
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050223

ARTICLE

A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

Jun Wang, Changfu Si, Zhen Wang and Qiang Fu*

College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China

*Corresponding Author: Qiang Fu. Email: qiang.fu@outlook.com

Received: 31 January 2024 Accepted: 09 April 2024 Published: 20 June 2024

ABSTRACT

Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial
control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-
attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection
systems have been widely used in industrial control systems, and deep neural networks have always been an effective
method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high
false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper proposes
a hybrid deep learning intrusion detection method based on convolutional neural networks and bidirectional long
short-term memory neural networks (CNN-BiLSTM). To address the issue of imbalanced data within the dataset
and improve the model’s detection capabilities, the Synthetic Minority Over-sampling Technique-Edited Nearest
Neighbors (SMOTE-ENN) algorithm is applied in the preprocessing phase. This algorithm is employed to generate
synthetic instances for the minority class, simultaneously mitigating the impact of noise in the majority class. This
approach aims to create a more equitable distribution of classes, thereby enhancing the model’s ability to effectively
identify patterns in both minority and majority classes. In the experimental phase, the detection performance of the
method is verified using two data sets. Experimental results show that the accuracy rate on the CICIDS-2017 data
set reaches 97.7%. On the natural gas pipeline dataset collected by Lan Turnipseed from Mississippi State University
in the United States, the accuracy rate also reaches 85.5%.

KEYWORDS
Intrusion detection; convolutional neural network; bidirectional long short-term memory neural network; multi-
head self-attention mechanism

1 Introduction

The increasing use of standard protocols and devices in industrial systems that can connect
to the Internet is causing these systems to become targets of more intrusions [1]. Traditional ICSs
are based on physical isolation, leading people to pay more attention to functional safety issues
while neglecting the issues related to information security. However, modern ICS is gradually moving
towards informatization [2]. With the development of the Industrial Internet, ICS is becoming an open
interconnected system, and various network attacks are emerging. The network security challenges of
Industrial Control Systems are becoming increasingly severe [3], attracting more attention and research
compared to traditional functional safety. Traditional security approaches for industrial networks

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050223
https://www.techscience.com/doi/10.32604/cmc.2024.050223
mailto:qiang.fu@outlook.com


4298 CMC, 2024, vol.79, no.3

mainly rely on deploying security devices at the network edges, such as firewalls [4], which filter
network traffic based on custom rules. However, this passive defense strategy can only intercept known
network attacks and is unable to effectively identify and block new network threats. Therefore, there
is a need for more proactive and intelligent intrusion detection methods.

The idea of the Intrusion Detection System (IDS) was first proposed by James Anderson of the
National Security Agency in the 1980s [5]. It consists of a set of tools designed to assist administrators
in reviewing and auditing tracking activities. As a rapidly advancing artificial intelligence technique,
machine learning can uncover hidden patterns from a large amount of known data and use the learned
patterns to predict and classify new data [6]. With the widespread adoption of machine learning, it
exerts a fundamental influence on various disciplines, including the field of intrusion detection. In
1987, Narayan et al. [7] introduced an IDS that utilized artificial intelligence (AI) methods to detect
abnormal traffic and potential intrusions. This method laid the foundation for intrusion detection
based on machine learning algorithms. These IDS methods related to artificial intelligence can learn
from known network attacks through training, thereby identifying new abnormal network traffic that
has not been encountered before, significantly improving detection accuracy. Over the past 30 years,
researchers have proposed numerous IDS based on an assortment of machine learning algorithms
[8–10], and more. Gao et al. [11] used different classifiers as basic classifiers and proposed an adaptive
ensemble learning voting algorithm to heighten accuracy. In 2015, Gaikwad et al. [12] proposed
an intrusion detection technology based on machine learning ensemble method. Despite the use of
various machine learning methods for IDS research to automatically identify normal and abnormal
traffic in systems and networks, the issues of high false positives and low detection rates have not
been completely resolved. To address these challenges, one approach is to improve existing network
parameters through optimization algorithms, such as Differential evolution algorithm [13] and genetic
algorithm [14], another approach is to enhance the learning capability of models by employing more
complex deep models, such as CNN [15], Recurrent Neural Networks (RNN) [16], Deep Belief
Networks (DBN) [17], and autoencoders [18].

