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ABSTRACT

Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda,
celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current
deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of
cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric
characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features
of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral
analysis, existing approaches often only consider the power spectral density and neglect the amplitude spectrum—
both crucial for assessing cardiac activity. We introduce a novel method that extracts rPPG signals from multiple
regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform (FFT).
The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization
Heatmaps (MVHM), which are then utilized to train an image classification network. Additionally, we explored
various combinations of time-frequency domain representations of rPPG signals and the impact of attention
mechanisms. Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%
in identifying fake videos, significantly outperforming mainstream algorithms and demonstrating the effectiveness
of Fourier Transform and attention mechanisms in detecting fake faces.
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1 Introduction

In recent years, the evolution of deep learning and the widespread adoption of smart devices have
thrust deepfake technology into the societal limelight. This technology leverages machine learning
techniques, including autoencoders and Generative Adversarial Networks (GANs), and comprises
fake face generators [1], reproduction techniques exemplified by 3D masks [2,3], and methods for
manipulating facial expressions [4]. It facilitates the replacement of faces and voices in videos,
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producing media content that is virtually indistinguishable from reality to the unaided eye, achieving
a deceptively high level of visual authenticity.

The emergence of deepfake technology offers new possibilities for the digital art and entertainment
industries, such as seamless face replacement in movie production or the creation of amusing content
on social media. However, the ease with which such face-swapped fake videos can be produced and
disseminated, aided by the ubiquity of social media and the development of smartphone applications,
has made discerning the truth increasingly difficult. This situation has sparked significant concerns
about the illegal misuse of this content, posing complex threats to society [5]. Deepfake technology
not only undermines public trust in the videos they encounter and invades privacy and portrait rights
to some extent, but it also exposes numerous face detection-related systems to fraud attacks. More
alarmingly, fabricated videos of political figures making statements could potentially mislead the
public, incite political or religious conflicts, affect election outcomes, and even threaten global security
[6,7]. Consequently, it is crucial to remain vigilant against the misuse of deepfake technology and to
develop effective detection methods to mitigate its adverse effects on society.

Numerous researchers have proposed various methods to detect deepfakes, including techniques
based on facial visual features, deep network learning, and biometric signal characteristics. Among
these, methods based on biometric signals generally yield better outcomes. This is attributed to the
fact that while current deepfake generators focus on achieving highly realistic visual effects, they
often neglect to replicate the biometric signals inherent to each person’s face. These signals, linked
to the periodic beating of the heart, cause fluctuations in the volume of blood within superficial facial
veins, altering skin reflectivity due to varying concentrations of hemoglobin in the blood. To date,
no deepfake generation model has successfully replicated this type of PPG (Photoplethysmography)
biometric signal [8].

As a result, we utilize remote photoplethysmography (rPPG), which can detect subtle changes in
skin color through camera analysis. This enables us to extract biometric signals related to heartbeats
from genuine facial video sequences. In contrast, from fake face video sequences, we derive deepfake
signals (a form of noise). By comparing these signals, we can accurately determine the authenticity of
the faces.

Upon acquiring the aforementioned time-domain signals, we aim to extract discriminative infor-
mation from both the time and frequency domains. The time domain intuitively reflects the amplitude
variations over time, with periodicity and waveform shape serving as excellent indicators of cardiac
activity, and thus providing a crucial basis for analysis. In the frequency domain, much research such
as [9] has concentrated on the power spectral density (PSD), which describes how the power of a
signal is distributed across various frequencies. Discrete peaks in the PSD effectively highlight the
periodic components of the signal, such as heartbeats, serving as a viable criterion for classification.
However, in studies focused on calculating heart rate from facial videos, we discovered that conducting
a Fast Fourier Transform (FFT) on the time-domain rPPG signals to derive the amplitude spectrum,
and then identifying the peak frequency and multiplying it by 60, yields an instantaneous heart
rate. This suggests that FFT is also closely related to human cardiac activity. Consequently, in this
paper, we will explore which of the two frequency domain representations—PSD or FFT—exhibits
greater differences when analyzing real vs. fake face videos, thereby containing more discriminative
information.

