
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050019

ARTICLE

A New Framework for Software Vulnerability Detection Based on an
Advanced Computing

Bui Van Cong1 and Cho Do Xuan2,*

1Department of Information Technology, University of Economics and Technical Industries, Hanoi, 100000, Vietnam
2Faculty of Information Security, Posts and Telecommunications Institute of Technology, Hanoi, 100000, Vietnam

*Corresponding Author: Cho Do Xuan. Email: chodx@ptit.edu.vn

Received: 25 January 2024 Accepted: 15 April 2024 Published: 20 June 2024

ABSTRACT

The detection of software vulnerabilities written in C and C++ languages takes a lot of attention and interest
today. This paper proposes a new framework called DrCSE to improve software vulnerability detection. It uses an
intelligent computation technique based on the combination of two methods: Rebalancing data and representation
learning to analyze and evaluate the code property graph (CPG) of the source code for detecting abnormal behavior
of software vulnerabilities. To do that, DrCSE performs a combination of 3 main processing techniques: (i) building
the source code feature profiles, (ii) rebalancing data, and (iii) contrastive learning. In which, the method (i) extracts
the source code’s features based on the vertices and edges of the CPG. The method of rebalancing data has the
function of supporting the training process by balancing the experimental dataset. Finally, contrastive learning
techniques learn the important features of the source code by finding and pulling similar ones together while
pushing the outliers away. The experiment part of this paper demonstrates the superiority of the DrCSE Framework
for detecting source code security vulnerabilities using the Verum dataset. As a result, the method proposed in the
article has brought a pretty good performance in all metrics, especially the Precision and Recall scores of 39.35%
and 69.07%, respectively, proving the efficiency of the DrCSE Framework. It performs better than other approaches,
with a 5% boost in Precision and a 5% boost in Recall. Overall, this is considered the best research result for the
software vulnerability detection problem using the Verum dataset according to our survey to date.

KEYWORDS
Source code vulnerability; source code vulnerability detection; code property graph; feature profile; contrastive
learning; data rebalancing

1 Introduction
1.1 Problems

Source code vulnerabilities are pieces of source code that lead to software [1]. For conventional
software errors, encountering such issues poses the risk of rendering the software inoperable. However,
unlike typical software flaws, source code vulnerabilities do not directly harm the software itself; rather,
they affect potential security breaches within the system. This is because malicious actors can exploit

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050019
https://www.techscience.com/doi/10.32604/cmc.2024.050019
mailto:chodx@ptit.edu.vn

3700 CMC, 2024, vol.79, no.3

these vulnerabilities in source code to escalate their access to the victim’s system. Hence, the timely
detection and warning of source code vulnerabilities are of utmost importance.

To detect source code vulnerabilities, traditional approaches often involve extracting and pro-
cessing source code, then checking that code against known Common Vulnerabilities and Exposures
(CVE) and Common Weakness Enumeration (CWE) [2]. However, it lacks the ability to detect new
vulnerabilities such as zero-day vulnerabilities. To address this issue, recent approaches have employed
techniques involving the feature analysis of source code combined with machine learning or deep
learning algorithms to search new vulnerabilities within the code.

In particular, in the study [3], various methods and techniques for extracting source code features
and classification methods have been summarized. Concerning the feature analysis of source code,
recent approaches often aim to standardize source code using natural language processing methods or
to transform the code into graph representations [4,5]. After this preprocessing stage, a combination of
data extraction techniques and classification methods is applied to detect source code vulnerabilities.
Consequently, it can be observed that modern approaches to source code vulnerability detection
typically focus on two main issues [6,7]: source code feature extraction methods and methods for
predicting and classifying vulnerabilities based on these source code features.

In this article, we propose a new approach for detecting vulnerabilities in source code written in the
C and C++ programming languages. The new approach proposed in this article focuses on addressing
two main issues: first, improving the feature extraction method for source code; second, optimizing
the process of prediction and detection of source code vulnerabilities based on anomalous features.
Thus, for the feature extraction process of the source code, this study transforms the source code
into a code property graph (CPG) and then uses Gated Graph Sequence Neural Networks (GGNN)
for extraction. To predict and classify source code vulnerabilities, we suggest using a combination of
three different processing methods: rebalancing data through the Dropout technique, clustering data
through contrastive learning, and classifying source code vulnerabilities using Cross-Entropy Loss.

1.2 Motivation and Objectives

1.2.1 Motivation

As presented above, for the problem of source code vulnerability detection, the two most critical
factors determining the accuracy of the classification process are feature extraction and classification
processes. However, based on our observations, recent approaches have not effectively addressed both
these issues, leading to limited experimental results [8,9]. Specifically, as follows:

– Regarding the approach to source code feature extraction [10,11], it can be easily recognized
that the source code data is in text form. Therefore, to extract these features, one can use either
of the two methods: semantic and syntax analysis.

• Regarding the syntactic analysis method, natural language processing techniques are commonly
used. However, it can be observed that these methods might not be able to extract features from lengthy
source code segments. This limitation arises because these models can only handle relatively short data
segments, such as 64 and 128. Despite this, in practice, there are source code segments with very large
lengths. If these models are used, they inevitably lack crucial data, which leads to difficulties in the
detection model. Standardizing the source code segments to uniform lengths introduces significant
inaccuracies. The system cannot determine which source code segment contains the vulnerabilities.
Furthermore, attempting to make the lengths uniform would result in concatenation of source code
segments, leading to skewed classifications.

CMC, 2024, vol.79, no.3 3701

• Regarding the semantic analysis method [12,13] to extract source code features, approaches
based on this method aim to represent the relationships among functions and parameters within the
source code as graphs [14,15]. When observing and analyzing these approaches, it becomes evident that
representing source code cannot fully depict the intricate relationships between components within
functions and variables in the source code. In other words, the traditional method of constructing
source-code features does not cover all aspects. Specifically, when these methods were applied to
different datasets, the false-positive rate was quite high. This demonstrates that the proposed method
is only suitable for specific datasets, making its application to diverse datasets challenging.

– For the method of source code vulnerability detection [16–19]: After obtaining the feature vec-
tors of the source code, these feature vectors are classified through machine learning algorithms
and traditional deep learning. Therefore, classifying source code in such an imbalanced dataset
is a challenging task. To address this issue, approaches often use balanced or simple datasets
created independently. Hence, it is necessary to optimize and improve the effectiveness of the
source code vulnerability classification model.

1.2.2 Proposed Solution Approach

To address the two issues presented in Section 1.2.1, in this study, we propose a completely new
approach and model. This model was named DrCSE. The novel approach in the DrCSE model
enhances the following two issues:

– For the problem of selecting and extracting source code features: In this study, to extract source
code features, we aim to transform the source code into a new graph form called CPG [20]. In
[21], it was demonstrated that CPG combines three graph representations of AST, CFG, and
PDG into a common data structure.

– For the problem of source code vulnerability classification, rather than directly using machine
learning or deep learning algorithms to classify source code feature vectors, we combined
several advanced data exploration methods to improve the effectiveness of the classification
process.

1.3 Principles of Detecting Vulnerabilities in the Source Code of the DrCSE Framework

Based on the analyses in Section 1.2.2, it can be seen that the proposed vulnerability detection
process in the DrCSE Framework consists of the following stages:

• Phase 1. Building source code feature profiles: As described above, this step normalizes the
source code data into feature vectors through several steps.

– Step 1: Analyze the source code in CPG format using the Joern tool [20].
– Step 2: Encoding the vertex information using the glove encoding function.
– Step 3: Extracting edge features with Gated graph neural networks (GGNN).
– Step 4: The edge and vertex features collected in Steps 2 and 3 are synthesized into a single

feature vector.