Cao et al. [19] proposed a network intrusion detection model using CNN and Gated Recurrent
Unit (GRU). The model achieved excellent detection results on the CICIDS-2017, UNSW-NB15, and
KDD-NSL datasets. In the work by Su et al. [20], they introduced a traffic anomaly detection model
named BAT, which integrates Bi-LSTM with an attention mechanism. The attention mechanism
is employed to filter the network flow vectors produced by the Bi-LSTM model, enhancing the
classification features for effective anomaly detection. The NSL-KDD dataset is utilized for testing,
revealing accuracy rates of 84.25% in the KDDTest+ test set and 69.42% in KDDTest-21 testing sets.
Sun et al. [21] devised a Deep Learning-based Intrusion Detection System. This system incorporates
a hybrid network, combining CNN and LSTM architectures to extract both spatial and temporal
features from network traffic. The effectiveness of this system in detecting intrusions was demonstrated
through successful testing on the CICIDS-2017 dataset. Altunay et al. [22] proposed a hybrid
model of CNN+LSTM and used the UNSW-NB15 and X-IIoTID data sets for verification in the
experiment. The experimental process was very rigorous and comprehensive. By comparison, it has
been demonstrated that deep learning methods exhibit superiority in detecting anomalous events
within large and complex datasets.

Table 1 summarizes the methods mentioned in the literature review. Through the comparison of
the data in the table, it becomes evident that the performance of deep learning models surpasses that
of traditional machine learning methods. Therefore, it is imperative to conduct further exploratory
research on the model structures of intrusion detection. When designing experiments, utilizing multiple
datasets for verification can more effectively demonstrate the model’s effectiveness.



CMC, 2024, vol.79, no.3 4299

Table 1: The description of existing work

Authors Model Datasets Accuracy

Ensemble voting
KDDTest+

85.2%
Gao et al. [11] Multi tree 84.23%

DNN 81.61%

Gaikwad et al. [12] Machine learning ensemble method NSL_KDD 99.6761%

CNN and gated recurrent unit (GRU)
CICIDS-2017 99.65%

Cao et al. [19] UNSW-NB15 85.25%
NSL_KDD 99.69%

Su et al. [20] Bi-LSTM with an attention mechanism NSL_KDD 84.25%

Sun et al. [21] CNN and LSTM CICIDS-2017 98.67%

Altunay et al. [22] CNN and LSTM
UNSW-NB15 93.21%
X-IIoTID 99.84%

As can be seen from the above review, there are still some problems to be solved in the field of deep
learning intrusion detection. First, as attack methods become more and more complex, larger intrusion
detection systems must be developed. Secondly, there should be innovations in the verification process,
and more comprehensive verification methods should be used to prove the effectiveness of the method.
Besides, it is observed that research on Intrusion Detection Systems (IDS) is primarily focused on
datasets collected in laboratory settings. The effectiveness of detection on real intrusion data from
industrial systems cannot be guaranteed. The method proposed in this paper utilizes various deep
neural network models (CNN, Bi-LSTM) to enhance the accuracy of detecting network attacks. It
has been tested on both the CICIDS-2017 dataset and a dataset collected from a real industrial
environment involving natural gas pipeline data. The results demonstrate the efficiency and high
accuracy of this approach in real-world industrial scenarios.

The proposed method contributes in the following ways:

1. This method represents an exploratory study based on a hybrid model. By adjusting the
structure and parameters of the model, a new intrusion detection model is developed.

2. When analyzing the experimental results, they are thoroughly compared with other methods
to demonstrate the superiority of the proposed approach.

3. To systematically assess the impact of each component of the model on the overall perfor-
mance, components are selectively removed or disabled, confirming the rationale behind the
proposed architecture.

4. The method was validated using real industrial datasets, demonstrating its applicability to real-
world industrial environments. This challenges the prevalent practice of conducting research
solely on laboratory datasets.



