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ABSTRACT

Hyperspectral (HS) image classification plays a crucial role in numerous areas including remote sensing (RS),
agriculture, and the monitoring of the environment. Optimal band selection in HS images is crucial for improving
the efficiency and accuracy of image classification. This process involves selecting the most informative spectral
bands, which leads to a reduction in data volume. Focusing on these key bands also enhances the accuracy
of classification algorithms, as redundant or irrelevant bands, which can introduce noise and lower model
performance, are excluded. In this paper, we propose an approach for HS image classification using deep Q learning
(DQL) and a novel multi-objective binary grey wolf optimizer (MOBGWO). We investigate the MOBGWO for
optimal band selection to further enhance the accuracy of HS image classification. In the suggested MOBGWO, a
new sigmoid function is introduced as a transfer function to modify the wolves’ position. The primary objective
of this classification is to reduce the number of bands while maximizing classification accuracy. To evaluate the
effectiveness of our approach, we conducted experiments on publicly available HS image datasets, including Pavia
University, Washington Mall, and Indian Pines datasets. We compared the performance of our proposed method
with several state-of-the-art deep learning (DL) and machine learning (ML) algorithms, including long short-term
memory (LSTM), deep neural network (DNN), recurrent neural network (RNN), support vector machine (SVM),
and random forest (RF). Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly
improves classification accuracy compared to traditional optimization and DL techniques. MOBGWO-DQL shows
greater accuracy in classifying most categories in both datasets used. For the Indian Pine dataset, the MOBGWO-
DQL architecture achieved a kappa coefficient (KC) of 97.68% and an overall accuracy (OA) of 94.32%. This
was accompanied by the lowest root mean square error (RMSE) of 0.94, indicating very precise predictions with
minimal error. In the case of the Pavia University dataset, the MOBGWO-DQL model demonstrated outstanding
performance with the highest KC of 98.72% and an impressive OA of 96.01%. It also recorded the lowest RMSE
at 0.63, reinforcing its accuracy in predictions. The results clearly demonstrate that the proposed MOBGWO-
DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance
throughout the training process.
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1 Introduction

The classification of hyperspectral (HS) images stands as a vital process in extracting meaningful
information from the vast and complex data these images provide [1]. HS imaging gathers data over
a broad portion of the electromagnetic spectrum, extending well past the visual capabilities of the
human eye, and records the distinctive spectral fingerprint of every pixel [2]. The classification task
involves assigning each pixel to a specific class based on its spectral signature, effectively differentiating
between various materials or objects within the scene. The use of HS image classification, coupled with
the ever-growing computational power and advanced analytical techniques, presents a paradigm shift
in how we observe and interpret the world around us. It allows for an unprecedented level of detail in
analysis, which, in turn, translates into better decision-making across a spectrum of applications, from
managing natural resources to enhancing various communication infrastructure security [3–6].

This technique is particularly potent due to its fine spectral resolution, which allows for the
discrimination between objects that would appear identical in traditional RGB imagery. For instance,
in precision agriculture, this granularity enables farmers to distinguish between plant species and their
respective health statuses, allowing for targeted interventions that can optimize yield and reduce waste
[7]. HS image classification in urban areas serves as a transformative tool for urban management by
providing a detailed spectral understanding of the cityscape. This detailed view is essential for urban
planners, policymakers, and environmentalists who strive to enhance the livability, sustainability, and
resilience of urban environments. In the urban context, the ability to classify the different elements of
an urban landscape allows for efficient land-use planning. Urban sprawl can be monitored, and the
encroachment of built-up areas on natural environments can be tracked with precision [8].

Multispectral (MS) and HS imaging are key techniques in agriculture for crop monitoring, disease
detection, and yield estimation, capturing data at multiple wavelengths [3]. MS imaging uses fewer
spectral bands (3–10) covering broader wavelength ranges, making data processing easier and faster,
suitable for real-time applications with limited resources. In contrast, HS imaging uses hundreds of
narrower bands, providing finer spectral resolution and more detailed spectral signatures, but requires
more complex data processing due to larger data volumes. While HS offers more precise and accurate
analysis, MS is still accurate enough for many applications and offers advantages in cost, simplicity,
and speed. The choice between MS and HS imaging depends on the application’s specific needs for
detail, accuracy, and operational constraints [7].

The classification of HS images inherently deals with the intricate task of sifting through an
abundance of data contained within numerous spectral bands. Each band represents a narrow
wavelength interval of the electromagnetic spectrum and potentially holds crucial information about
the material properties within the imaged scene. However, not all bands contribute meaningful data
for classification purposes; some may carry redundant information or noise that can convolute
the analysis and lead to less accurate outcomes [9–11]. In scenarios where the primary goal is to
classify objects or materials within an image, the effectiveness of classifiers is highly contingent
upon the quality and the dimensionality of the feature space. A feature space bloated with a high
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number of spectral bands can overwhelm classifiers, leading to the Hughes phenomenon. This
phenomenon highlights a paradox in pattern recognition: With an increase in dimensionality, the
classifier’s performance can degrade unless there is a proportionate increase in the training samples.
The reason for this degradation is that with more dimensions, the volume of the feature space increases
exponentially, and the available training samples become sparse, making it difficult for the classifier
to generalize from the training data to new, unseen data [12–14].

Moreover, the presence of redundant bands in HS images can have several detrimental effects on
the classification process. It can exponentially increase the computational burden, as the algorithms
have to process a larger volume of data. This not only slows down the analysis but also requires more
computational resources, which may not be feasible in all application scenarios [15–17]. Moreover, the
existence of noise and closely linked bands may conceal the actual signal, complicating the task of
classifiers in precisely differentiating between various classes. This can result in lower precision and
recall rates in classification tasks, reducing the overall reliability of the analysis.

The act of band selection or dimensionality reduction, therefore, becomes a pivotal step in the
preprocessing of HS data. By employing feature selection techniques, researchers aim to extract the
most informative and discriminative bands for the task at hand [9–12]. This process not only simplifies
the classifier’s model by reducing the complexity of the feature space but also enhances the classifier’s
ability to make accurate predictions by focusing on the most relevant information. Additionally, the
removal of redundant bands leads to faster processing times and less demanding storage requirements,
facilitating more efficient and scalable applications of HS imaging in diverse fields [17–19].

1.1 Related Works

The utilization of meta-heuristic algorithms like the gray wolf optimizer (GWO) in the selection of
optimal bands for HS images is a response to the inherent complexity and high dimensionality of HS
data [5,9–12]. HS images can contain hundreds of bands, and not all of these bands are equally useful
for classification tasks. Some bands may contain redundant information, while others may contain
noise that obscures the meaningful data. Meta-heuristic algorithms, which are inspired by natural
processes and behaviors, provide a way to navigate the vast search space efficiently and effectively
[20–23]. GWO imitates the social structure and predatory strategies of gray wolves in nature. GWO
is especially valuable because it balances exploration and exploitation: It explores the search space
to avoid local minima and exploits the best solutions to converge upon an optimal set of bands
[24–26]. By doing so, it eliminates unnecessary bands, thereby reducing computational load, improving
classification accuracy, and enhancing the overall efficiency of the HS image processing [17–19].