• Phase 2. Rebalancing data: Based on the vector obtained in Step 3 of phase 1, we generated
additional data containing security vulnerabilities to balance the number of labels in the experiment
dataset using the Dropout method.

3702 CMC, 2024, vol.79, no.3

• Phase 3. Representation learning: The contrastive learning method is used to find feature vectors
of the source code that have similarities-contrasts in the dataset. Thus, with similar data pairs, we can
“pull” them closer to learn each other’s higher-level features, and conversely, contrasting pairs of data
are “pushed” far away. Using this approach, we optimized the source code classification process. The
experimental results in this study prove the correctness and reasonableness of our proposal.

• Phase 4. Classification: This phase classifies non-vulnerable source code and code containing
security vulnerabilities based on the feature vectors collected from phases 2 and 3. In this phase, we
propose the use of Fully Connected Layer functions after the Representation Learning block with a
Cross-Entropy Loss.

1.4 Contribution of Paper

The main contributions of this paper are summarized as follows:

• A new intelligent calculation method for the DrCSE Framework was proposed to improve
the efficiency of the software vulnerability classification process based on a combination of three
techniques.

• A method for rebalancing the data using the Dropout technique was proposed. This is a new
generation method that has not been studied and applied to generate data for training models to detect
software vulnerabilities.

• A method for optimizing software vulnerability detection is proposed based on a contrastive
learning technique. The proposed approach enhances the efficiency of the source code vulnerability
classification process.

2 Related Studies

Many authors have used AST-based software vulnerability detection approaches. In [11], the
authors proposed the VulDee-Locator model for source-code vulnerability detection. The VulDee-
Locator has proven its effectiveness compared to another approach based on the four research
questions in the experiment. In addition, a study [16] presented a model that combined the LSTM
deep learning model for the security vulnerability detection task using a Software Assurance Reference
Database dataset. References [16,22] proposed a method of feature extraction of source code based on
ten open-source projects. In [23], the LSTM deep learning algorithm was used to classify source code
vulnerabilities after analyzing them from an abstract syntax tree. In [24], a Representation Learning
method for source-code vulnerability detection was proposed. Specifically, the authors extracted and
transformed the source code into AST form and then combined the BiLSTM and Continuous Bag-
of-Words algorithms to analyze and classify source code vulnerabilities. Many more approaches for
AST-based source code vulnerability detection use machine learning or deep learning, such as [25–28].

In addition, CFG-based software vulnerability detection techniques have been proposed in several
studies. Haridas et al. [14] suggested a SiCaGCN model for vulnerability detection based on CFG
and GCN. With the support of Graph Edit Distance, the experimental performances were better
than those of other deep learning graph networks. Xu et al. [29] had similar ideals when using a
Neural Network-based Graph Embedding model for security vulnerability detection based on Cross-
Platform Binary Code Similarity. Harer et al. [30] proposed the use of different algorithms to analyze
and extract source code features and the Random Forest algorithm is applied to detect source code
vulnerabilities. As a result, the model showed high efficiency with a precision-recall curve of 0.49 and
an area under the ROC curve of 0.87. Another effective approach was proposed in [31], which proposed

CMC, 2024, vol.79, no.3 3703

a SySeVR model based on syntax-based, semantic-based, and vector representations. Accordingly,
the authors used several methods, such as syntax-based vulnerability candidates (SyVCs), semantic-
based vulnerability candidates (SeVCs), and vector representation of SeVCs for source code feature
extraction and classification.

Research by Nun et al. [32] presented a natural language processing method combined with
the inst2vec algorithm for detecting C and C++ source code vulnerabilities. In the experiment, the
authors compared their method with other approaches while applying basic machine learning and
deep learning models, such as RNN, Tree-Based CNN. The results were higher than those of most
approaches for the same experimental dataset. Li et al. [33] built an IVDetect model, which is a
combination of two main methods: consider the vulnerable statements and their surrounding contexts
via data and control dependencies and artificial intelligence.

A study [34] proposed a method to detect source code vulnerabilities based on CPG using
deep learning algorithms. The authors built a REVEAL model consisting of two main phases:
Feature Extraction, and Training (Representation Learning). This approach outperformed the others
on two datasets: Verum [34] and FFmpeg+Qume [35]. Cho et al. [36] proposed an EFRC model
with a combination of four techniques: source embedding, Feature Learning, Resampling Data,
Classification. Accordingly, the EFRC model performs feature extraction of the source code in the
form of CPG based on the combined model of the GCN and MLP. The Data Resampling process was
performed using the SMOTE algorithm. Finally, an MLP model combined with Triploss is proposed
to classify source code vulnerabilities. Cho [37] proposed a DGCNN for CPG feature extraction. It
can be seen that traditional approaches use only graph networks to extract CPG. Zhang et al. [38]
proposed a combined model of the Graph Attention Network and Metric Learning to extract and
classify source code vulnerabilities based on CPG. Consequently, he used a Graph Attention Network
to extract information of the source code based on CPG and used Metric Learning for classification.
The experimental results show that the proposed model improved by 11.5%, 12.3%, 12.57%, and 7.90%
according to the Precision, Recall, F1-score, and AUC measures, respectively.

Zhang et al. proposed the VDBFL model for source code vulnerability detection based on
federated learning [27]. In this study, the proposed method includes the following steps: first, the
source code is converted into CPG format through the Joern tool; next, GNN and CNN networks are
used for feature extraction; eventually, the authors use federated learning for source code vulnerability
detection and testing. The experimental results show that the model achieves high accuracy. This is 11.8
times higher than that in research [34].

3 Proposing the DrCSE Framework
3.1 Overview of the DrCSE Framework

Fig. 1 depicts the source code vulnerability detection model architecture of the proposed DrCSE
Framework. As mentioned in Section 1.2, Algorithm 1 describes in detail the method of detecting
source code vulnerabilities based on the intelligent computational model proposed in the DrCSE
framework.

3704 CMC, 2024, vol.79, no.3

Figure 1: The architecture of the DrCSE Framework

Algorithm 1: The method of detecting source code vulnerabilities using the DrCSE Framework
Input: Training Model Procedure:
Train data-Dtrain Function Training Model:

Dropout rate-α # Extract features from code
Temperature hyper-parameter-τ for (C, l) in Dtrain do
Learning rate-lr features ← graphEmbed(C);

labels ← l; end
Number of new samples per original sample-n # Rebalance with Dropout

Dbalanced ← Dropout(features,;
labels, α, n); MΘ ← Θinit;

Training with Contrastive learning
Output: Trained model Lcl ← contrastiveLossFunction

(MΘ , Dbalanced , τ)

Update model
MΘ ← MΘ − lr�Θ(Lcl) end

Training with Classification
Lce ← crossEntropyLossFunction
(MΘ , Dbalanced)

Update model
MΘ ← MΘ − lr�Θ(Lce)

end
return MΘ

CMC, 2024, vol.79, no.3 3705

where:

• Initial parameters-Θinit

• Model with parameter Θ-MΘ

• Contrastive Loss-Lcl

• Derivative of parameter Θ-�Θ

3.2 Building Source Code Feature Profiles (Phase-I)

In this phase, we convert the raw code into a numeric vector that contains both semantic and
syntactic information. The following four steps explain in detail how to build a feature profile of the
source code using CPG:

• Step 1: Convert the source code to the CPG form. CPG is a useful tool for extracting graph
information from control and data flows [21]. Accordingly, with the input of the source code
segments, the output of these segments was CPG. CPG is a graph G = (V , E), where V is the
vertices (nodes) and E is the edge of the graph G. In CPG, each vertex v ∈ V is a small piece
of code and is classified into one of the different types of vertices (e.g., Arithmetic Expression,
CallStatement, etc.). Edges e ∈ E show the relationship between vertices v. To convert the source
code to CPG form, the study uses the Joern tool [20].