4300 CMC, 2024, vol.79, no.3

2 Background Knowledge
2.1 Convolutional Neural Network

The CNN is inspired by biological processes, gaining widespread adoption in recent years within
the realm of deep learning [23]. Comprising a variety of layers with different structures, the CNN
enables the concurrent utilization of multiple convolutional kernels for extracting diverse features
through convolutional operations. The formula for convolutional operation is shown in Eq. (1):

xl
j = f

⎛
⎝∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j

⎞
⎠ (1)

Here, xl
j is the j-th feature vector in the l-th layer; f is the activation function; Mj is the set used

to calculate the j-th feature vector in the l-th layer; xl−1
i is the i-th feature vector in the l − 1 layer; kl

ij is
the convolution kernel, and bl

j is the offset of the j-th feature vector in the l-th layer.

The pooling layer’s main function is to compress the features obtained after convolution [24]. The
pooling layer’s calculation process is like the convolutional layer, where the original feature vectors
are computed with a pooling window. The difference lies in that, while the convolutional layer alters
the feature values using weighted parameters in the convolutional kernel, the pooling layer directly
calculates the original data within the pooling window. Pooling operations commonly employed
in neural networks encompass both max pooling and average pooling techniques, which reduce
parameters, lower data dimensions, and to some extent, prevent overfitting. The model proposed in this
paper utilizes max pooling layers, extracting the maximum feature values from each specified window.
This significantly reduces the length of the feature vectors, alleviating sensitivity to the position of
features that need to be identified.

Following a series of convolutional and pooling operations, the data is ultimately fed into a
fully connected layer, commonly referred to as Dense. In this layer, the output of the preceding
layer (typically a convolutional or pooling layer) is flattened, creating a one-dimensional vector. The
primary objective is to convert the high-dimensional feature representation into a more manageable,
one-dimensional form. Upon connection to the Dense layer, each neuron establishes connections with
all features from the preceding layer. This allows the Dense layer to capture complex relationships
between all features in the input data.

2.2 Bidirectional Long Short-Term Memory Neural Network

The LSTM architecture represents a neural network innovation designed to tackle the challenge of
managing long-term dependencies within RNNs. It introduces specialized storage units and cell states
to specifically address the issue of prolonged dependencies, a limitation inherent in traditional RNNs.
This enhancement in architecture aims to overcome the long-term dependency problem, providing a
more effective framework for capturing and retaining information over extended sequences in data.
The long-term dependency problem in RNNs [25] refers to the challenges faced by RNNs in computing
relationships between distant nodes, often due to the issues of gradient explosion or gradient vanishing.
In comparison to RNNs, LSTM can preserve historical information through the cell state, and the
storage unit can decide whether to store information in in the cell state through gate mechanisms
[26]. A standard RNN consists of multiple individual structures, such as a tanh activation layer. In
contrast, an LSTM is composed of different gates, providing more flexibility in data processing. Since
RNN simply stacks these modules together, it cannot selectively forget historical information during



CMC, 2024, vol.79, no.3 4301

data transmission. This may lead to problems of long-term dependencies in the data, resulting in poor
training performance or model failure.

Bi-LSTM is an extension of LSTM [27]. While LSTM addresses the issue of not being able to retain
feature information, Bi-LSTM structure is created by merging forward LSTM layers with backward
LSTM layers [24]. This configuration enables the model to gather information from both preceding
and succeeding contexts, allowing it to capture both past and future information simultaneously. Each
recurrent unit in Bi-LSTM has feedback connections, providing memory and further exploration
capabilities. By considering both past and future features of the sequence, Bi-LSTM enhances the
model’s performance in handling sequential problems.

The computation process of a Bi-LSTM involves various gates and states. Here are the key
equations that describe the passes of a Bi-LSTM:

At time step t, the forward pass equations are as follows:

Input gat it and Input Activation C̃t

it = σ (Wi · [ht−1, xt] + bi) (2)

C̃t = tanh (WC · [ht−1, xt] + bC) (3)

Forget Gate ft

ft = σ
(
Wf · [ht−1, xt] + bf

)
(4)

Cell State Ct

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

Output Gate ot and Hidden State ht

ot = σ (Wo · [ht−1, xt] + bo) (6)

ht = ot ∗ tanh (Ct) (7)

The backward pass equations are like the forward. The final hidden state ht for time step t is
obtained by concatenating the forward and backward hidden states:

ht = [
hf

t ; hb
t

]
(8)

Finally, we can get the hidden layer state sequence:

{h0, h1 . . . , ht} (9)

The diagram in Fig. 1 depicts the neuronal architecture of a single LSTM neuron.