Furthermore, to better reflect the consistency of heartbeats across different facial regions, we
extract rPPG biometric signals separately from multiple Regions of Interest (ROIs) on the face.
These signals are arranged sequentially, with time-domain signals at the top and their corresponding



CMC, 2024, vol.79, no.3 5297

frequency-domain signals below, visualized using a heatmap. This approach consolidates the infor-
mation from the entire video into a single image and prevents the leakage of facial information.
Additionally, representing signal amplitude through variations in color intensity on the heatmap makes
the differences between real and fake face videos more visually intuitive. Most importantly, this method
transforms the multi-signal classification problem into a single-image classification challenge, enabling
the use of advanced image classification networks.

To enhance the generalization capability and performance of our neural network model, we have
also incorporated attention layers, aiming to surpass the accuracy of mainstream algorithms.

The main contributions of our work are:

1. We have recognized the significance of the Fourier Transform as a frequency domain rep-
resentation and encoded facial videos into Matrix Visualization Heatmap (MVHM) for input into
image classification networks. Our experiments on the public dataset DeepFakeTIMIT have shown
our algorithm achieves an accuracy of 99.2%, indicating that FFT of rPPG biometric signals contains
more discriminative information for distinguishing real from fake faces compared to PSD.

2. The spatial attention mechanism has played a crucial role in enhancing the performance of the
VGG19 network, with an increase of up to 9.38 percentage points.

The rest of the article is structured as follows: The section on Related Work summarizes
mainstream methods for detecting deepfakes, with a focus on detectors based on biometric signals.
The Methodology section presents the framework of our proposed fake face detection system in the
form of a flowchart and details the methods and principles of key components. Performance Analysis
then displays the configurations and results of various experiments. We also analyze these results and
compare them with other advanced algorithms. Finally, in the Conclusion section, we draw conclusions
and look forward to our future research endeavors.

2 Related Work

Fake face detection algorithms are mainly divided into three categories:

Based on facial visual features: Li et al. [10] proposed the Long-term Recurrent Convolutional
Networks (LRCN) to capture the temporal dependencies characteristic of human blinking. They
evaluated their algorithm using the UADFV database, achieving a commendable AUC of 99%.
Jung et al. [11] combined Fast-HyperFace [12] and EAR [13] algorithms to introduce a deep vision
approach for tracking blinking, which showed promising performance on their own dataset with an
accuracy of 87.5%. Agarwal et al. [14] focused on the different facial expressions and movements while
speaking, inputting these features into the widely used machine learning classifier SVM, and achieved
an AUC of 96.3% on their dataset.

When generating fake faces, artifacts arise due to the facial differences between the source and
target faces, serving as potential detection targets. For instance, Matern et al. [15] introduced a detector
based on simple visual artifacts (such as eye color inconsistencies, missing reflections, and lack of
detail in the teeth area), ultimately achieving an AUC of 85.1%. Yang et al.’s [16] algorithm is capable
of identifying inconsistencies in head posture brought about by fake faces. Li et al. [17,18] proposed
a CNN-based detection system highly sensitive to image alterations to detect the presence of warping
artifacts around the face and surrounding areas, one of the most powerful methods against subtle
facial manipulation techniques.
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Leveraging deep learning to enable the network to autonomously discern and classify based
on distinct features between authentic and fabricated videos: Deep learning-based fake detectors
are the most popular, requiring only the provision of as many real/fake videos as possible to the
network, which then autonomously extracts discriminative features. Typically, these fake detectors
utilize popular network architectures such as Xception [19,20], Capsule Networks [21], MesoNet
[22], Two-stream neural networks [23], Multi-task learning [24], and CNNs enhanced with attention
mechanisms [25,26].

In [27], the authors diverged from the mainstream visual approaches that utilize the entire facial
region for feature extraction. Instead, they evaluated the discriminative ability of various small facial
regions against fake faces using state-of-the-art network architectures, achieving impressive results on
both first and second-generation deepfake databases.