Reinforcement learning (RL), such as deep Q-learning (DQL), offers a different approach to HS
image classification [27–31]. The classification of HS images through DQL represents a significant
leap in the analytical capabilities of remote sensing (RS). HS images, with their high-dimensional
spectral information, pose a unique challenge. Traditional methods can become overwhelmed by the
sheer volume and complexity of the data, leading to inefficiencies or inaccuracies in classification [32].
DQL, a sophisticated machine learning (ML) technique, brings a dynamic approach to tackling this
challenge, fundamentally altering the way we process and interpret HS data. DQL distinguishes itself
by learning to make decisions. It does this by interacting with the environment and learning from the
outcomes of its actions [33]. In an HS image, each pixel can be considered an agent that needs to
be classified based on its spectral signature. DQL navigates through this multidimensional space and
incrementally improves its classification decisions through trial and error, guided by a reward system.
This system penalizes the algorithm for incorrect classifications and rewards it for correct ones, leading
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to a continuous refinement of the decision-making policy. What makes DQL particularly well-suited
to HS image classification is its ability to handle the complexity and subtlety of the data. HS images are
not just large; they contain subtle spectral differences that can be crucial for accurate classification. The
depth of layers in a deep learning (DL) model [34–38] allows for the extraction of high-level features
from raw spectral data, which is essential when dealing with fine-grained differences between classes
[39–41]. Moreover, DQL does not require pre-labeled data to the same extent as supervised learning
algorithms, which is a significant advantage when such labels are scarce or expensive to obtain.

The combination of DQL with meta-heuristic methods like GWO can be particularly potent for
HS image classification. Meta-heuristic approaches can be used to diminish the complexity of the
feature space by choosing the most suitable bands. The reduced, more relevant feature space can
then be processed using DQL, which benefits from the cleaner, more focused data to improve its
classification performance. This synergistic approach leverages the strengths of both methods: The
global search capabilities of GWO for feature selection and the adaptive, learning-based nature of
DQL for classification. By integrating these two approaches, the combined method can handle the
vast data volumes and complexity of HS images more effectively than either approach could alone. It
allows for the processing of HS data in a way that is both computationally efficient and highly accurate,
making it well-suited for real-world applications where speed and precision are of the essence.

In numerous studies, researchers have employed meta-heuristic algorithms to identify the most
effective spectral bands, while machine learning architectures have been utilized to categorize HS
images [5,42–45]. Ghadi et al. [5] developed an innovative migration-based particle swarm optimization
(MBPSO) tailored for the optimal selection of spectral bands. They utilized the variance-based
J1 criteria as a fitness function in MBPSO and leveraged a support vector machine (SVM) for
classification purposes. The efficacy of their proposed method was tested across four different HS
datasets. The findings indicated that their MBPSO algorithm outperformed competing algorithms in
terms of numerical performance, achieving higher accuracy with a reduced set of features.

Reddy et al. [17] developed a compressed synergic deep convolution neural network enhanced
with Aquila optimization (CSDCNN-AO) for HS image classification, which incorporates a novel
optimization technique known as AO. Their experimental evaluation encompassed four datasets.
Testing across these four HS datasets revealed that this innovative approach surpassed traditional
methods in standard evaluation metrics, including average accuracy (AA), overall accuracy (OA), and
Kappa coefficient (KC). Furthermore, this technique significantly shortened the training time and
reduced computational requirements, resulting in enhanced training stability, optimal performance,
and outstanding training accuracy. Dhingra et al. [18] explored a range of meta-heuristic strategies
combined with neural networks for classifying HS images, frequently employing the cuckoo search
(CS) optimization algorithm. They enhanced the capability of CS by incorporating the fitness function
from the genetic algorithm (GA). This hybrid CS-GA algorithm was responsible for feature selection,
and the selected features were subsequently used to train and classify using an artificial neural network
(ANN). Their algorithms were evaluated on the Indian Pines dataset. The innovative approach of
combining CS and GA with ANN surpassed two previously established methods, achieving an OA of
97.30% and KC of 97.60%.

Sawant et al. [19] introduced an innovative band selection method using a novel meta-heuristic
to address the challenge of the curse of dimensionality. They developed a modified wind-driven
optimization (MWDO) technique for band selection, designed to prevent premature convergence and
balance the exploration-exploitation trade-off in searching. To enhance classification performance
further, the selected bands were incorporated into a DL model for extracting high-level, useful features.
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The results demonstrated that their approach effectively chose an optimal subset of bands, achieving
superior classification accuracy with fewer bands compared to other methods. Their suggested
approach achieved OA of 93.26%, 94.76%, and 95.96% for the Indian Pines, Pavia University, and
Salinas datasets, respectively.

Wang et al. in their study [42] presented a technique termed region-aware hierarchical latent feature
representation. This technique involves initially segmenting HS images into various regions using a
superpixel segmentation algorithm, ensuring the preservation of spatial data. The procedure concludes
by implementing k-means clustering on a unified feature representation matrix, leading to the creation
of multiple clusters. From there, the band with the greatest information entropy is selected to form
the final band subset. Extensive experimental findings indicate that this clustering method surpasses
existing top techniques in selecting bands. Tang et al. [43] introduced a self-representation model for
selecting bands in HS images without relying on labeled data, briefly named S4P. This technique
stands out from previous methods because it does not convert each band into a feature vector.
Rather, it employs the first principal component of the original HS cube, segmented into multiple
superpixels, to capture the spatial configuration of homogeneous areas. To validate the efficacy of S4P,
comprehensive experiments and analyses were carried out on three public datasets, demonstrating its
enhanced performance over other prominent methods in the discipline.

In the aforementioned studies, the significance of employing meta-heuristic algorithms and
ML architectures is consistently emphasized. Consequently, in our paper, we have adopted a novel
approach by utilizing a multi-objective binary gray wolf optimizer deep Q-learning (MOBGWO-DQL)
for the selection of optimal spectral bands. To validate the efficacy of our methodology, we conducted
experiments on widely recognized HS image datasets, specifically the Pavia University and Indian Pines
datasets. Our findings will be benchmarked against traditional DL models and other meta-heuristic
methods to ascertain the relative performance and effectiveness of the proposed MOBGWO-DQL
framework.

1.2 Paper Contributions

• This paper investigates a novel MOBGWO for optimal band selection and uses a DQL model
to further enhance the accuracy of HS image classification. The primary objective of this model
is to reduce the number of bands while maximizing classification accuracy.

• In the suggested MOBGWO, a new sigmoid function is introduced as a transfer function
to modify the wolves’ position. The core advantage of MOBGWO lies in its adeptness at
maintaining equilibrium between exploration and exploitation.

• The performance of the proposed MOBGWO-DQL is compared against nine ML algorithms,
namely standard MOGWO, multi-objective orchard algorithm (MOOA), multi-objective bel-
uga whale optimization (MOBWO), MOGA, recurrent neural network (RNN), long short-term
memory (LSTM), deep neural network (DNN), SVM, and random forest (RF).