• Step 2: Vertex information is encoded. To encode the semantic information of vertex v, we used
a glove encoder to convert the code representing vertex v to vector Ev. Furthermore, to combine
the information about the vertex v type, we concatenate the vector Ev with the one-hot-encoding
vector of the corresponding vertex type Tv into a representative vector Xv.

• Step 3: Extracting edge information: The results obtained in Steps 1 and 2 have helped us
successfully build a vector Xv representing each vertex, but the edge connection information
is still missing. The above is information on the surrounding vertices. This study uses Gated
Graph Sequence Neural Networks (GGNN) [39] which is an improved model of Graph Neural
Networks [40] to extract information about these vertices. Formula (1) describes the application
of the GGNN model to extract the edge information.

Xg =
∑
v∈V

(
GRU

(
Xv,

∑
u∈E

g (Xu)

))
(1)

where,

– GRU(.) is the Gated recurrent function
– Xv is the vector representation of the vertex v
– g(.) is a transformation function that helps synthesize information about vertices u that are

neighboring vertices of vertex v and the corresponding vector representation Xu

• Step 4: Synthesizing and building feature vectors: To synthesize all the graph’s information
according to each vertex v as the output vectors of GRU , we take the sum of each corresponding
component of all these vectors to take a vector Xg representing the original code. Finally, to
train the above GGNN model, we placed a classification layer after this GGNN block and
used cross-entropy loss.

Algorithm 2 demonstrates in detail how to build source code feature profiles from CPG analysis
in the DrCSE Framework.

3706 CMC, 2024, vol.79, no.3

Algorithm 2: Building source code feature profiles
Input: Code-C
Output: Feature vector xg represent for C
Procedure:
Function graphEmbed(C):

(V , E) ← Code_property_graph(C)

for v ∈ V by:
Tv ← onehot(v.type()); Cv ← glove(v.code()); xv ← concat(Tv, Cv); X ← xv ∪ X ; end

X ′ ← GGNN(X, E); xg ← Aggregate(X ′)
return xg

3.3 Rebalancing Data (Phase-II)

The feature profile obtained from the building and synthesizing process in Section 3.2 is classified
to detect non-vulnerable source code and source code containing vulnerabilities. To deal with data
imbalances during training, some common workarounds are to use the synthetic minority oversam-
pling technique (SMOTE) [41] to adjust the number of samples in each class until the number of
records is balanced. To overcome the disadvantages of Smote, in this paper, we propose a new method
for generating data for the minority class using the Dropout function. Dropout was first introduced
in 2014 [42] to avoid overfitting during training by randomly disabling connections from the previous
layer (output is zero). The study [43] presented some concepts and definitions of Dropout. A study [44]
used Dropout on a vector representation x = (x1, x2, . . . , xd), with each component xk(k = 1, 2, . . . , d)

as follows:

x̂k = ak.xk (2)

where, ak ∼ P is a random variable with a Bernoulli distribution:

P (ak) =
{

1 − p, ak = 0
p, ak = 1

(3)

Based on this idea, we passed the feature vector through the Dropout function n times to generate n
samples with the same class and close to the original feature vector. With this approach, the generated
sample vectors are still spatially neighboring the original feature vectors, even though they are not
spatially generated. Algorithm 3 describes the data-generation process using the Dropout function in
detail.

3.4 Contrastive Learning (Phase-III)

When applying traditional supervised learning methods to detect source code vulnerably, the
model depends heavily on the amount of pre-labeled data, whereas the amount of unlabeled data is
extremely large.

CMC, 2024, vol.79, no.3 3707

Algorithm 3: Rebalancing data using Dropout
Input: Features -features

Labels -labels
Dropout rate -α
Number of new samples per original sample -n

Output: Balanced Dataset -Dbalanced

Procedure:
Function: Dropout(features, labels, α, n):

for fi, li ∈ features, labels do:
if li of Minority class do:

for t := 1 to n do:
f ′

i ← random_ zero_ output_ with_rate(α); Add f ′
i to Dbalanced ;

end; end; end
return Dbalanced

Contrastive learning aims to help the model learn features by “pulling”similar data points together
while “pushing” different data points away in the embedding space.

In this paper, we propose the use of contrastive learning to learn the important features of source-
code feature vectors. The working principle of the contrastive learning method is as follows.

Suppose we have a set of data points D = {(xi, x+
i , x−

i)}, where xi and x+
i are two data points that

are similar or have the same label and xi and x−
i are two distinct data points or labels. Call hi, h+

i , h−
i

are the representative vectors of xi, x+
i , x−

i , respectively, and the training objective of a mini-batch N is
defined by formula (4):

Lcl =
n∑

i=1

Li (4)

With Li is defined by formula (5) as follows:

Li = − 1
Nyi

.
N∑

k=1

1i �=k.1yi=yk
.log

esim(hi ,hk)/τ∑N

j=1 1i �=j.1yi �=yj e
sim(hi ,hj)/τ

(5)

where,

yi, yj, yk is the label of source code which is 0 with vulnerable source and 1 with clean source.

τ is a positive constant temperature hyper-parameter,

sim (h1, h2) is cosine similarity
hT

1 h2

||h1|| . ||h2|| ,
1B = 1 when B is true, otherwise 1B = 0,

where, Ny is the total number of samples in the mini-batch with the same label y,

i is the index of the example in the mini-batch,

k is the index of other examples in the mini-batch with the same label as example index i or xk = x+
i ,

j is the index of other examples with index i in mini-batch.

3708 CMC, 2024, vol.79, no.3

In the above equation, hk is the representative vector of x+
i . Simultaneously, graph embedding is

used to extract the representative vector h = fΘ(x) = graphEmbed(x) and then train the model using
the contrastive learning objective (formula (5)).

Algorithm 4 explains the implementation process of contrastive learning proposed in this paper.

Algorithm 4: Contrastive learning
Input: Model-M Procedure:

Balanced Dataset-Dbalanced Function contrastiveLossFunction(M, Dbatch, τ):
Temperature hyper-parameter-τ Lcl ← 0Lcl ← 0

for xi, li ∈ Dbatch do:
Output: Contrastive Loss Nli ←1; Li←0; hi←M.encode(xi); Li←0;

for xk, lk ∈ Dbatch do:
if (k �= i) and (li = lk) do:

Nli ← Nli + 1; Pi ← esim(hi ,hk)/τ ;
for xj, lj ∈ Dbatch do: Ni ← 0;

if j �= i do:
hj ← M.encode(xj);

Nli ← Nli + 1; Pk ← esim(hi ,hk)/τ ; Nk ← 0;
for xj, lj ∈ Dbatch do:

if (j �= i) and (lj �= li) do:
hj ← M.encode

(
xj

)
; Nk ← Nk + esim(hi ,hj)/τ

end; end
Ni ← Ni+ ← Li + esim(hi ,hj)/τ

end Li ← Li + log
Pi

Ni

end; end; end
Li ← −Li/Nli ; end; end

Li ← −Li/Nli ; Lcl ← Lcl + Li end; end
return Lcl

3.5 Classification (Phase-IV)

After the data were balanced in Phase 3 by the Dropout method and grouped into clusters
according to the same features by contrastive learning, we classified the source code feature profiles
to detect non-vulnerable and vulnerable source code. We suggest using a Fully Connected Layer after
the contrastive learning block with a Cross-Entropy Loss described in formula (6) as follows:

Lce = − 1
N

N∑
k=1

yi · log (σ (hi)) + (1 − yi) . log (1 − σ (hi)) (6)

In which, hi is the vector representation of xi,

σ(x) is the sigmoid function.