Based on biological signal characteristics: We particularly focus on fake face detectors based
on biometric features, as this aligns with our approach. Studies [8,9,28] investigated the periodic
presentation of reflected light caused by blood volume changes in the face using deepfake videos.
In [8], Ciftci et al. utilized rPPG technology to extract physiological parameters and applied it to
two commonly used classification networks, SVM and CNN. They verified the accuracy of their
algorithm on two datasets, achieving 94.9% on FaceForensics++ and 91.5% on Celeb-DF. Later, in
[9], Ciftci et al. discovered that each fake face generation model exhibited unique residuals (i.e., fake
heartbeats). Thus, they used rPPG to extract PPG signals from real and fake face videos and input
them into advanced classification networks, not only distinguishing the authenticity of videos with
an accuracy of 97.29% but also tracing the source of fake face generation models with an accuracy of
93.39%. In [28], Qi et al. introduced a fake detector named deephythm. Deephythm is better adapted to
dynamic changes between frames and various types of fake faces, consisting of two modules: (i) motion
magnification and (ii) dual attention mechanism. It achieved excellent results with an accuracy of 100%
on the FaceForensics++ database but performed poorly on the DFDC Preview, with an accuracy
of only 64.1%. However, the preprocessing part of this algorithm consumed a significant amount of
computational power, requiring precise detection of 81 facial feature points and the use of a color
magnification algorithm.

Hernandez-Ortega et al. [29] introduced DeepFakesON-Phys to investigate how much improve-
ment biometric signals represented by rPPG could bring to fake video detection. They employed the
Convolutional Attention Network (CAN) for classification tasks, achieving over 98% AUC on both
Celeb-DF and DFDC databases, making it one of the best deepfake detectors currently available.

3 Methodology
3.1 Overview

We propose a fake face detection system as illustrated in Fig. 1. The system primarily consists
of five key steps: selection of facial Regions of Interest (ROI), extraction and preprocessing of rPPG
signals, time-frequency domain analysis of rPPG signals, generation of Matrix Visualization Heatmap
(MVHM), and training of a Convolutional Attention Neural Network. Initially, upon receiving facial
video frames (a), the system performs face detection to capture the ROI area (b). It then extracts rPPG
signals using the Chrom method and conducts noise removal (c), followed by a time-frequency domain
analysis of the rPPG signals, employing Fast Fourier Transform for frequency domain analysis (d).
Subsequently, it forms a matrix with the rPPG signals and their corresponding FFTs, visualized in the
form of a heatmap (e). Finally, this heatmap is fed into the VGG19 network, which is trained for fake
face detection (f).
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Figure 1: System overview

3.2 ROI Selection

In this paper, the selection of Regions of Interest (ROIs) is based on the coordinates of 81
facial landmarks, utilizing a pre-trained model from the dlib library. This model comprehensively
covers major facial areas such as the eyes, eyebrows, nose, lips, and contours, enabling precise facial
segmentation. It employs the Gradient Boosting Trees method, which ensures that the ROIs defined by
these landmarks adapt to facial movements for effective tracking. We ultimately selected four regions:
the forehead, left and right cheeks, and the philtrum, as these areas are rich in blood vessels and have
moderate skin thickness, making them ideal for containing abundant pulse signals and theoretically
offering better detection of deepfake attacks. To account for the consistency of heartbeats across
different areas and the impact of noise, we further subdivided these regions into 22 smaller segments,
thereby increasing the number of rows in the signal matrix.

3.3 Extract rPPG Signal

In this paper, we extract rPPG biometric signals from each ROI using the Chrom method [30]. The
Chrom method computes the average red, green, and blue (RGB) values within the region, offering
a degree of robustness against lighting changes, which is crucial for accurately detecting fake faces
under various environmental conditions. Moreover, its ease of implementation across different devices
broadens the applicability of our algorithm.