• To evaluate the proposed models, three well-known datasets, Pavia University, Washington
Mall, and Indian Pines, are utilized. Furthermore, the analysis of the results employs several
criteria, including class accuracy, OA, KC, receiver operating characteristic (ROC) curves, root
mean square error (RMSE), and convergence curves. The results of the simulations show that
the MOBGWO-DQL model outperforms other models in terms of performance.
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1.3 Paper Organization

The layout of the paper is structured as follows: Section 2 provides an overview of the dataset
and the MOBGWO-DQL model being proposed. Section 3 focuses on the comparative performance
analysis of the suggested algorithm for HS image classification relative to nine different algorithms.
Concluding remarks are offered in Section 4.

2 Research Method

Fig. 1 depicts the workflow of the research approach, which is segmented into four principal
phases. The first phase is dedicated to preprocessing, involving the removal of noisy and water-
absorption bands from the HS images. The next phase proceeds with implementing the proposed band
selection technique on the previously prepared test and training samples. During this phase, various
meta-heuristic algorithms are employed on these samples to evaluate their efficiency in identifying
the optimal bands. The third phase capitalizes on the results from the band selection phase, where
the optimal spectral bands selected for each dataset are utilized in both RL and DL classifiers. The
workflow culminates in an exhaustive evaluation of the outcomes, providing a comprehensive analysis
of the band selection methods and their impact on classification accuracy.

Hyper-spectral 
images dataset

Preprocessing

1. Removing noisy bands 
2. Removing water-
absorption bands
3. Test and training samples 

Band selection 

MOBGWO
MOGWO
MOOA
MOBWO
MOGA

Classification

DQL
RNN
LSTM
DNN
RF
SVM

MOGMOGAA

Output
Indian PinePavia University Washington Mall

Figure 1: The block diagram of the research method

2.1 Standard GWO

GWO [21] is an algorithm inspired by the behavior and social structure of grey wolves. It is a meta-
heuristic approach used for solving optimization challenges, replicating the way wolf packs interact
and hunt. The algorithm employs a group of wolves, symbolizing possible solutions, to navigate
complex optimization spaces. It incorporates the pack’s social order, with alpha (α), beta (β), delta (δ),
and omega (ω) wolves, each playing a leadership role (Fig. 2). These leaders influence the exploration
process, adjusting their strategies according to their own effectiveness and the movements of fellow
wolves.

Within a wolf pack, leadership is typically assumed by an alpha male and female pair, who make
key decisions about hunting, resting places, and daily activities. These alphas, while often leading, also
show a level of democratic behavior by considering the input of other pack members. They alone have
the right to mate within their group. Beta wolves, who are second in the hierarchy, support the alphas
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in their decision-making processes and can be of either gender. They are the likely successors to the
alphas and must balance respect for them with authority over the lower-ranking wolves [21].

Figure 2: Gray wolf hierarchy

At the bottom of the social structure is the omega wolf, the most submissive and often the last to
eat, obliged to follow the commands of those higher in rank. Omegas play a vital role in preserving
the peace and stability of the pack, as their presence helps to mitigate conflicts and maintain the
social order. Additionally, there are subordinate or delta wolves, assuming various roles such as scouts,
guards, elders, hunters, and caretakers. They operate under the direction of the alphas and betas, while
also exerting control over the omegas. These roles are critical for the overall functioning of the pack,
encompassing duties like monitoring the territory’s borders, ensuring safety, and caring for the weak
or injured members. GWO progresses through three primary stages in each cycle:

• Initialization Stage: This involves randomly assigning initial positions to α, β, and δ wolves
within the search area. These positions symbolize potential solutions to the problem at hand.

• Search Phase: During this phase, the rest of the wolf pack adjusts their positions in relation to
α, β, and δ wolves. This movement is guided by the pack’s social structure and the principles
of exploration (searching new areas) and exploitation (focusing on promising areas). The
algorithm is designed to find an equilibrium between these two strategies for efficient problem-
solving.

• Update Process: In this final stage, the positions of α, β, and δ wolves are revised according to
their performance and the positions of other pack members. This step is crucial for improving
the leaders’ positions, thereby steering the entire group towards more optimal solutions.

The mathematical framework of the GWO is outlined below. In this algorithm, the hunting process
is led by α, β, and δ wolves, with ω wolves following the lead of these three groups. Reflecting the
behavior observed in grey wolves, where they surround their prey during a hunt, a set of Eqs. (1)–(4)
are introduced to mathematically model this encircling action [21]:

�D = �C �Xp (t) − �X (t) (1)

�X(t + 1) = �C �Xp (t) − �A. �D (2)

�A = 2�a�r1 − �a (3)

�C = 2�r2 (4)

where �Xp is hunting position vector, �X is the position vector of a gray wolf, �A and �C are coefficient
vectors, �r1 and �r2 are random vectors in the interval [0, 1], the �a vector is linearly reduced from 2 to 0
during the repetition.
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In modeling the hunting tactics of gray wolves mathematically, it is presupposed that α, together
with the β and δ wolves, possess an enhanced knowledge of the prey’s potential location. Consequently,
the algorithm preserves the three leading solutions identified and mandates that other searching agents,
including ω wolves, adjust their positions in accordance with the top-performing agents. This strategy
is captured in Eqs. (5)–(7), designed to support this facet of the simulation.

�Dα =
∣∣∣ �C1

�Xα − �X
∣∣∣ , �Dβ =

∣∣∣ �C2
�Xβ − �X

∣∣∣ , �Dδ =
∣∣∣ �C3

�Xδ − �X
∣∣∣ (5)

�X1 = �Xα − �A1.( �Dα) �X2 = �Xβ − �A2.( �Dβ), �X3 = �Xδ − �A3.( �Dδ) (6)

�X(t + 1) = �X1 + �X2 + �X3

3
(7)

Fig. 3 demonstrates how a search agent’s position is modified in 2D search space, guided by
the positions of α, β, and δ wolves. Essentially, the new position of the search agent falls within a
randomly chosen area inside a circle, the size of which is dictated by where α, β, and δ are located.
Fundamentally, the alpha, beta, and delta wolves estimate the location of the prey, leading the other
wolves to intermittently reposition themselves in the area around the prey [21].

Figure 3: Updating the position in the standard GWO

2.2 Proposed MOBGWO

The development of a new binary variant of the GWO is driven by the increasing demand for
robust and versatile optimization algorithms across various scientific, engineering, and industrial
domains. Originally modeled after the social hunting strategies of grey wolves, the conventional GWO
has proven successful in addressing continuous optimization challenges. However, its application to
problems involving discrete variables remains limited. This gap highlights the need to enhance the
GWO framework, allowing it to effectively tackle discrete optimization issues through a bi-nary
adaptation.

Moreover, optimization algorithms are crucial in managing multi-objective and high-dimensional
problems, which are typically resource-intensive and time-consuming [46,47]. Consequently, there is
a continuous effort among researchers and industry experts to refine existing methods or develop
new strategies to boost optimization processes in terms of both efficiency and effectiveness. The
introduction of a new MOBGWO is an endeavor to harness the algorithm’s potential for resolving
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discrete and multi-objective optimization tasks, thereby providing a robust instrument for a broader
spectrum of practical implementations. In binary meta-heuristic algorithms [48] such as the BGWO,
the transfer function is essential for shifting from a continuous to a discrete search space, where it
deals with binary decision variables (0 and 1 s). This function is crucial as it facilitates the algorithm’s
ability to toggle between binary states, adapting to situations where traditional algorithms are more
geared towards continuous variables.