During this process, only the parameters in the last classification layer are tuned, and all
parameters in the previous representation block are frozen.

Algorithm 5 below describes the vulnerability detection process of the source code.

CMC, 2024, vol.79, no.3 3709

Algorithm 5: Cross-Entropy loss function
Input: Representation Model-RM

Balanced Dataset-Dbalanced

Output: Cross-Entropy Loss
Procedure:
Function crossEntropyLossFunction(RM, Dbalanced):
Lce ← 0

for xi, li ∈ Dbalanced by:
hi ← RM.encode(xi);yi ← RM.predict(hi);Li ← yi.log(σ (hi))+(1−yi).log(1−σ(hi));Lce ← Lce+Li

end; Lce ← −Lce/N
return Lce

4 Experiment and Evaluation
4.1 Experiment Dataset

Table 1 lists the statistics of the experimental datasets used to evaluate the effectiveness of the
proposed method.

Table 1: Experiment dataset summary

Sample counts Vulnerability (vul) Normal (non-vul)

Verum dataset 18.169 1.658 16.511
FFmpeg+Qume dataset 25.905 11.804 14.101

We used Verum [34] and FFmpeg+Qume [35] as the experimental datasets in this study because
these two datasets are considered the most consistent with real-world datasets. Current main
approaches are often used in these two datasets to detect vulnerabilities. Specifically, researchers used
the Verum dataset [34] to apply the data-processing model according to the CPG. The FFmpeg+Qume
dataset is often used in structural and semantic approaches. In this study, we used the Verum dataset to
evaluate the effectiveness of the proposed model and the FFmpeg+Qume dataset to test its suitability
on different datasets.

4.2 Evaluation Metrics

Below are the four metrics and their formulas used in this study to evaluate the effectiveness of
the proposed model.

accuracy = TP + TN
TP + TN + FP + FN

× 100% (7)

precision = TP
TP + FP

× 100% (8)

recall = TP
TP + FN

× 100% (9)

F1 = 2 × precision × recall
precision + recall

(10)

3710 CMC, 2024, vol.79, no.3

where,

• Accuracy: is the ratio of the number of samples classified correctly to the total number of
samples.

• Precision: is the ratio of true positive points to the total number of points classified as positive
(TP + FP).

• Recall: The ratio of true positive points to the total number of real positive points (TP + FN).
• F1-score: is the harmonic mean of precision and recall.
• TP–True positive: The number of vul samples classified correctly.
• FN–False negative: The number of vul samples classified as non-vul.
• TN–True negative: The number of non-vul samples classified correctly.
• FP: False positive: The number of non-vul samples classified as vul.

4.3 Evaluation Scenarios

To demonstrate the effectiveness of the intelligent computational method proposed in the DrCSE
Framework, we performed the following experiments:

• Scenario 1: Evaluating the effectiveness of the proposed method when classifying source code
vulnerabilities.

• Scenario 2: What is the role and influence of the components in the proposed approach for
effectively detecting security vulnerabilities? To answer this question, we conducted several
experiments to assess Dropout and Reverse Learning.

• Scenario 3: Is the proposed method more effective than the other methods on the same dataset?
To answer this question, we compared our proposed method to other approaches using the same
experimental dataset.

• Scenario 4: Can the proposed method perform well on the other datasets? Specifically, we tested
our method on the FFMpeg+Qemu Dataset and compared it with other approaches using this
dataset.

4.4 Experiment Results

4.4.1 Parameter Configuration of Experiment Models

Some requirements for hardware and software for the experimental process include:

Software installs: Python 3.9.12; Torch 2.1

Hardware requirements: 32 GB RAM; CPU Intel Core i7-11800 @ 2.30 GHz × 16; GPU 3060.

In addition, during the experiment, we configured several key parameters of the model.

Table 2 lists the parameters used for the experimental DrCSE Frameworks in this study.

4.4.2 Experiment Results of Scenario 1

As described in Section 4.3, this experiment used the Verum dataset to detect the security
vulnerabilities. A study [34] pointed out that the Verum dataset has a large difference in terms of data
labels. In addition, this dataset had a small duplicate code rate of approximately 0.6%. Therefore, this
dataset is appropriate for applications in security vulnerability classification. Table 3 summarizes the
results of the proposed method based on the metrics defined in Section 4.2.

In Table 3, we changed two parameters, α and τ , where α is the Dropout probability, and the larger
α is, the more deactivated the values in the vector representation. τ is the temperature parameter that

CMC, 2024, vol.79, no.3 3711

controls punishment for negative samples. Research [45] showed that as τ decreases, contrastive loss
tends to focus more on regions with a significant degree of similarity. However, when τ is too small,
the contrastive loss can be concentrated on only a few samples closest to the trained ones; in this case,
τ has a significant influence on the quality of the model.

Table 2: Selecting and configuring the Hyper-parameters of the DrCSE Framework

Model Hyper-parameter Value

Glove Dimensions 100
GGNN Input embedding size 169

Hidden size 256
Number of graph layers 8
Graph activation function fishy
Learning rate 1e-4

Dropout Dropout probability 0.1
Contrastive Learning Batch size 32

Temperature 0.1
Learning rate 1e-4
Loss function Supervised contrastive loss

Classifier Activation Softmax
Loss function Cross-entropy

Table 3: Experiment results for the DrCSE model

τ α

0.05 0.1 0.2 0.3

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
0.05 85.47 35.61 61.16 45.01 85.96 36.41 63.35 46.24 85.89 36.75 62.21 46.20 85.39 37.62 60.30 46.33
0.1 87.46 39.12 67.19 49.45 87.72 39.35 69.07 50.14 87.34 37.81 66.33 48.16 86.72 38.57 63.24 47.91
0.2 85.58 36.51 63.57 46.38 86.16 40.08 66.72 50.01 85.92 36.75 64.11 46.72 85.03 36.41 62.01 45.88

In Table 3, the model gave the best results when τ = 0.1 and α = 0.1 with the labels containing
security vulnerabilities rate up to 69.07%. When the Dropout ratio α was small, the data points
generated from the Dropout layer are more similar to the original data points than the data points
generated with a larger Dropout ratio α. This helped the model to be better compatible with the small
Dropout rate, when increasing α from 0.1 up to 0.2, 0.3, the recall scores decrease by about 2.74% and
5.83%. With the temperature parameter τ , obviously, with τ neither too small nor too large, the model
achieved markedly better results for the security vulnerability classification task. When τ = 0.05 (too
small), the model only focused on a small area of similar data points, reducing the precision and recall
by 2.94% and 5.72%, respectively, compared to τ = 0.1. Conversely, when τ = 0.2 (large), the model
was significantly affected by distant data points that may not be similar to the current data point,

3712 CMC, 2024, vol.79, no.3

which directly affected the training results when the recall was also reduced by 4% compared to τ =
0.1. However, with τ = 0.2 and α = 0.1, we obtained the best precision of 40.08%. During training
with τ = 0.2, the model performed worse in the classification of both non-vulnerable and vulnerable
labels. Nevertheless, the number of non-vulnerable labels was much larger than that of vulnerable
labels; therefore, the correctly classified non-vulnerable label counts were much less than the correctly
classified vulnerable labels, increasing the precision by approximately 1%. In addition, there was a
clear difference between the ability to classify non-vulnerable labels and labels containing security
vulnerabilities. For instance, for non-vulnerable labels, the model yielded relatively high classification
results (nearly 88% accuracy) for all measures. In contrast, with the vulnerability classification, the
results were relatively low. Specifically, the precision score was only 39.35%, the recall was 69.07%,
and the F1-score was 50.14%. Overall, the results of this classification were relatively low. Nonetheless,
this result was good regardless of the experimental dataset having a difference of approximately ten
times between the number of non-vulnerable source codes and the source code containing security
vulnerabilities, and with the data duplication rate of 0.6%, the 69.07% recall rate was quite effective.
Three main factors contributed to improving the efficiency of source-code vulnerability detection in
the proposed DrCSE model:

i) The effectiveness of the Dropout method for rebalancing data

Fig. 2 shows the difference in the data distributions when using and not using the dropout method
to rebalance the data.