The principle of Chrom is as follows: It begins by iterating through all video frames, calculating
the average RGB values within the ROI of each frame, and transforming these into a vector, meanrgb.
Then, using a projection matrix, meanrgb is transformed into a new color space, XY, with the projection
matrix designed to minimize the impact of environmental lighting and enhance the visibility of minor
color changes caused by the heart pumping blood. This process can be expressed mathematically:
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P =
[

3 −2 0
1.5 1 −1.5

]
(1)

XY = P · meanrgb
T (2)

In this process, XY represents the matrix vector formed by signals X and Y, P stands for the
projection matrix, and meanrgb

T is the transpose of the meanrgb vector.

Subsequently, we calculate the standard deviation of the X and Y signals and create a weight
matrix. This weight matrix is then transposed and multiplied by the XY matrix to compute the S
signal. Following this, the S signal is normalized to obtain the final rPPG signal, removing the impact
of any scale factors. The aforementioned process can be expressed using the following formulas:

weights =
⎡
⎣ 1

−std(X)

std(Y)

⎤
⎦ (3)

S = weightsT · XY (4)

Sn = S
std(S)

(5)

In this context, std(X) and std(Y) respectively represent the standard deviation of signals X and
Y, with weights denoting the weight matrix. S refers to the S signal, while Sn denotes the S signal after
normalization.

3.4 Remove Noise

The rPPG signals calculated through the aforementioned steps still contain low-frequency trends
and high-frequency noise, which we aim to preprocess through sliding window detrending and
Butterworth band-pass filtering. Sliding window detrending is designed to remove linear trends or
other slowly varying non-periodic components from the signal. This is achieved by sliding a fixed-size
window across the signal and subtracting the average value within each window, effectively reducing or
eliminating low-frequency trends. This method adapts to non-global changes in the signal and provides
a more stable baseline for further analysis. The Butterworth filter, on the other hand, suppresses noise
and irrelevant frequencies while retaining information pertinent to the pulse. In our experiments, we set
the number of windows to 15 and the filter range between 0.8 and 3 Hz, corresponding to the normal
human heart rate range. As demonstrated in Fig. 2, both the low-frequency trends and high-frequency
noise have been effectively eliminated.

Figure 2: Comparison before and after using sliding window detrending and bandpass filtering
(a) before removing noise (b) after removing noise
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3.5 Time and Frequency Domain Analysis of Signals and Generation of MVHM

Any signal can be analyzed from both time and frequency domain perspectives. In the time
domain, rPPG biometric signals allow us to intuitively observe how amplitude changes over time.
Their exhibited periodicity and waveform shape effectively reflect cardiac activity, highlighting the
importance of the time domain. In the frequency domain, the signal manifests in two primary forms:
the amplitude spectrum and power spectral density (PSD). The amplitude spectrum provides insights
into the frequency composition of a signal, indicating which frequencies are most prominent or where
the signal’s energy is primarily concentrated. Typically, the Fourier Transform of an rPPG signal can
intuitively reflect the real-time heart rate. The power spectral density describes the function of power
distribution over frequency, used to identify and analyze noise and oscillations within the signal. Thus,
the cardiac activity reflected in real face videos and the noise emanating from fake face videos can be
distinguished in the power spectral density. In summary, both the FFT and PSD of biometric signals
are related to cardiac activity and can theoretically serve as bases for distinguishing between real and
fake faces. Our investigation focuses on which of these displays a more pronounced difference when
analyzing real vs. fake face videos, and which combination with time-domain signals contains more
discriminative information.

Ciftci et al. [9] introduced a spatiotemporal block called PPG CELL for deepfake detection, which
comprises 32 rPPG signals and their corresponding PSDs, achieving an accuracy of up to 97.29%.
However, he did not consider the frequency domain representation of FFT. We also found that the
lengths of the FFT and the rPPG time-domain signals are consistent, allowing their integration to
form a matrix. This uniformity means that each signal value occupies an equal number of pixels,
with a uniform distribution, unlike the PSD and rPPG time-domain signal lengths, which do not
match and therefore cannot be arranged into a matrix. Based on this observation, we constructed a
Matrix Visualization Heatmap (MVHM) composed of PPG and FFT, aimed at enhancing detection
performance. Specifically, this paper applies Fast Fourier Transform to 22 rPPG signals, then arranges
the rPPG time-domain signals on top with their corresponding FFTs below in a sequence to form a
44-row matrix. This matrix is then visualized as a heatmap, creating our discriminative label MVHM.
To minimize training time without sacrificing information, we set the resolution of the MVHM to
240 × 240. An example of an MVHM generated from dataset samples is shown in Fig. 3.