Acting as a pivotal decision-making entity, this function evaluates the probability of changing
binary values, taking into account the algorithm’s present condition, the effectiveness of the solutions,
and potential random factors. Its design is integral to the algorithm’s strategy in navigating the search
space, striking a balance between uncovering new possibilities (exploration) and honing in on viable
options (exploitation). In essence, it serves as a regulatory tool, guiding the algorithm in sifting through
various potential solutions, with the aim of optimizing binary variables to enhance results while adeptly
moving through the discrete search environment.

The development and refinement of this transfer function are key to crafting a successful binary
meta-heuristic algorithm, as they play a significant role in its search performance and ability to
converge effectively. Current research highlights the importance of sigmoid functions in developing
these transfer functions. In line with this, our paper presents a novel application of sigmoid functions
to tailor the GWO algorithm for binary optimization challenges. The innovative approach introduced
in the MOBGWO centers around the development of a position update equation, detailed in Eq. (8).
This is accomplished through the application of a novel sigmoid function, which serves as the transfer
mechanism and is outlined in Eq. (9).

X t+1
d =

⎧⎨
⎩1 if sigmoid

(
X1 + X2 + X3

3

)
≥ R

0 otherwise
(8)

Sigmoid(x) = 1
1 + γ e−τ(x−μ)

(9)

where X t+1
d is the updated binary position; Sigmoid (x) is the novel transfer functions; μ is a random

number ∈ [0.37, 0.63]; τ is a threshold number ∈ (20, 21, 22, 23); R is a random number ∈ [0, 1] ; γ is a
random number ∈ [0.93, 1].

The aim of this paper is to identify the smallest set of optimal bands that yield the highest
classification accuracy. In this context, a wolf represents an array of K features, as depicted in Fig. 4
(using binary coding). Within this array, each gene assigned a value of 1 signifies the inclusion of that
band for classification purposes, whereas a gene with a value of zero indicates that the band is not
chosen.

Definition of 
Wolf  

Number of bands (K) 

1 0 1 0 … 1 0 1 0 

Figure 4: Definition of a wolf in the MOBGWO

In this paper, we employed two objective functions for HS image classification: Achieving the
highest OA and minimizing the number of bands. To combine these objectives, we utilized the weighted
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sum method. Consequently, we defined the fitness function, which is presented as Eq. (10).

Fitness Function (j) = ϕ.OA (j) + (1 − ϕ) . log10

K
k(j)

(10)

where OA (j) is the OA of the jth wolf, K = number of bands, and k(j) is the number of bands selected
in the jth wolf. Moreover, the weight parameter ϕ is assigned a value of 0.89. This specific value for ϕ

was determined through a process of trial and error. In order to identify the optimal setting for each
parameter, all other variables were held constant while the objective function was tested with various
parameter values.

2.3 DQL

RL is a method of ML that utilizes a trial-and-error approach. In this technique, an agent, which
is the entity executing actions, responds to situations and in return, obtains a numerical reward. The
agent’s objective is to optimize the accumulation of these reward points. A comprehensive discussion
of RL is presented in references [31–33]. The fundamental elements of RL include:

• The Environment: This pertains to the artificial physical environment in which the agent
functions. It allows the agent to predict the rewards and outcomes of its actions prior to their
execution.

• The Agent: This is the key component in RL that engages in learning and action execution. The
goal of an RL agent is to maximize the rewards it gains over time.

• The Policy: This aspect dictates the possible actions (a) the agent may choose at any given
moment. The policy (π) is elaborated in Eq. (11).

a = π(s) (11)

• The Reward: The reward in RL is the score that an agent receives from the environment after
taking an action. This value is indicative of the action’s effectiveness, serving as a gauge of its
quality. In this context, the reward is essentially the environment’s reaction or feedback to the
agent’s action. The agent uses this reward to comprehend the consequences of its actions and to
formulate a model of the environment. This aspect is vital for the learning process. Particularly
in the context of managing traffic signals to improve traffic flow, the reward is determined by
different measures of traffic efficiency, including delay, waiting time, average speed, and the
volume of vehicles passing through an intersection. This approach helps the agent to determine
if a particular action (a) either diminishes or boosts the efficiency of an intersection. The reward
Ra

s , associated with a state s and an action a, is detailed in Eq. (12).

Ra
s = E [Rt+1| st = s, At = a] (12)

• The State: The state in RL symbolizes the agent’s perception of the environment at each step.
The value of the state denoted as V(s), is articulated in Eq. (13), where γ represents the discount
factor, ranging between 0 and 1.

V(s) = E
[
Rt+1 + γ .Rt+2 + γ 2.Rt+3

∣∣ st = s] (13)

Fig. 5 shows the interaction between an RL agent and the environment. RL algorithms can be
broadly classified into three main types: Value-based, policy-based, and model-based algorithms. Each
type has its own unique approach to learning and decision-making. Each of these algorithms has its
strengths and weaknesses. Value-based methods excel in problems with a discrete and not too large
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action space. Policy-based approaches excel in environments with high-dimensional or continuous
action spaces. On the other hand, model-based strategies can efficiently use fewer samples but depend
on having an accurate model of the environment, which may be challenging to achieve in intricate
settings. In this paper, the DQL algorithm is employed [31–33].

Environment

Agent
R

ew
ard

Stat

A
ction

Figure 5: Schematic view of the RL tasks

Q-Learning is a type of RL that does not rely on a predefined model of the environment. It employs
a trial-and-error method to navigate through environments that are both complex and unpredictable.
The goal of Q-Learning is to develop a learning mechanism based on pairs of situations and actions,
which are then evaluated through positive or negative rewards. In this approach, a distinct table is
maintained to keep track of Q-values, which correspond to the states and actions of the agent. These
Q-values are revised continuously throughout the learning process. The agent utilizes this table to
select the most suitable action. DQL, which integrates RL and DL, employs DNNs as function
approximators to identify the optimal Q-values for actions. The Q-values are determined using DL
techniques [49,50].

2.4 Datasets

This paper utilizes three HS images, namely Indian Pine, Pavia University, and Washington Mall,
which are commonly used as benchmark images in band selection studies. Table 1 displays the total
number of samples for these HS images, along with the division into training and testing sets.

Table 1: The number of test and train samples for HS datasets

Datasets Indian Pine Pavia University Washington Mall

Total samples 10249 42776 10774
Train # 4128 18419 4315
Test # 6121 24357 6459
Number of class 16 9 7

The first dataset in this study features HS images captured by AVIRIS sensor at the Indian Pines
test site in northwest Indiana. This dataset is particularly notable for its detailed representation of
a diverse landscape, primarily consisting of agricultural land and natural vegetation. Here is a more
in-depth look at its characteristics:

• Land composition: Over 60% of the area is agricultural, while the remaining 30% comprises
forests and other types of natural vegetation. This varied landscape makes the dataset ideal for
studies in land cover classification and agricultural monitoring.
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• Spectral bands and resolution: The image from this dataset has 220 spectral bands. This high
number of bands is due to the sensor’s spectral resolution of 10 nanometers, allowing for a
detailed spectral analysis across a wide range of wavelengths.

