning,” in Proc.
ICTC, 2021, pp. 1823–1825.

https://doi.org/10.1016/j.parco.2021.102828
https://doi.org/10.14257/ijgdc.2014.7.1.04
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1504/EJIE.2018.089877
https://doi.org/10.1016/j.procs.2023.01.170
https://doi.org/10.1016/j.jksuci.2020.11.002
https://doi.org/10.1016/j.micpro.2020.103529
https://doi.org/10.1016/j.asoc.2021.107401
https://doi.org/10.1016/j.jnca.2022.103405
https://doi.org/10.1016/j.future.2021.09.007
https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1016/j.future.2022.04.032
https://doi.org/10.1016/j.jnca.2022.103520


5124 CMC, 2024, vol.79, no.3

[30] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling scheme in the cloud computing environment
using deep Q-learning,” Inf. Sci., vol. 512, pp. 1170–1191, 2020. doi: 10.1016/j.ins.2019.10.035.

[31] S. Swarup, E. M. Shakshuki, and A. Yasar, “Energy efficient task scheduling in fog environment
using deep reinforcement learning approach,” Procedia Comput. Sci., vol. 191, pp. 65–75, 2021. doi:
10.1016/j.procs.2021.07.012.

[32] Z. Tang, W. Jia, X. Zhou, W. Yang, and Y. You, “Representation and reinforcement learning for task
scheduling in edge computing,” IEEE Trans. Big Data, vol. 8, no. 3, pp. 795–808, 2020. doi: 10.1109/TB-
DATA.2020.2990558.

[33] J. Yan et al., “Energy-aware systems for real-time job scheduling in cloud data centers: A
deep reinforcement learning approach,” Comput. Electric. Eng., vol. 99, pp. 107688, 2022. doi:
10.1016/j.compeleceng.2022.107688.

[34] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement learning-based resource provisioning
and task scheduling for cloud service providers,” in Proc. ASP-DAC, 2018, pp. 129–134.

[35] T. Dong, F. Xue, C. Xiao, and J. Li, “Task scheduling based on deep reinforcement learning in a cloud
manufacturing environment,” Concurr. Comput., vol. 32, no. 11, pp. e5654, 2020. doi: 10.1002/cpe.5654.

[36] J. Bi, Z. Yu, and H. Yuan, “Cost-optimized task scheduling with improved deep q-learning in green data
centers,” in Proc. SMC, 2022, pp. 556–561.

https://doi.org/10.1016/j.ins.2019.10.035
https://doi.org/10.1016/j.procs.2021.07.012
https://doi.org/10.1109/TBDATA.2020.2990558
https://doi.org/10.1016/j.compeleceng.2022.107688
https://doi.org/10.1002/cpe.5654

	Distributed Graph Database Load Balancing Method Based on Deep Reinforcement Learning
	1 Introduction
	2 Related Works
	3 Methodology
	4 Experiment
	5 Conclusion
	References