3.6 Neural Networks and Attention Mechanism

At this point, the problem of detecting fake faces transforms into an image classification challenge,
where the differences in biometric signals between real and fake videos in the time-frequency domain
are now represented as textural differences on the MVHM. Consequently, this study employs the
pretrained weights of VGG19 for transfer learning and incorporates an attention mechanism to
accelerate the training process and enhance the model’s generalization capability and performance.
The training framework is depicted in Fig. 4.

VGG19 is a deep learning model developed by researchers from the Visual Geometry Group
at the University of Oxford and Google DeepMind, specifically designed for image recognition and
classification. It was one of the top-performing models in the 2014 ILSVRC (ImageNet Large Scale
Visual Recognition Challenge). VGG19 comprises 19 layers, including 16 convolutional layers, 3 fully
connected layers, and 5 max-pooling layers. The architecture of VGG19 is illustrated in Fig. 5.
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Figure 3: Example of MVHM

Figure 4: Our model framework

Figure 5: Structure of VGG19 image classification network
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To meet the experimental requirements, we made several modifications to the VGG19 model.
Firstly, after loading the pretrained weights of the VGG19, we removed its top fully connected layers
and adapted the input size to match the resolution of the MVHM (240 × 240 × 3). Secondly, we
incorporated a spatial attention module after the VGG19 output layer to enhance the model’s ability
to discern the distinct features in the MVHM between real and fake faces. Following the attention
module, we added three fully connected layers and a dropout layer to prevent overfitting. Finally, we
employed a sigmoid activation function for the binary classification output.

Next, we will elaborate on the working principle of the attention mechanism used, which proves
highly effective in image classification tasks, particularly when the model needs to focus on specific
regions. The core idea of our spatial attention mechanism is to generate a soft mask by learning the
spatial distribution of input features. This mask is then multiplied by the original features to highlight
key features, and it is added to the original features to retain some original information. The entire
process comprises five steps: preprocessing, the backbone network, the soft mask branch, application
of the attention map, and output. The preprocessing step involves normalization and ReLU activation
of the input tensor to make the data distribution more uniform, facilitating training.

In = σ (BN (I)) (6)

In represents the normalized tensor, σ denotes the ReLU activation function to introduce non-
linearity, BN stands for batch normalization to reduce internal covariate shift, and I signifies the input
tensor.

Following this, the backbone network processes the treated feature map through two rounds of
convolution, batch normalization, and ReLU activation to extract features. Concurrently, the soft
mask branch processes the treated feature map through one round of convolution, batch normaliza-
tion, and ReLU activation, but ultimately outputs an attention map ranging between 0 and 1 through
a sigmoid-activated 1 × 1 convolution layer. This feature map is used to emphasize or suppress the
features in the backbone network.

T = σ (BN (Conv (In))) (7)

M = ρ (Conv (σ (BN (Conv (In))))) (8)

In this context, T represents the output from the backbone network, and Conv denotes the
convolution layer, which uses a specified number of filters to extract features. M signifies the output
from the soft mask branch, i.e., the attention map, while ρ represents the Sigmoid activation function,
compressing the output to a range between 0 and 1.

The output of the backbone network is then element-wise multiplied by the output of the soft mask
branch (the attention map) to achieve spatial attention modulation. Finally, the modulated feature
map is added to the original input feature map to preserve original information while enhancing key
features.