• Wavelength coverage: The dataset encompasses the full range of electromagnetic waves from 400
to 2400 nanometers. This broad wavelength range includes both the visible and the near-infrared
parts of the spectrum, providing comprehensive information about the surface characteristics.

• Preprocessing and band removal: Due to factors like noise and water vapor absorption, certain
spectral bands (specifically bands 1–3, 103, 109–112, 148–149, 164–165, 217–219, 104–108, 150–
163, and 220) were identified as unreliable and subsequently removed from the analysis. This
preprocessing step is crucial for enhancing the quality and reliability of the data.

• Subset and pixel size: The specific subset used in this study consists of 145 ×145 pixels, each
with a size of 20 meters. This resolution offers a balance between detailed surface information
and manageable data size for analysis.

• Classes and land cover types: The dataset is classified into 16 different categories, representing
a mix of agricultural lands, forest areas, and urban regions. This classification provides a
comprehensive understanding of the land cover types in the area, useful for applications in
environmental monitoring, urban planning, and resource management.

Overall, the Indian Pines dataset, with its varied landscape, high spectral resolution, and compre-
hensive wavelength coverage, serves as a valuable resource for advanced RS research and applications,
particularly in the fields of agriculture, forestry, and land cover analysis. Fig. 6a shows the ground
truth image of Indian Pines dataset.

(a) Indian Pine (b) Pavia University (c) Washington Mall

Figure 6: The ground truth of HS datasets: (a) Indian Pines, (b) Pavia University, (c) Washington Mall
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The Pavia University dataset, selected as one of the datasets for implementation in this study, offers
an insightful example of urban HS imaging. This dataset was captured using the ROSIS sensor over
an urban area close to the University of Pavia in Italy. Key characteristics of this HS image include:

• Pixel Size: The image is composed of pixels measuring 1.3 meters square, providing a detailed
view of the urban landscape.

• Spectral Bands: It contains 103 spectral bands. Each spectral band captures a different wave-
length of light, giving a comprehensive spectrum of information about the area imaged.

• Image Dimensions: The subset of the image used in this study measures 610 by 610 pixels,
offering a substantial area for analysis.

A notable aspect of the Pavia University dataset is the need to preprocess the image by removing
certain pixels. This is because some parts of the image lack adequate reflectivity information, which
is crucial for HS analysis. These areas are typically marked or represented in black in the images,
indicating pixels that have been excluded from the dataset due to their lack of information. The dataset
is divided into nine distinct classes, each representing a different type of land cover or urban feature.
These classes are visually represented in Fig. 6b. The classification of these classes is significant in
urban planning and analysis, as it helps in understanding the composition and distribution of various
elements in an urban setting.

The Washington Mall HS image dataset refers to a collection of HS images captured over the
Washington D.C. Mall area. This dataset is widely used in remote sensing and image processing
research, particularly for studies in HS image classification, feature selection, and land cover analysis.
Here are the key aspects of this dataset:

• Data Acquisition and Sensor: The dataset is typically captured using advanced HS sensors like
HYDICE. These sensors are capable of capturing images across a wide range of spectral bands,
providing detailed information not visible to the naked eye.

• Spectral Bands: The images in this dataset usually contain a high number of spectral bands,
often spanning from 400 to 2400 nanometers (nm). This broad spectrum allows for the detailed
analysis of various materials and features present in the urban landscape.

• Spatial Resolution: The spatial resolution of these images can be quite high. For example, some
datasets offer a resolution where each pixel corresponds to a 3-meter area on the ground. This
high resolution allows for the detailed examination of features within the urban environment.

• Area Coverage: The images cover the Washington D.C. Mall, an area with a mix of natural
and man-made features. This includes landmarks, green spaces, water bodies, and urban
infrastructure. The diversity of this area makes the dataset particularly useful for testing
classification algorithms across different types of terrain and objects.

• Common Usage: Researchers utilize this dataset for various purposes, including but not limited
to: Testing and developing new algorithms for HS image analysis, studying urban land cover and
land use patterns, conducting environmental monitoring and analysis, and exploring advanced
feature extraction methods.

• Benchmarking and Comparison: Due to its comprehensive and challenging nature, the Wash-
ington Mall dataset serves as an excellent benchmark for comparing different image processing
techniques and algorithms. It provides a standardized base for researchers to evaluate the
effectiveness of their methods.

In summary, the Washington Mall HS image dataset is a valuable resource in the field of
remote sensing, offering rich, multi-spectral data that enables detailed analysis and development
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of sophisticated image processing techniques. Its use in various studies contributes significantly to
advancements in HS imaging applications. Fig. 6c shows the ground truth image of Washington Mall
dataset.

3 Experimental Results

This section evaluates the efficiency of the MOBGWO-DQL approach in band selection. Its
efficacy is gauged using six sophisticated and well-regarded ML algorithms: MOOA, MOBWO,
MOGWO, MOGA, RNN, DNN, LSTM, RF, and SVM. For detailed specifics about the calibration
settings associated with these algorithms, refer to Table 2. Fine-tuning the parameters of these
algorithms is crucial for achieving peak performance. This process involves identifying the best
combination of parameter values for the smooth operation of the algorithms. Establishing these
optimal configurations is a critical step before proceeding to evaluate the algorithm’s performance.

Table 2: Parameter setting of models (population size = 150, Iteration = 300)

Model Parameter Value

C 0.7
A 0.3

MOBGWO α [0, 2]
τ 22
μ 0.54
γ 0.95
N1 (high) 52
N2 (low) 42

MOOA N3 (trans) 56
α 0.73
β 0.27

BWO Probability of whale fall decreased at interval Wf [0.1, 0.5]
Elitism 8%

MOGA Mutation rate 0.10
Crossover rate 0.92
Number of hidden layers 8
Number of neurons in hidden layers 30

RNN Learning rate 0.09
Dropout rate 0.2
Activation Tanh and sigmoid
Optimizer SGD
Number of hidden layers 8
Number of neurons in hidden layers 25

DNN Learning rate 0.19
Momentum 0.34
Activation Linear and Tanh
Optimizer SGD

(Continued)
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Table 2 (continued)

Model Parameter Value

Number of hidden layers 10
Number of neurons in hidden layers 35

LSTM Learning rate 0.10
Recurrent dropout rate 0.3
Activation ReLU and Tanh
Optimizer Adam
Memory size 8000
Learning rate 0.0005

DQL ε-greedy 0.4–0.9
Batch size 256
Optimizer Adam
Number of estimators 100

RF Maximum depth of trees 10
C (regularization parameter) 10
Kernel type Linear and RBF

SVM Gamma 0.002
Number of estimators 100

In this study, we utilize a systematic trial-and-error method for parameter tuning, carefully
adjusting each parameter individually and observing its effect while keeping all other variables
constant. For example, in an algorithm that involves multiple parameters like learning rates, criteria
for convergence, or the size of the population, we examine each parameter in isolation to determine
its influence on the algorithm’s performance. To evaluate the effectiveness of these parameter settings,
we employ a fitness function, which acts as a metric to assess the algorithm’s output across different
parameter configurations. Although the possible variations for each parameter are extensive, practical
limitations necessitate the selection and demonstration of a confined set of different parameter
scenarios. Table 2 presents this methodology, providing insights into the trial-and-error process by
highlighting the parameter values that have either improved or reduced the algorithm’s efficiency in
certain cases.