Figure 2: Differences in data distributions during Rebalancing data. Where (a) before rebalancing data;
(b) perform rebalancing data using the Dropout method

As shown in Fig. 2, this method helped balance the labels in the dataset, thereby improving
the training results for the classification model. When data rebalancing methods are not used, the
model is prone to bias by non-vulnerable labels because it has many more data points than those
containing security vulnerabilities. Therefore, rebalancing data is an important step in optimizing the
classification results of the training model.

ii) The effectiveness of the representation learning method demonstrated through contrastive learning

Fig. 3 shows the data distributions when using and not using representation learning with con-
trastive learning. As expected, the influence of representation learning methods in clustering similar
data points is the basis for the model to better classify non-vulnerable labels and labels containing
security vulnerabilities. In Fig. 3a, the data points of the two labels are confusingly distributed with

CMC, 2024, vol.79, no.3 3713

no clear separation between them. In contrast, when using representation learning to cluster similar
data points by pulling the similarities closer and pushing the dissimilar data points further away in the
embedding space, as illustrated in Fig. 3b, the data points of the two labels exhibited a clear separation,
and the classification results of the model improved significantly.

Figure 3: Differences in data distributions. In which, (a) data when not using representation learning
method; (b) data when using representation learning method

iii) The correctness of combining the Dropout method with contrastive learning

We believe that each Dropout component with contrastive learning had a noticeable effect
compared to not using them. However, the successful combination of these two methods in a
unified model also contributed significantly to the effectiveness of the model. Fig. 4 shows the data
distribution in the representation space of the model that combined Dropout with contrastive learning.

Figure 4: The data distribution in the representation space when using the combined method of
Dropout with contrastive learning

3714 CMC, 2024, vol.79, no.3

As shown in Fig. 4, most of the data on non-vulnerable and vulnerable labels were classified into
separate clusters, making it possible for the model to detect them easily. Using the Dropout method,
we can generate many positive data points from one original data point. At the same time, contrastive
learning helped the model synthesize all the information from these positive data points. Making the
most of each other’s advantages, the combination of Dropout and contrastive learning methods has
shown better classification results than the current vulnerability classification methods.

4.4.3 Experiment Results of Scenario 2

In Scenario 1, we present some experimental results proving the effectiveness of the proposed
model for classifying source code vulnerabilities. For scenario 2, our goal was to answer two research
questions (RQ) as follows:

• RQ1: What is the role and importance of each component of Dropout and contrastive loss in
optimizing the vulnerability detection of the source code?

• RQ2: Why do you combine Dropout with contrastive loss and no other methods? Are other
combinations more effective than Dropout and contrastive loss combinations?

To answer these two RQs (ARQs), we conducted the following experiments:

• For RQ1:

– ARQ1: Evaluate the role and effectiveness of the Dropout method in the process of rebalancing
data. To do this, we used the Smote method to replace the Dropout method. The empirical
model was a combination of smoke and contrastive loss. In addition, to be more objective, this
paper also evaluates the approach without using any data generation algorithm.

– ARQ2: Evaluating the role and effectiveness of contrastive loss in the representation-learning
process. In this case, the proposed experimental method included the following:

+ The contrastive loss method was replaced by the trip-loss method. The experimental model
was a combination of Dropout and trip loss.

+ After the Dropout method processed the data, it was classified using traditional machine
learning and deep learning methods, such as MLP and RF. Therefore, the experimental model
would be a model combining Dropout with MLP or RF.

• For RQ2:

– ARQ3: The experiments in ARQ1 and ARQ2 have demonstrated the role and importance of
Dropout and contrastive loss methods for classifying source code vulnerabilities. It has also
been shown that the Dropout method is more effective than the Smote algorithm, and that
the contrastive loss method is more effective than the trip loss method. However, the idea is
how effective the model would be if we combined the smoke and loss of trip compared with
the Dropout and contrastive loss combination. This concept was proposed in [34]. Thus, the
experiment of ARQ3 will clarify which approach is better: the Smoke and Tripet loss method
in [34], or Dropout and Contrastive loss.

Table 4 presents the results of the proposed models for ARQ1, ARQ2, and ARQ3 under
scenario 2.

CMC, 2024, vol.79, no.3 3715

Table 4: Experiment results of scenario 2

RQ ARQ Approach Acc Pre Rec F1

RQ1 ARQ1 (a) Smote and Contrastive Loss 87.25 36.32 67.19 47.15
ARQ1 (b) Do not use Dropout or smote

data generation techniques
(only use Contrastive Loss)

88.57 35.52 31.00 33.12

ARQ2 Dropout and Triplet Loss 87.23 34.51 66.47 45.43
Dropout and MLP 86.89 31.12 46.55 37.30
Dropout and RF 85.25 29.34 47.09 36.15

RQ2 ARQ3 Smote+ Tripet loss [34] 86.94 34.03 64.24 44.49

Based on the experimental results in Table 4 and the experimental results in Table 4, we have the
following discussion.

• Discussion 1 on ARQ1 (a) of RQ1: Comparing the results of Tables 3 and 4, the model combining
Dropout and contrastive loss yielded much better performance than the smooth and contrastive
loss combination models. This result was worse than that of our proposed model by 3%, 2%,
and 3%. Similarly, for the non-vulnerable code prediction process, our proposed model was
approximately 1% higher than that of the combined model on the F1-score. The Dropout
method was more effective than Smote in terms of rebalancing the data in the embedding space.
Fig. 5 depicts the distribution of the dataset when the Smoke method was used to rebalance
the data.

Figure 5: Data distribution when rebalancing data by Smote method

Fig. 5 shows that the Smote method succeeded in adding new data points to balance the
distribution between the two labels in the dataset. Comparing the data distribution between Fig. 5

3716 CMC, 2024, vol.79, no.3

(using the Smote method) and Fig. 2b (using the Dropout method), it is clear that the Dropout method
has demonstrated advantages over the Smote method in adding new data points from the original
dataset. Specifically, the Smote creates a new data point using interpolation between two or more
neighboring data points in the representation space. Therefore, Smote was quite sensitive to noisy data
points with an unfocused distribution, and the variance was quite large, which changed the distribution
of the original dataset. To overcome this shortcoming, the Dropout method uses only one data point
to generate similar data points. Although the generated data points did not have a relationship between
the distances between neighbors in the representation space, such as Smote, Fig. 2b clearly shows
that these data points still had similarities and neighbors in the representation space. In addition,
the Dropout was less sensitive to noise because the generated data points could only be located in
the vicinity of the original data point, which helped the balanced dataset maintain the distribution,
as in the original dataset. This further proves the suitability and advantages of using the Dropout
for rebalancing data. In addition, based on the experimental results, we can see that the results of
the model using data generation technique are much better than those without using this technique.
However, there is only one measurement, accuracy, which is about 1% lower. The reason is that the
value of accuracy is calculated in terms of both TP and TN, and TP increases but does not increase
as much as the number of TN decreases (because the number of labels of normal source code is much
larger than the number of labels of vulnerability), the value of accuracy can still decrease even though
the values of precision and recall both increase.

• Discussion 2 on ARQ1 (b) of RQ1: When data generation techniques are not used, the source
code vulnerability prediction results are completely low. Comparing Table 4 with Table 3, we
see that this is the worst result. This result once again proves the correct and reasonable use of
data generation techniques.