Modulated = T × M (9)

O = In + Modulated (10)

Modulated refers to the feature map after attention modulation, and O is the output. The input-
output process of the attention mechanism is illustrated in Fig. 6.
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Figure 6: Spatial attention mechanism flow chart

4 Performance Analysis
4.1 Dataset

The public dataset used in our experiment is DeepFakeTIMIT [31,32], which utilizes a Generative
Adversarial Network (GAN)-based approach to swap faces. This method evolved from the initial
autoencoder-based deepfake algorithm, making this dataset a viable option for simulating fake face
attacks. DeepFakeTIMIT selected 16 pairs of individuals with similar appearances from the publicly
available VidTIMIT database. Since there are 10 videos per person in the VidTIMIT database, 10 fake
face videos were generated for each of the 32 subjects, resulting in a total of 320 face-swapped videos,
without any manipulation of the audio channel. DeepFakeTIMIT includes two different models: a
low-quality model with 64 × 64 input/output resolution, and a high-quality model with 128 × 128
resolution.

4.2 Comparative Experiments and Results Analysis

We utilized the high-quality model of DeepFakeTIMIT, comprising 320 deepfake samples and 320
corresponding real samples, totaling 640 samples for training the fake face detection model. Given the
varying lengths of videos in the dataset, to ensure the consistency of the extracted signal lengths and
matrix sizes, we used the shortest video duration of 3 s as the benchmark for segmentation. This means
that for videos longer than 3 s, we only calculate the rPPG biometric signals contained within the first
3 s of video frames. Given the frame rate of 25 FPS, the length of the rPPG signal is calculated to be
75, resulting in a signal matrix size of 44 × 75.

4.2.1 Comparison of Biosignals and MVHM

We investigated the similarities and differences, in a visual context, of the rPPG signals, Fast
Fourier Transform, Power Spectral Density, and MVHM within the same ROI after inputting a real
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video and its corresponding face-swapped video of the same experimental subject. The results are
depicted in Fig. 7.

Figure 7: Output comparison (a) real video (b) fake video

Upon examination, it is evident that while both rPPG time-domain signals exhibit clear peri-
odicity, the real video’s rPPG signals display significant amplitude differences, whereas the fake
video’s rPPG signals have smaller amplitude variations with a uniform waveform distribution. This
observation is more intuitively visible in the upper half of the MVHM; the real face’s color blocks
are deeper and more dispersed, reflecting the patterns of human cardiac activity, while the fake face’s
color blocks appear lighter and more uniform, which we speculate is due to the deepfake heartbeats
being akin to white noise. Additionally, differences in the frequency domain between FFT and PSD
are visible in their waveforms but are not pronounced; we believe there lies deeper information that
is not discernible by the naked eye. Given that we have transformed signal differences into texture
differences in MVHM, employing VGG19 becomes necessary to further compare the rPPG time-
domain signals along with their FFT and PSD, to determine which combination contains more
discriminative information.

4.2.2 Combination Methods

We conducted experiments on various combinations of the rPPG time-domain signals along with
their FFT and PSD to determine which type of heatmap yields higher accuracy. When combining the
rPPG time-domain signals with PSD, given their length discrepancies that prevent the formation of a
matrix, we applied the following approach: The rPPG time-domain signals and PSD each formed a
22-row matrix, which were then visualized as heatmaps with a resolution of 120 × 240. These heatmaps
were subsequently concatenated to form a size of 240 × 240, thus ensuring the resolution of the
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heatmaps for each combination remains consistent. An example from the same sample is shown in
Fig. 8.

Figure 8: Heat map generated by each combination method (a) rPPG (b) FFT (c) PSD (d) rPPG +
PSD (e) rPPG + FFT (f) rPPG + FFT + PSD

We input each of the aforementioned combinations into the VGG19 image classification network
for experiments, within an environment of TensorFlow 2.2.0. The dataset was split into training and
testing sets with an 80% to 20% ratio, utilizing a smaller learning rate and learning rate decay. The
learning rate was set to 0.00001, using the Adam optimizer and binary cross-entropy loss function, over
50 epochs of training. To validate whether the spatial attention mechanism plays a crucial role in the
classification process, experiments were also conducted with the addition of the attention mechanism.
The results are presented in Table 1. Among these, the accuracy of MVHM in the VGG19 network
with the attention mechanism corresponds to the confusion matrix shown in Fig. 9.