In this study, the analysis of the outcomes was conducted using three key metrics: Accuracy, KC,
and RMSE. To compute these criteria, one can refer to Eqs. (14) to (16).

Kappa = N
∑r

i=1 xii − ∑r

i=1(xi+ · x+i)

N2 − ∑r

i=1(xi+ · x+i)
(14)

RMSE =
(

1
N

N∑
i=1

[Pi − Oi]
2

) 1
2

(15)

Accuracy = TP + TN
TP + FN + FP + TN

(16)
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where r is the number of rows in confusion matrix, xii is entry (i, i) of the confusion matrix, xi+.x+i is
the marginal total of column i, row i, respectively, N number of observations, Oi observed parameter,
Pi calculated parameter, TP = True positive, FN = False negative, TN = True negative, FP = False
positive.

Table 3 indicates the classification accuracy of algorithms for Pavia University dataset. The
MOBGWO-DQL exhibits higher class accuracy in the majority of the classes compared to other
algorithms. For classes like Asphalt, Meadows, and Gravel, MOBGWO-DQL provides high accuracy
rates of 98.41%, 99.32%, and 90.12%, respectively, indicating its effectiveness in correctly classify-
ing these categories. However, the algorithm shows slightly lower accuracy for the Painted Metal
Sheets and Bitumen classes, with values of 96.74% and 94.12%, respectively, which are surpassed
by MOGWO-DQL, MOBWO-DQL, and MOOA-DQL algorithms in those specific classes. Despite
this, MOBGWO-DQL still maintains competitive accuracy rates in these categories. Overall, the
MOBGWO-DQL algorithm stands out for its consistent performance, especially when considering
the complexity of the dataset, which includes a variety of urban materials and natural elements. Its
robustness is particularly notable in classes such as Bare Soil and Self-Blocking Bricks, where it outper-
forms other algorithms with accuracy rates of 92.27% and 95.71%, respectively. The MOBGWO-DQL
has proven to be highly accurate in classifying the majority of the classes within the Pavia University
dataset. While it has been outperformed in a couple of classes, its overall performance suggests that it is
a strong candidate for effective classification in complex datasets, offering a balance between precision
and general applicability across different types of classes.

Table 3: Class accuracy of models for Pavia University dataset

Class MOBG
WO-DQL

MOG
WO-DQL

MOBWO-
DQL

MOOA-
DQL

MOGA-
DQL

MOBG
WO-RNN

MOBG
WO-LSTM

MOBG
WO-DNN

MOB
GWO-RF

MOBG
WO-SVM

Asphalt 98.41% 93.41% 95.85% 96.22% 89.54% 88.34% 86.85% 82.16% 80.84% 78.74%
Meadows 99.32% 96.12% 98.45% 97.48% 97.43% 91.88% 92.14% 88.46% 85.12% 83.16%
Gravel 90.12% 76.76% 79.57% 80.18% 72.74% 69.44% 72.96% 70.85% 66.02% 68.91%
Trees 96.48% 93.11% 94.25% 95.37% 89.90% 91.19% 85.43% 88.12% 83.52% 81.43%
Painted
metal sheets

96.74% 98.76% 95.27% 97.19% 94.14% 93.75% 90.24% 91.73% 87.01% 85.20%

Bare soil 92.27% 80.18% 85.03% 83.75% 82.14% 77.14% 74.74% 70.46% 72.71% 70.11%
Bitumen 94.12% 97.76% 94.91% 98.71% 93.46% 89.28% 87.95% 84.35% 80.61% 82.13%
Self-
blocking
bricks

95.71% 90.22% 87.19% 89.19% 88.24% 81.81% 79.18% 75.38% 71.29% 69.76%

Shadows 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 4 offers a detailed comparative analysis of classification accuracies for different algorithms
when evaluated using the Washington Mall dataset. Apart from the category of Trees, the MOBGWO-
DQL algorithm exhibits greater accuracy in classification tasks compared to other algorithms.
MOBGWO-DQL stands out in its ability to classify numerous classes with higher precision, especially
notable in the Water, Grassland, and Street categories, where it consistently achieves top accuracy rates.
This underscores MOBGWO-DQL’s exceptional performance in classifying a significant portion of
the dataset accurately. Some classes like Water, Grassland, and Tree have high accuracy across all
algorithms, suggesting these classes are easier to classify correctly. Other classes like Path, and Shadow
have a wider range of accuracies, indicating these may be more challenging to classify. Algorithms like
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MOBGWO-RNN, MOBGWO-LSTM, MOBGWO-DNN, MOBGWO-RF, and MOBGWO-SVM
have some of the lowest accuracies in several classes, indicating they might be less effective for this
particular dataset or require further tuning.

Table 4: Class accuracy of models for Washington Mall dataset

Class MOBG
WO-DQL

MOG
WO-DQL

MOB
WO-DQL

MOOA-
DQL

MOGA-
DQL

MOBG
WO-RNN

MOB
GWO-LSTM

MOBG
WO-DNN

MOBG
WO-RF

MOBG
WO-SVM

Water 99.76% 95.29% 98.32% 97.21% 93.14% 90.21% 91.74% 88.04% 84.08% 82.71%
Grassland 98.43% 92.14% 94.26% 96.31% 90.56% 86.32% 88.14% 90.51% 85.61% 81.45%
Tree 97.81% 88.41% 96.25% 97.95% 89.74% 84.74% 80.45% 79.09% 74.48% 73.84%
Street 98.13% 95.17% 96.74% 95.61% 96.19% 91.85% 87.58% 86.84% 83.57% 85.93%
Path 92.19% 85.73% 89.19% 90.34% 83.03% 80.19% 78.96% 76.77% 79.72% 77.25%
Roof 96.94% 94.24% 93.29% 95.08% 92.92% 89.45% 86.84% 85.45% 81.60% 79.70%
Shadow 93.95% 90.07% 92.74% 91.47% 91.48% 87.83% 89.72% 86.61% 82.43% 80.64%

Table 5 provides an insightful comparison of class accuracy for various algorithms tested against
the Indian Pine dataset. With the exception of corn-Min, corn, Grass/Tree, and stan-steel-to classes,
MOBGWO-DQL demonstrates higher precision in classifying than its counterparts. For several
classes, MOBGWO-DQL outperforms its counterparts, marking its superiority in accurately clas-
sifying the majority of the dataset. This is particularly evident in the classes of Alfalfa, corn-notil,
Gross/Pastur, Grass/Pasture, Hay-Windrawed, Oats, Soybeans-nati, Soybeans-clea, Soybean-min, and
woods, where MOBGWO-DQL consistently posts higher accuracy percentages. The results imply that
the MOBGWO-DQL algorithm is adept at navigating the complexities inherent in the Indian Pine
dataset, which could include a wide array of spectral characteristics associated with different crops
and natural vegetation.