• Discussion 3 on ARQ2 of RQ1: Our proposed model combining Dropout and contrastive loss
resulted in much better performance than the combination of Dropout and Triplet loss. This
efficiency clearly demonstrates the ability to accurately detect source code vulnerabilities when
the proposed method was 3% higher than that of the combined model. This is considered to
be an excellent result for the vulnerability classification task using real datasets. Therefore, the
contrastive loss performed better than the triplet loss in training the model to provide a vector
representation. Fig. 6 shows the distribution results of the data after processing by the combined
model of Dropout and Triplet loss.

Comparing Fig. 6 with Fig. 4, we can see that because of triplet loss traits, the model can only
be trained through a pair of positive and negative data (x+, x−). In contrast, our proposed method
can generate more than one pair (x+, x−). Therefore, with data containing several generated positive
samples, Triplet Loss did not take full advantage of the rebalancing data methods. However, using
Contrastive Loss successfully overcame this limitation from Triplet Loss when it helped the model train
with many generated positive samples, making the most of the benefits of the method of rebalancing
data.

• Discussion 4 on ARQ2 of RQ1: For models that did not use contrastive loss, it is no surprise
that their effectiveness is deficient. Accordingly, if only the Dropout method is used to generate
data for the training model without using contrastive loss methods to optimize the classification
process, then the Dropout method is not useful. Specifically, the models combining Dropout
with MLP and Dropout with RF were approximately 22% worse than the proposed model.
From Fig. 3 in scenario 1 of the paper, we present the data distribution after using the data
rebalancing technique. The cause of this problem is that the vector representations of the

CMC, 2024, vol.79, no.3 3717

source code containing vulnerabilities and the clean source code in the embedding space are
still fragmented and not centrally distributed. Meanwhile, classification methods such as MLP
or RF are not capable of identifying and classifying non-vulnerable and vulnerable source codes.

• Discussion 5 on ARQ3 of RQ2: For the model replacing the Dropout and contrastive loss
method with the smoke and trip loss method, our proposed method yields better results for both
the non-vulnerable source code prediction and source code security vulnerability prediction.
The experimental results of this model show that the method [34] resulted in 4%, 7%, and
5% lower efficiency on precision, recall, and F1 scores, respectively, than our method. These
results were also reasonable because, through the experimental process of replacing Dropout
with smoke and contrastive loss with trip loss, the results were less effective. In general, each
proposed method is more effective than the individual methods indicated in [34]. Fig. 7 shows
the difference in the data distribution in the embedding space of the model combining Smote
with triplet loss with our proposed method.

Figure 6: Data distribution when using a combination of Dropout and Triplet loss

Figure 7: Differences in data allocation when using the loss function. Where (a) data when using Smote
+ Triplet Loss model; (b) data when using the Dropout + Contrastive Loss model

Fig. 7 clearly shows that the combination of Dropout and Contrastive loss was able to distinguish
clusters containing vulnerable and non-vulnerable labels better than the Smote and Triplet loss.

3718 CMC, 2024, vol.79, no.3

Comparing Figs. 7a and 7b, we can see that using Dropout and Contrastive loss is much more
successful in grouping data points with the same label than the Smote and Triplet loss methods. From
this, we can see the success of combining the two methods of Dropout and Contrastive loss.

Finally, with the experimental results in Table 4, the model that did not use the representation
learning method exhibited the worst performance on all measurements.

4.4.4 Experiment Results of Scenario 3

As mentioned above, we experimented with this scenario to test and evaluate the effectiveness
of our proposed method with other methods on the same Verum experiment dataset. For research
on detecting source code vulnerabilities based on this dataset, we have found that there are studies
[34] that we evaluated in Table 4 of scenario 2. In addition, reference [34] conducted experiments and
evaluated several algorithms, methods, and techniques of other approaches on the Verum dataset. In
this study, we reuse the experimental results presented in [34]. The approaches compared and evaluated
with our method include REVEAL [34], Russell [8], VulDeePecker [11], SySeVR [31], and Devign [46].
Table 5 lists the experimental results of other approaches on the Verum dataset.

Table 5: Experiment results of scenario 3

Approach Accuracy Precision Recall F1

Our DrCSE 87.72 39.35 69.07 50.14
REVEAL [34] 86.94 34.03 64.24 44.49
Russell [8] 90.98 24.63 10.91 15.24
VulDeePecker [11] 89.05 17.68 13.87 15.7
SySeVR [31] 84.22 24.46 40.11 30.25
Devign [46] 88.41 34.61 26.67 29.87

A comparison of the experimental results in Tables 5 and 3 shows that our proposed method was
more effective than the other approaches. Specifically, Russell’s approach [8] was inferior to ours for
all the measurements. In particular, with the recall score, this method was lower than our proposed
method by more than 60%. Similarly, the VulDeePecker, SySeVR, and Devign methods were much
worse.

4.4.5 Experiment Results of Scenario 4

For this scenario, we demonstrated the effectiveness of the proposed method using other datasets.
Therefore, we used the FFMpeg+Qemu Dataset for the experiment. The Qemu dataset is a collection
of software programs that allow the creation, management, and administration of virtual machines and
the operation of virtualized environments on physical servers. FFmpeg includes software programs
and libraries for processing videos, audio, and other multimedia streams.

The experimental results in Table 6 show that the DrCSE model was also more effective than
the other approaches on the FFMpeg+Qemu Dataset. Specifically, the DrCSE Framework gave
experimental scores for Accuracy, Precision, Recall, and F1 of 64.37%, 58.19%, 76.29%, and 66.02%,
respectively. This result was approximately 2% higher than that of REVEAL [34] for all the measure-
ments. Meanwhile, the DrCSE Framework performed better than the REVEAL model on both the
Verum and FFmpeg+Qume datasets [35]. Moreover, the DrCSE was also much more optimized when

CMC, 2024, vol.79, no.3 3719

experimented on the FFMpeg+Qemu Dataset. For example, when comparing DrCSE with Russell [8],
SySeVR [31], and Devign [46], the DrCSE model was 6%–25% more efficient. Likewise, VulDeePecker
[11] was less effective than DrCSE by 10% to 35% for all measurements.

Table 6: Experiment results of scenario 4

Approach Accuracy Precision Recall F1

Our DrCSE 64.37 58.19 76.29 66.02
Russell [8] 58.13 54.04 39.50 45.62
VulDeePecker [11] 53.58 47.36 28.70 35.20
SySeVR [31] 52.52 48.34 65.96 56.03
Devign [46] 58.57 53.60 62.73 57.18
REVEAL [34] 62.51 56.85 74.61 64.42

From Tables 5 and 6, although the SySeVR [31] and Devign [46] approaches were designed
to detect source code vulnerabilities based on the FFMpeg+Qemu dataset, when comparing them
with the DrCSE Framework, these two approaches were both less effective. Therefore, the DrCSE
framework has brought about flexibility and optimization for detecting software vulnerabilities in
many different datasets. This result shows that the combination of Dropout and contrastive learning
helped the DrCSE Framework improve the difficulty of detecting source code vulnerabilities on real
datasets with different structures.

4.5 Discussion

4.5.1 The DrCSE Framework: An Adaptive Software Vulnerability Detection Based on CPG Analysis

With different scenarios proposed, we proved the superior effectiveness of the DrCSE Framework
for source code vulnerability detection. Therefore, the three problems posed previously in the paper
have been overcome and improved by the DrCSE Framework, including the following:

a) Source code representation problem.