Table 1: Accuracy of each combination with and without adding attention mechanism

rPPG FFT PSD rPPG + PSD
(PPG CELL)

rPPG + FFT
(MVHM)

rPPG + FFT
+ PSD

VGG19 95.31% 92.19% 76.56% 87.50% 92.97% 90.62%
VGG19 + attention
mechanism

96.09% 98.44% 83.59% 96.88% 99.22% 97.66%
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Figure 9: Confusion matrix diagram corresponding to MVHM

Firstly, the results show that the MVHM composed of rPPG and FFT achieved the highest
accuracy of 99.22%, surpassing the combination of rPPG and PSD (PPG CELL). We found that the
differences between authentic and fake videos are more pronounced with FFT, followed by rPPG, and
then PSD. We believe this is because the peak frequency of FFT reflects the real-time heart rate, which
remains relatively stable over short periods, whereas the fake face generator violates this consistency.

Secondly, while combinations introduce valuable discriminative information for model training,
they also incorporate noise, which can hinder feature extraction, as indicated by the lower heatmap
accuracy when all three are combined. However, the spatial attention mechanism can reduce the
impact of irrelevant features, allowing the network to focus more on textures related to forgery, thus
enhancing the VGG19 network’s classification capabilities. The data show that after implementing the
attention mechanism, each combination experienced an accuracy improvement, notably the rPPG and
PSD combination, which improved by 9.38 percentage points, demonstrating the effectiveness of the
attention mechanism.

Lastly, without the attention mechanism, the heatmap generated solely from the rPPG temporal
signal outperformed all other combinations. However, this was reversed with the introduction of the
attention mechanism, suggesting that while the discriminative information in the rPPG temporal signal
is evident in shallow textures (visible in Fig. 7), deeper texture information benefits significantly from
the attention mechanism. This scenario highlights the crucial role of the attention mechanism and the
rich discriminative information available in the MVHM.

4.2.3 Number of ROIs and Window Length

The number of Regions of Interest (ROIs) determines the width of the matrix, while the duration
for extracting rPPG signals dictates the matrix’s length. Both factors significantly influence the
stability and representativeness of the Matrix Visualization Heatmap (MVHM). Having too few ROIs
and a short window might cause the MVHM to miss crucial information, whereas too many ROIs
and a long window could introduce excessive noise. Initially, we varied the number of ROIs while
maintaining each video’s duration at 3 s, which corresponds to a window length of 75, to explore how
the choice of ROI number affects detection accuracy.
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It was observed in Table 2 that with the increase in the number of ROIs, accuracy first increased
and then decreased, achieving the optimum value when the number of ROIs was 22. Subsequently, we
fixed the number of ROIs at 22 and tested our method with window sizes of 25, 50, and 75 to assess
the impact.

Table 2: The impact of the number of ROIs

16 18 20 22 24

Window length = 75 93.75% 95.31% 96.09% 99.22% 92.97%

Based on the results shown in Table 3, it can be concluded that accuracy improves with increasing
window length. Ultimately, under the conditions of 22 ROIs and a window length of 75, MVHM as a
discriminative label achieved the highest accuracy.

Table 3: The impact of window length

25 50 75

The number of ROIs = 22 85.16% 94.53% 99.22%

4.2.4 Robustness

Based on the conclusions from previous experiments, we tested the robustness of the fake face
detection algorithm proposed in this paper. We selected accuracy, F1 score, and ROC-AUC score as
evaluation metrics. The F1 score, which is the harmonic mean of precision and recall, serves as a
comprehensive performance indicator that considers both precision and recall rates. The ROC-AUC
score represents the area under the receiver operating characteristic curve and is used to evaluate
the performance of classifiers. An AUC value closer to 1 indicates superior algorithm performance.
Gaussian noise, a common type of statistical noise, can simulate various natural and artificial
disturbances. Consequently, we plan to sequentially add Gaussian white noise with standard deviations
ranging from 0.1 to 0.5 to the MVHM to observe changes in these metrics, which will help demonstrate
the algorithm’s robustness under extreme conditions.