Bi-LSTM neural network architecture is depicted in Fig. 2.



4302 CMC, 2024, vol.79, no.3

Figure 1: The neuron structure of the LSTM neural network

Figure 2: The structure of the Bi-LSTM neural network

3 Datasets and Data Preprocessing
3.1 CICIDS-2017 Dataset

Since its development, the CICIDS-2017 dataset has garnered significant attention from numerous
researchers and students. Based on the analysis and research of this dataset, many new intrusion detec-
tion models have been proposed. The dataset originates from the Canadian Institute for Cybersecurity
and comprises 8 different files, containing both normal and attack traffic data spanning 5 days.

This dataset is extensive, and it simultaneously presents a significant class imbalance issue. This
imbalance implies that most of the training time is spent learning how to detect the more numerous



CMC, 2024, vol.79, no.3 4303

classes, while the model struggles to effectively learn and identify the minority classes. Such a situation
may lead to reduced precision and increased rates of false positives in the model’s detection results [28].

To address these issues, methods proposed by Goryunov et al. [29], Stiawane et al. [30],
Salo et al. [31], and others were consulted. These methods effectively alleviate class imbalance by
merging minority classes to form a new attack category and removing some data from the majority
classes. The preprocessed dataset features are referred to as CICIDS2017_sample, providing details
about the characteristics and contents of new dataset in Table 2.

Table 2: The description of CICIDS-2017 dataset

Serial number Labels Number of instances

0 BENIGN 22767
1 DoS 19035
2 PortScan 7946
3 BruteForce 2767
4 WebAttack 2180
5 Bot 1966

3.2 Gas Pipeline Dataset

In addition to utilizing the CICIDS-2017 dataset, to ensure the effectiveness of the proposed
method in a real industrial internet environment, this study also employed a dataset collected from
an actual industrial setting. The dataset was obtained from network traffic data logs of natural gas
pipelines by a research team at Mississippi State University [32]. The natural gas pipeline data logs
were captured in a laboratory setting. Data in this dataset comprising regular information and diverse
forms of network attack data. They are categorized into eight classes, as illustrated in the following
figure. The specific distribution of the data is outlined in Table 3.

Table 3: The description of natural gas pipeline dataset

Serial number Abbreviation

0 Normal(0)
1 NMRI(1)
2 CMRI(2)
3 MSCI(3)
4 MPCI(4)
5 MFCI(5)
6 DOS(6)
7 Recon(7)



4304 CMC, 2024, vol.79, no.3

3.3 Data Preprocessing

3.3.1 Normalization

Both parameter-based models and distance-based models require feature normalization. There
are two commonly used methods for normalizing continuous features: Min-Max scaling (linear
normalization) and Standard Scaling (standardization). In this paper, the Min-Max scaling technique
is employed, facilitating the transformation of data into a range spanning from 0 to 1. The Min-Max
scaling formula applied is outlined as follows:

x_scale = x − xmin

x − xmax

(10)

Here, x represents the initial value in the data set, x_scale is the value after normalization, xmax and
xmin represent the range of values for x.

3.3.2 Oversampling

In the CICIDS-2017_sample dataset, although the problem of data imbalance has been alleviated
to some extent, it persists. If the original data is directly used for training, it would lead the detection
model to favor the majority class. As a result, the detection performance would be poor, with an
increase in false positive rate and a decrease in accuracy. To address this issue, the SMOTE-ENN
algorithm is employed to further tackle the problem of data imbalance.

The SMOTE algorithm is one of the commonly used oversampling methods. In essence, the
algorithm involves randomly generating new instances of minority class samples, thereby increasing
the quantity of these minority class instances. Specifically, for each instance of minority class
samples, the algorithm identifies the closest neighbors belonging to the identical class. Subsequently,
interpolation is performed between them to create new instances. This process is repeated to generate
enough new instances, effectively increasing the quantity of instances representing the less prevalent
class and achieving a balance in the dataset across different classes [33].