Table 5: Class accuracy of models for Indian Pine dataset

Class MOBG
WO-DQL

MOGWO-
DQL

MOBWO-
DQL

MOOA-
DQL

MOGA-
DQL

MOBG
WO-RNN

MOBG
WO-LSTM

MOBG
WO-DNN

MOBG
WO-RF

MOBG
WO-SVM

Alfalfa 82.40% 78.14% 80.41% 82.15% 71.12% 55.20% 52.19% 51.36% 46.12% 48.32%
Corn-notil 89.25% 85.19% 87.12% 88.96% 82.33% 85.31% 83.18% 81.69% 76.19% 73.24%
Corn-min 84.20% 82.10% 81.23% 79.12% 83.74% 69.19% 72.21% 74.12% 71.85% 69.58%
Corn 78.17% 77.84% 77.66% 79.12% 81.12% 79.57% 74.12% 65.19% 60.54% 58.87%
Gross/passtur 92.61% 89.10% 91.85% 92.14% 86.89% 91.15% 85.89% 90.41% 89.89% 85.74%
Grass/tree 95.39% 92.16% 98.51% 97.84% 88.04% 97.28% 95.47% 94.35% 91.02% 89.05%
Grass/posture 93.30% 90.49% 90.02% 89.19% 85.19% 86.11% 83.21% 85.18% 82.15% 80.45%
Hay-windrawed 96.13% 95.10% 92.72% 94.18% 91.24% 95.22% 95.29% 96.71% 88.52% 86.44%
Oats 93.80% 83.18% 89.95% 90.82% 79.63% 55.15% 63.17% 62.14% 60.33% 62.12%
Saybeans-nati 95.57% 88.17% 91.42% 90.12% 88.78% 79.87% 75.24% 66.84% 61.65% 60.57%
Saybeans-clea 94.76% 87.19% 92.04% 94.46% 82.81% 87.80% 84.93% 85.73% 80.55% 82.81%
Soybean-min 95.24% 88.39% 93.14% 92.14% 86.37% 76.84% 71.75% 76.71% 72.10% 69.33%
Wheat 97.22% 94.18% 94.31% 95.28% 91.48% 94.03% 93.31% 94.79% 91.21% 88.36%
Woods 97.68% 96.81% 96.76% 95.13% 94.09% 97.10% 96.76% 97.18% 95.32% 93.74%
Bildg-grass-t 87.30% 84.17% 84.19% 83.10% 85.50% 79.20% 71.27% 59.24% 60.74% 61.03%
Stan-steel-to 96.21% 95.73% 94.80% 98.05% 92.66% 94.80% 93.76% 92.73% 85.16% 82.20%

Table 6 presents the performance metrics of various models on the Indian Pine, Pavia University,
and Washington Mall datasets. The metrics used to evaluate model performance include the KC,
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OA, and RMSE. For the Indian Pine dataset, the MOBGWO-DQL architecture stands out with a
KC of 97.68% and an OA of 94.32%, coupled with the lowest RMSE of 0.94. These figures indicate
a very high level of agreement between the classifications made by the model and the actual data,
with minimal deviation. In comparison, the MOGWO-DQL model shows a decrease in both KC and
OA, with a significant increase in RMSE, suggesting less agreement and greater prediction error.
The MOOA-DQL, MOBWO-DQL, MOGWO-DQL, and MOGA-DQL models display moderate
performance with KCs over 89% and OAs around 86%–90%, but with higher RMSEs, indicating a
moderate level of classification error. Notably, as we move down the table to models like MOBGWO-
RNN, MOBGWO-LSTM, and MOBGWO-DNN, there is a consistent decline in both KC and OA,
along with a substantial rise in RMSE, highlighting a trend of decreasing performance. Turning to
the Pavia University dataset, the MOBGWO-DQL model again demonstrates excellent performance,
with the highest KC at 98.72% and an impressive OA of 96.01%. It also maintains the lowest RMSE
at 0.63, which points to very accurate predictions with minimal error. The remaining models follow a
similar trend to that observed with the Indian Pine dataset.

Table 6: The results of proposed models for HS datasets

Architectures Indian Pine dataset Pavia University dataset Washington Mall dataset

KC OA RMSE RunTime KC OA RMSE RunTime KC OA RMSE RunTime

MOBGWO-DQL 97.68% 94.32% 0.94 1608 s 98.72% 96.01% 0.63 1250 s 99.08% 96.74% 0.51 1120 s
MOGWO-DQL 90.46% 87.99% 5.29 1921 s 94.09% 91.81% 3.54 1485 s 94.23% 91.57% 3.29 1374 s
MOBWO-DQL 92.31% 89.75% 3.29 2113 s 95.64% 92.28% 2.49 1554 s 96.86% 94.39% 2.15 1451 s
MOOA-DQL 93.19% 90.11% 2.54 1896 s 96.19% 93.12% 1.09 1405 s 97.62% 94.85% 1.23 1314 s
MOGA-DQL 88.12% 85.68% 9.08 2221 s 92.19% 89.73% 5.23 1602 s 94.21% 91.01% 6.28 1512 s
MOBGWO-RNN 85.25% 82.73% 12.21 2441 s 88.54% 86.98% 9.84 1809 s 90.29% 87.22% 8.54 1745 s
MOBGWO-LSTM 83.61% 80.73% 15.92 2519 s 87.90% 85.49% 11.24 1890 s 89.61% 86.20% 12.37 1796 s
MOBGWO-DNN 82.18% 79.64% 18.76 2600 s 86.08% 83.50% 15.62 2140 s 87.74% 84.75% 14.78 2101 s
MOBGWO-RF 78.09% 75.83% 22.63 2696 s 83.27% 80.79% 21.19 2215 s 84.52% 81.64% 20.79 2174 s
MOBGWO-SVM 77.81% 74.49% 24.96 2708 s 82.64% 79.93% 22.34 2175 s 83.49% 80.21% 22.09 2190 s

In the Washington Mall dataset, the MOBGWO-DQL achieved the highest accuracy (96.74%).
This represents the peak performance of the proposed algorithm across various datasets. Additionally,
it boasts the lowest RMSE (0.51) value. The RMSE values are noticeably higher for the Indian Pine
dataset across all models except for MOBGWO-DQL, indicating greater prediction errors for this
dataset compared to the Pavia University dataset. This could be due to the inherent complexity or
the different nature of the Indian Pine dataset, which might present more challenging classification
tasks for the models. In assessing the computational efficiency of various algorithms, we average the
run times over 20 distinct trials. This average indicates that MOBGWO-DQL outperforms others in
terms of speed. The rankings also include MOOA-DQL, MOBWO-DQL, MOGWO-DQL, MOGA-
DQL, MOBGWO-RNN, MOBGWO-LSTM, MOBGWO-DNN, MOBGWO-RF, and MOBGWO-
SVM algorithms.

Fig. 7 illustrates the comparison of the KC and OA criteria among various algorithms. The
MOBGWO-DQL demonstrates superior performance on three datasets, affirming its robustness and
effectiveness in HS image classification. The consistent superiority across different metrics suggests
that this model can be reliably used for tasks requiring high accuracy and minimal error. According
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to the results, the use of the DQL architecture for classification yields better outcomes compared to
other architectures.