From the data in Table 4, it can be seen that with the increase in noise intensity, the accuracy
shows a trend of first decreasing, then increasing, and then decreasing again. However, the magnitude
of the change is very small, and it can maintain a high accuracy rate, indicating that the algorithm can
effectively handle noise interference. At the same time, the F1 score and AUC value do not change
much before and after adding noise, indicating that the algorithm maintains a good balance between
precision and recall, and can maintain efficient recognition performance even in the presence of noise.

Regarding the reason for the trend in accuracy changes, our understanding is as follows: The
addition of noise of low intensity acts as a mild regularization, helping the model resist overfitting.
This can explain to some extent why there is a decrease in accuracy. As the noise further increases, the
model is able to maintain stable predictive performance under more complex input conditions, thereby
showing better results on the test set. However, when the noise increases to a higher level, it starts to
mask the key information in the images, making it difficult for the model to extract effective features
from the images.
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Table 4: The impact of noise standard deviation

0 0.1 0.2 0.3 0.4 0.5

Accuracy 99.22% 98.44% 99.22% 98.44% 97.66% 96.88%
F1 score 0.9922 0.9844 0.9922 0.9841 0.9764 0.9683
ROC-AUC 0.9990 0.9993 0.9998 0.9993 0.9995 0.9978

4.2.5 Discuss

Deepfake detection fundamentally constitutes a binary classification task, typically exhibiting
good performance on both classical machine learning and deep learning classifiers. Most studies,
including ours, have employed one or several of these. Considering the potential of FFT, we explored
the most suitable combination for fake face detection and the effect of the spatial attention mechanism.
Ultimately, we found that the combination of rPPG and FFT (MVHM) achieved the highest accuracy,
surpassing mainstream fake face detection algorithms, indicating that our algorithm can provide
reliable results.

Table 5 showcases the comparative results with other advanced deepfake detection methods, with
some results directly cited from [29,33–35]. For each study, we listed the research method, the types
of features used, the classifier, and the optimal evaluation results. We particularly focused on other
recent algorithms for deepfake detection based on biometric features, given the current incapability
of deepfake technology to simulate normal biological signals, these algorithms generally demonstrate
superior performance and reliability.

Table 5: Comparison between algorithms

Study Feature Classifiers Performance (%)

Qi et al. [28] Physiological CNN + attention mechanism Acc = 64.1
Ciftci et al. [8] Physiological SVM/CNN Acc = 91.5
Ciftci et al. [9] Physiological CNN Acc = 97.29
Deepfakeson-phys [29] Physiological CNN + attention mechanism Acc = 98.7
Qian et al. [34] Frequency distributions

of artifacts
F3-Net Acc = 93.02%

AUC = 0.958
Luo et al. [35] High-frequency noises

of image
CNN + attention mechanism Acc = 98.6%

AUC = 0.992
Ours Physiological CNN + attention mechanism Acc = 99.22%
AUC = 0.9998

It is evident that although the classification networks utilized by various algorithms differ, we
achieved commendable results on the representative public dataset, DeepFakeTIMIT, confirming that:
1. Biometric signals, particularly the frequency domain representation of FFT, are crucial for detecting
fake faces; 2. The attention mechanism can significantly enhance the accuracy of image classification
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networks. Thanks to the use of transfer learning, our proposed algorithm requires less computational
power and exhibits some resistance to noise, making it suitable for a wide range of application domains.

5 Conclusions

In this paper, we propose a method to detect deepfake by extracting biometric signals from
facial video frames using remote photoplethysmography (rPPG). To our knowledge, this is the first
time the combination of rPPG time-domain signals and their FFT has been used as a discriminative
label. Furthermore, we tested the performance of our algorithm on the VGG19 image classification
network enhanced with a spatial attention mechanism, achieving accuracy that surpasses mainstream
algorithms. This demonstrates the effectiveness of the Fourier Transform and attention mechanisms
in the deepfake detection domain.

We have considered the advantages of integrating facial visual features and deep learning.
Theoretically, integrating visual and biometric information through a more complex deep learning
network for multimodal fusion could enhance discrimination accuracy to some extent. Additionally, it
could provide robustness against various fake face generation techniques, including facial generation,
reproduction, and manipulation. We regard this idea as part of our near-term work.
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