Although we are not the proponent of a method to process and represent source code in CPG
form, but based on CPG documents provided by Joern [20] and the results reported in this paper, we
have demonstrated that CPG is more efficient than other code representations, such as AST, CFG, and
PDG. In addition, in scenario four’s results when applying the DrCSE Framework on several different
datasets, such as FFMpeg+Qemu or Verum, the DrCSE Framework has mostly resulted in higher
efficiency than other approaches using AST, CFG, or PDG source code representations. In general,
processing source code into CPG form and then applying data mining techniques are considered the
current trending solutions for source code vulnerability detection.

b) Source code vulnerabilities classification in unbalanced datasets

The experimental results in scenarios 1 and 2 show the absolute effectiveness of the DrCSE
Framework when handling unbalanced data. For instance, the data distribution in Fig. 2 and the
RAQ2 experimental results prove the stability and effectiveness of the Dropout method in rebalancing
data to support the training models. In addition, with the proposed scenarios, applying Dropout is
correct and reasonable when it yields better results than the approach using Smote [34] or when not
using the data rebalancing method.

3720 CMC, 2024, vol.79, no.3

c) Source code vulnerability detection method

In this study, the DrCSE Framework uses the representation learning method with a contrastive
learning model to improve the efficiency of the vulnerability detection task. Several scenarios have
proven that the DrCSE Framework is much more effective than the approach that does not use
representation learning or the approach using representation learning with the triplet loss model. This
result reaffirms the effectiveness of the DrCSE Framework in detecting security vulnerabilities using
imbalanced datasets. At the same time, based on the experimental results of scenario 4, the DrCSE
Framework works effectively not only on one particular dataset but also on many other datasets with
different features and structures.

4.5.2 Improving Research Direction

Recently, the development of deep learning models has gradually led to the significant problem
of training data shortage. Since then, training methods based on unsupervised learning have become
an urgent and essential issue to help improve deep-learning models. In addition to the advantages
and benefits of the method combining Dropout and Contrastive Learning in the supervised learning
problem presented in this article, DrCSE can also be an unsupervised learning model applied to new
tasks. In particular, Dropout can generate similar data points x+ from the original data point x. We
then pass these pairs of similar data through Contrastive Learning to “pull” x+ and x come closer
together in the representation space and “push” other data points away. This training process can help
the model find hidden structures in new data and generate vector representations of new data points.

In addition, when doing this research, we found that the source code representation problem is
crucial in detecting security vulnerabilities tasks and many other related works. We empirically used
CPG to represent the source code in a graph form. In addition to the advantages of this method, there
are still some problems when the extracted information is not accurate, and it still needs a function
to convert text to vectors, etc. In the past few years, the fields of natural language processing and
language modeling have proven their superiority and effectiveness with text-to-vector representation.
For instance, some models have been developed and widely used, such as BERT and GPT. In general,
through this study, we found that with source code processing problems, developing a full vector
representation model of the source code is essential to improve the results of the prediction task,
because some of the current vector representation methods still have certain disadvantages.

5 Conclusion

In this article, we proposed the DrCSE Framework with a combination of new intelligent
computing techniques based on data rebalancing and representation learning methods to improve
the efficiency of detecting source code vulnerabilities and minimize false warnings in non-vulnerable
source code. Our investigation with four experimental scenarios answered a wide range of questions
and proved the correctness and science of the DrCSE Framework for classifying source code vulner-
abilities. The scientific correctness of DrCSE is reflected in its flexible combination of Dropout and
contrastive learning methods. In addition, the outstanding performance of the classification results on
many different datasets demonstrates the practical significance of the DrCSE model. Finally, based on
this proposal, we successfully built a new framework that yields good vulnerability prediction results
and can be tailored to actual needs.

Acknowledgement: This study was sponsored by scientific research from the Posts and Telecommuni-
cations Institute of Technology, Vietnam.

CMC, 2024, vol.79, no.3 3721

Funding Statement: No funding was received for this work.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception
and design: D.X. Cho, B.V. Cong. Experiment and interpretation of results: D.X. Cho, B.V. Cong.
Manuscript preparation: D.X. Cho, B.V. Cong. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: In this study, we used a public dataset, which can be downloaded
from the website if needed (https://github.com/VulDetProject/ReVeal).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] CVE List Downloads in CVE. Accessed: Jan. 15, 2024. [Online]. Available: http://cve.mitre.org.
[2] CWE Top 10 KEV Weaknesses, 2023. Accessed: Jan. 15, 2024. [Online]. Available: https://cwe.mitre.org/

top25/archive/2023/2023_kev_list.html.
[3] G. Lin, S. Wen, Q. L. Han, J. Zhang, and Y. Xiang, “Software vulnerability detection using deep neural

networks: A survey,”Proc. IEEE, vol. 108, no. 10, pp. 1825–1848, 2020. doi: 10.1109/JPROC.2020.2993293.
[4] Z. G. Lin, L. Pan, Y. Tai, and J. Zhang, “Software vulnerability analysis and discovery using deep learning

techniques: A survey,” IEEE Access, vol. 8, pp. 197158–197172, 2020. doi: 10.1109/ACCESS.2020.3034766.
[5] H. Wang et al., “Combining graph-based learning with automated data collection for code

vulnerability detection,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1943–1958, 2021. doi:
10.1109/TIFS.2020.3044773.

[6] X. Li, W. Li, Y. Xin, Y. Yang, Q. Tang and Y. Chen, “Automated software vulnerability detection based on
hybrid neural network,” Appl. Sci., vol. 11, no. 7, pp. 3201, 2021. doi: 10.3390/app11073201.

[7] V. C. Bui and X. C. Do, “Detecting software vulnerabilities based on source code analysis using GCN
transformer,” in 2023 RIVF Int. Conf. Comput. Commun. Technol. (RIVF), Hanoi, Vietnam, 2023, pp.
112–117.

[8] G. Siewruk and W. Mazurczyk, “Context-aware software vulnerability classification using machine learn-
ing,” IEEE Access, vol. 9, pp. 88852–88867, 2021.

[9] J. Hu, J. Chen, Z. Lin, Y. Liu, Q. Bao and A. Hilary, “A memory-related vulnerability detection
approach based on vulnerability features,” Tsinghua Sci. Technol., vol. 25, no. 5, pp. 604–613, 2020. doi:
10.26599/TST.2019.9010068.

[10] X. Li, W. Li, and Y. Xin, “Automated vulnerability detection in source code using minimum intermediate
representation learning,” Appl. Sci., vol. 10, no. 5, pp. 1692, 2020. doi: 10.3390/app10051692.

[11] Z. Li et al., “VulDeePecker: A deep learning based system for vulnerability detection,” arXiv preprint
arXiv:1801.00168, 2018.

[12] W. Zheng et al., “The impact factors on the performance of machine learning-based vulnerability detection:
A comparative study,” J. Syst. Soft., vol. 168, no. 7, pp. 110659, 2020. doi: 10.1016/j.jss.2020.110659.

[13] R. Russell et al., “Automated vulnerability detection in source code using deep representation learning,”
in 2018 17th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Orlando, FL, USA, 2018, pp. 757–762. doi:
10.1109/ICMLA.2018.00120.

[14] P. Haridas, G. Chennupati, N. Santhi, P. Romero, and S. Eidenbenz, “Code characterization with graph
convolutions and capsule networks,” IEEE Access, vol. 8, pp. 136307–136315, 2020. doi: 10.1109/AC-
CESS.2020.3011909.