(a) Indian Pine (b) Pavia University (c) Washington Mall
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Figure 7: The comparison of algorithms in: (a) Indian Pine, (b) Pavia University, (c) Washington Mall
datasets

Table 7 presents comparative results for various ML models with regard to the OA of classifica-
tions on three different datasets. The performance is compared across two scenarios based on the ratio
of training samples used. From the table, we see that models employing DQL, like MOBGWO-DQL,
exhibit relatively stable performance as the training sample size increases. There are improvements,
but they are modest compared to the other models. This stability might indicate that DQL-based
models can learn effective policies with fewer samples, possibly due to their ability to make better use
of sequential decision-making information inherent in the datasets. On the other hand, models such
as RNN, LSTM, DNN, RF, and SVM show significant performance improvements as the training
samples are increased from 30% to 70%. In conclusion, the results suggest that reinforcement learning
algorithms with DQL do not depend heavily on the amount of training data for their performance,
unlike traditional ML algorithms. This could be due to the difference in learning paradigms RL models
learn policies that generalize across states, while traditional models may need more data to capture the
underlying distribution accurately.

Table 7: The results of proposed models for variations in the ratio of training samples

Architectures Overall accuracy (for training samples = 30%) Overall accuracy (for training samples = 70%)

Indian Pine Pavia University Washington
Mall

Indian Pine Pavia University Washington
Mall

MOBGWO-
DQL

93.75% 95.89% 95.72% 95.46% 97.19% 97.19%

MOGWO-DQL 85.41% 89.21% 89.82% 88.58% 92.75% 92.75%
MOBWO-DQL 87.32% 90.36% 92.14% 90.22% 93.14% 95.44%
MOOA-DQL 88.20% 91.74% 92.75% 91.74% 94.14% 96.20%
MOGA-DQL 82.06% 87.12% 87.63% 86.55% 90.35% 92.36%
MOBGWO-
RNN

79.84% 83.53% 85.24% 84.91% 88.73% 89.88%

MOBGWO-
LSTM

77.15% 83.42% 83.48% 82.23% 87.26% 88.15%

(Continued)
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Table 7 (continued)
Architectures Overall accuracy (for training samples = 30%) Overall accuracy (for training samples = 70%)

Indian Pine Pavia University Washington
Mall

Indian Pine Pavia University Washington
Mall

MOBGWO-
DNN

75.63% 81.76% 80.73% 81.07% 85.94% 86.22%

MOBGWO-RF 71.72% 77.49% 76.55% 77.77% 83.83% 83.34%
MOBGWO-
SVM

70.09% 75.16% 74.48% 76.89% 82.10% 82.47%

Fig. 8 displays a comparative visualization of the ROC curves for various architectures. The
examination of the graph in Fig. 8 clearly shows that the area under the curve (AUC) for MOBGWO-
DQL, a specific architecture, exceeds that of other architectures. The AUC is an important indicator of
a classifier’s overall effectiveness, reflecting the probability that a randomly chosen positive instance
will be ranked higher than a randomly chosen negative instance. In this context, the higher AUC
associated with MOBGWO-DQL suggests a greater accuracy in classification and a better ability to
distinguish between classes compared to the competing architectures.
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Figure 8: Comparison of the AUC for various models (for Pavia University dataset)

The RMSE criterion is a standard statistical measure used to evaluate the accuracy of a model,
particularly in regression analysis and classification. The value of RMSE is always non-negative, and
a lower RMSE value indicates a better fit. RMSE is particularly useful because it gives a relatively
high weight to large errors. This means that RMSE is sensitive to outliers and can be used to
assess the quality of a model in terms of how it handles extreme cases or anomalies. Table 5 clearly
indicates that the MOBGWO-DQL architecture surpasses its counterparts, highlighting its superiority
for the specific problem at hand. This design’s performance advantage over other architectures
underscores its efficacy in addressing the problem. Fig. 9 illustrates the convergence trends of various
machine learning architectures in terms of the RMSE over epochs. The MOBGWO-DQL architecture,
indicated by the blue line with triangle markers, showcases a leading performance by consistently
maintaining the lowest RMSE across all epochs. This suggests that the MOBGWO-DQL architecture
not only converges to a more accurate model faster but also sustains its lead in performance throughout
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the training process. Its sharp decline in RMSE from the outset indicates a robust learning capability,
and the maintenance of this low error rate implies excellent generalization over the dataset. In contrast,
other architectures, while showing a general trend of improvement, do not reach the low RMSE
values exhibited by MOBGWO-DQL. MOBGWO-SVM and MOBGWO-RF, for instance, show a
more gradual descent in RMSE, implying a slower learning rate. MOBGWO-LSTM and MOBGWO-
RNN also display significant improvements over epochs; however, they plateau at higher RMSE
levels compared to MOBGWO-DQL. MOOA-DQL, MOBWO-DQL, MOGWO-DQL, and MOGA-
DQL architectures have similar trajectories and demonstrate moderate learning rates. They achieve
a respectable reduction in RMSE, but their convergence curves suggest that they might require more
epochs to potentially match the performance of MOBGWO-DQL.
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Figure 9: The convergence curve of proposed architectures (for Indian Pine dataset)

4 Conclusion

This paper has presented a novel approach to HS image classification. The key innovation lies
in the integration of DQL with a newly developed MOBGWO. This combination aims to optimize
band selection in HS images, which is essential for increasing the efficiency and accuracy of image
classification. Our experimental results, obtained from publicly available datasets, demonstrate the
efficacy of the MOBGWO-DQL algorithm. Compared to other ML models such as LSTM, DNN,
RNN, SVM, and RF, our approach shows superior performance in terms of classification accuracy.
Specifically, for the Indian Pine dataset, MOBGWO-DQL achieved a KC of 97.68%, an OA of 94.32%,
and the lowest RMSE of 0.94. Similarly, for the Pavia University dataset, the model exhibited the
highest KC at 98.72%, an impressive OA of 96.01%, and the lowest RMSE at 0.63.

While the MOBGWO-DQL outperforms other methods in most classes, it displays slightly lower
OA in certain categories, such as Painted Metal Sheets and Bitumen. Despite this, the algorithm
maintains competitive accuracy rates, highlighting its robustness, especially in complex classes such
as Bare Soil and Self-Blocking Bricks. Another key observation is the consistent performance of the
MOBGWO-DQL across different datasets. The algorithm not only converges to a highly accurate
model more quickly but also maintains superior performance throughout the training process. This is
evidenced by the lower RMSE values and the sharp decline in error rates from the outset, as seen in
the convergence trends.

However, there are limitations and challenges to this approach. The MOBGWO-DQL, while
effective, may not be universally superior in all classes, as indicated by its slightly lower performance
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in specific categories. Additionally, the complexity of datasets like Indian Pine presents a challenge,
as indicated by the generally higher RMSE values across models for this dataset compared to Pavia
University. Future work should focus on addressing these limitations. Further refinement of the
MOBGWO-DQL algorithm could improve its performance in the less accurately classified categories.
Additionally, adapting the model to handle the complexities of different datasets more effectively
would be beneficial. Investigating the application of this approach in other fields beyond RS, agri-
culture, and environmental monitoring could also be explored to expand its utility. In conclusion, the
MOB-GWO-DQL architecture offers a significant advancement in the field of HS image classification.
Its ability to optimize band selection effectively and achieve high accuracy rates makes it a promising
tool for various applications. Despite its current limitations, the potential for further improvements
and wider applications makes it a valuable contribution to the domain of image classification and ML.
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