[15] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun and H. Jin, “A comparative study of deep learning-
based vulnerability detection system,” IEEE Access, vol. 7, pp. 103184–103197, 2019. doi: 10.1109/AC-
CESS.2019.2930578.

https://github.com/VulDetProject/ReVeal
http://cve.mitre.org
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/ACCESS.2020.3034766
https://doi.org/10.1109/TIFS.2020.3044773
https://doi.org/10.3390/app11073201
https://doi.org/10.26599/TST.2019.9010068
https://doi.org/10.3390/app10051692
https://doi.org/10.1016/j.jss.2020.110659
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ACCESS.2020.3011909
https://doi.org/10.1109/ACCESS.2019.2930578

3722 CMC, 2024, vol.79, no.3

[16] G. Lin et al., “Software vulnerability discovery via learning multi-domain knowledge bases,” IEEE Trans.
Dependable Secur. Comput., vol. 18, no. 5, pp. 2469–2485, 2019. doi: 10.1109/TDSC.2019.2954088.

[17] M. Tang, W. Tang, Q. Gui, J. Hu, and M. Zhao, “A vulnerability detection algorithm based on residual
graph attention networks for source code imbalance,” Expert. Syst. Appl., vol. 238, pp. 122216, 2024. doi:
10.1016/j.eswa.2023.122216.

[18] Suman and R. A. Khan, “An optimized neural network for prediction of security threats on software
testing,” Comput. Sec., vol. 137, no. 5, pp. 103626, 2024. doi: 10.1016/j.cose.2023.103626.

[19] C. Zhang and Y. Xin, “VulGAI: Vulnerability detection based on graphs and images,” Comput. Sec., vol.
135, pp. 103501, 2023. doi: 10.1016/j.cose.2023.103501.

[20] Joern-The Bug Hunter’s Workbench. Accessed: Jan. 15, 2024. [Online]. Available: https://joern.io/
[21] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with code

property graphs,” in 2014 IEEE Symp. on Secu. and Priv., Berkeley, CA, USA, 2014, pp. 590–604. doi:
10.1109/SP.2014.44.

[22] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” in Proc. 2016
IEEE/ACM 38th Int. Conf. Software Eng. (ICSE), Austin, TX, USA, May 14–22, 2016.

[23] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “POSTER: Vulnerability discovery with function
representation learning from unlabeled projects,” in Proc. 2017 ACM SIGSAC Conf. Comput. Commun.
Secur., Dallas, TX, USA, Oct. 30–Nov. 03, 2017.

[24] G. Lin et al., “Cross-project transfer representation learning for vulnerable function discovery,” IEEE
Trans. Ind. Inform., vol. 14, no. 7, pp. 3289–3297, 2018. doi: 10.1109/TII.2018.2821768.

[25] C. D. Xuan and D. Duc, “Automatically detect software security vulnerabilities based on natural language
processing techniques and machine learning algorithms,” J. ICT Res. Appl., vol. 16, no. 1, pp. 70–87, 2022.
doi: 10.5614/itbj.ict.res.appl.2022.16.1.5.

[26] P. Bian, B. Liang, Y. Zhang, C. Yang, W. Shi and Y. Cai, “Detecting bugs by discovering expectations and
their violations,” IEEE Trans. Softw. Eng., vol. 45, pp. 984–1001, 2018. doi: 10.1109/TSE.2018.2816639.

[27] C. Zhang, T. Yu, B. Liu, and Y. Xin, “Vulnerability detection based on federated learning,” Inf. Softw.
Tech., vol. 167, no. 5, pp. 107371, 2024. doi: 10.1016/j.infsof.2023.107371.

[28] S. Liu et al., “CD-VulD: Cross-domain vulnerability discovery based on deep domain adaptation,” IEEE
Trans. Dependable Secur. Comput., vol. 19, no. 1, pp. 438–451, 2022. doi: 10.1109/TDSC.2020.2984505.

[29] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song and D. Song, “Neural networkbased graph embedding for cross-
platform binary code similarity detection,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., New
York, USA, Oct. 2017, pp. 363–376.

[30] J. A. Harer et al., “Automated software vulnerability detection with machine learning,” arXiv preprint
arXiv:1803.04497, 2018.

[31] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu and Z. Chen, “SySeVR: A framework for using deep learning to detect
software vulnerabilities,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2244–2258, 2022. doi:
10.1109/TDSC.2021.3051525.

[32] T. B. Nun, J. S. Alice, and T. Hoefler, “Neural code comprehension: A learnable representation of code
semantics,” in Proc. Adv. Neural Inf. Process. Syst., Montréal, QC, Canada, 03–08 Dec. 2018, pp. 3589–
3601.

[33] Y. Li, S. Wang, and N. N. Tien, “Vulnerability detection with fine-grained interpretations,” presented at
the 29th ACM Joint Meeting on Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. Assoc. Comput. Mach.,
New York, NY, USA, 2021, pp. 292–303. doi: 10.1145/3468264.3468597.

[34] C. Saikat, R. Krishna, Y. Ding, and B. Ray, “Deep learning based vulnerability detection: Are we there
yet?,” IEEE Trans. Softw. Eng., vol. 48, no. 9, pp. 3280–3296, 2022. doi: 10.1109/TSE.2021.3087402.

[35] Download FFmpeg. Accessed: Jan. 15, 2024. [Online]. Available: https://ffmpeg.org/download.html
[36] D. X. Cho, D. H. Mai, M. C. Thanh, and B. V. Cong, “A novel approach for software vulnerability

detection based on intelligent cognitive computing,” J. Supercomput., vol. 79, pp. 17042–17078, 2023. doi:
10.1007/s11227-023-05282-4.

https://doi.org/10.1109/TDSC.2019.2954088
https://doi.org/10.1016/j.eswa.2023.122216
https://doi.org/10.1016/j.cose.2023.103626
https://doi.org/10.1016/j.cose.2023.103501
https://joern.io/
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.5
https://doi.org/10.1109/TSE.2018.2816639
https://doi.org/10.1016/j.infsof.2023.107371
https://doi.org/10.1109/TDSC.2020.2984505
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1109/TSE.2021.3087402
https://ffmpeg.org/download.html
https://doi.org/10.1007/s11227-023-05282-4

CMC, 2024, vol.79, no.3 3723

[37] D. X. Cho, “A new approach to software vulnerability detection based on CPG analysis,” Cogent Eng., vol.
10, no. 1, pp. 1–16, 2023. doi: 10.1080/23311916.2023.2221962.

[38] C. Zhang, B. Liu, Q. Fan, Y. Xin, and H. Zhu, “Vulnerability detection with graph attention network and
metric learning,” TechRxiv, vol. 1, pp. 1–17, 2022. doi: 10.36227/techrxiv.19783456.v1.

[39] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Zemel gated graph sequence neural networks,” in 4th
Int. Conf. Learn. Repre., San Juan, Puerto Rico, May 02–04, 2016, pp. 321–328.

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,”
IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[41] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic minority over-sampling
technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002. doi: 10.1613/jair.953.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014.

[43] P. Baldi and P. J. Sadowski, “Understanding Dropout”, in Advances in Neural Information Processing
Systems 26 (NIPS 2013). Red Hook, NY, USA, Dec. 05–10, 2013, pp. 1–9.

[44] X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout and batch
normalization by variance shift,” presented at the 2019 IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Long Beach, CA, USA, 2019, pp. 2677–2685.

[45] F. Wang and H. Liu, “Understanding the behaviour of contrastive loss,” in 2021 IEEE/CVF Conf. Comput.
Vis. Pattern Recognition, Nashville, TN, USA, 2021, pp. 2495–2504.

[46] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks,” in 33rd Int. Conf. Neural Inf. Process. Syst.,
Red Hook, NY, USA, 2019, pp. 10197–10207.

https://doi.org/10.1080/23311916.2023.2221962
https://doi.org/10.36227/techrxiv.19783456.v1
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1613/jair.953

	A New Framework for Software Vulnerability Detection Based on an Advanced Computing
	1 Introduction
	2 Related Studies
	3 Proposing the DrCSE Framework
	4 Experiment and Evaluation
	5 Conclusion
	References