Here is a pseudocode description of the SMOTE algorithm:

Algorithm: SMOTE
Input: Instances that belong to the less represented class (min_class), Number of synthetic examples
to generate (N), SMOTE ratio (k_neighbors)
Output: Synthetic minority class examples (synthetic_examples)
for each minority example in min_class:

Find k_neighbors nearest neighbors of the current example in min_class using a distance metric
(e.g., Euclidean distance).

for i = 1 to N:
Randomly select one of the k_neighbors, let’s call it nn.
Compute the difference vector diff = nn – current_example.
Generate a random number between 0 and 1, let’s call it rand.
Create a synthetic example as follows: Synthetic_example = current_example + rand ∗ diff.
Add synthetic_example to the synthetic_examples.

return synthetic_examples

The ENN algorithm considers the nearest neighbor relationship of samples and removes samples
from the predominant class that are obviously inconsistent with the decision boundaries of adjacent



CMC, 2024, vol.79, no.3 4305

instances from the most prevalent class to improve the balance of the dataset [34]. The application
of ENN helps eliminate some noise in the majority class and abnormal samples near the decision
boundary, thereby improving model performance.

Here is a pseudocode description of the ENN algorithm:

Algorithm: ENN
Input: Dataset (X, y), Number of nearest neighbors to consider (k_neighbors)
Output: Cleaned dataset (X_cleaned, y_cleaned)
for each example in X:

Find k_neighbors nearest neighbors of the current example using a distance metric (e.g., Euclidean
distance).

if example is misclassified:
Remove the example from the dataset.

X_cleaned = remaining examples in X
y_cleaned = corresponding labels for X_cleaned
return X_cleaned, y_cleaned

The core idea of SMOTE-ENN is to synthesize new artificial data through SMOTE, and then
remove the noise in the majority class samples through ENN, thereby realizing the processing of
imbalanced datasets [35].

3.3.3 K-Fold Cross-Validation

When dealing with data imbalance, the utilization of K-fold cross-validation becomes pivotal
to ensure a thorough and robust evaluation of machine learning model performance. This approach
entails partitioning the dataset into K subsets, and the model undergoes evaluation through K distinct
training-validation iterations. In each cycle, one subset serves as the validation set, while the others are
used for training. This methodology enhances the reliability and comprehensiveness of assessing the
model’s performance under varying data scenarios. This process yields estimates of model performance
for K different models, and their average performance is calculated. This approach provides a more
realistic and comprehensive assessment of model performance. In experiments, different values of K
are chosen for testing, and the parameter values yielding the best performance are further evaluated.

After the processing, Table 4 represents the distribution of the train set data of CICIDS-2017.

Table 4: The distribution of the train set data of CICIDS-2017

Serial number Before oversampling After oversampling

0 18973 18404
1 1639 18899
2 2306 18928
3 15863 18870
4 6621 18950
5 1816 18895



4306 CMC, 2024, vol.79, no.3

4 IDS Architecture

This chapter provides an overview of the deep learning IDS structure, with specific parameter
settings illustrated through experiments conducted on the CICIDS-2017 dataset. There are slight
adjustments to the parameters for another dataset, but the structure remains consistent.

4.1 Convolution Layer and Pooling Layer

After preprocessing, the dataset undergoes convolution and pooling operations. To make efficient
use of the parallel computing capabilities of the GPU, improve training efficiency, and consider
memory consumption, an appropriate batch size needs to be chosen before training. For this task,
a batch size of 32 was selected. The construction of the neural network model then begins.

Firstly, the input undergoes convolutional operations. The convolutional layer, by using shared
weights, reduces the number of model parameters and enhances the model’s generalization capability.
This is particularly useful for intrusion detection tasks as it allows better adaptation to different
network traffic patterns. The feature vector dimension of the input is (77, 1). A convolutional layer
with a kernel_size of 64 is used, and the activation function is chosen as ReLU. To maintain the input
and output dimensions, prevent information loss, and avoid feature map shrinking, padding is applied
with the ‘same’ setting. Convolutional operations effectively extract local features from input data,
saving computational time and improving the efficiency of intrusion detection through parameter
sharing. Theoretically, using smaller convolutional kernels can improve parameter sharing and reduce
computational complexity. However, empirical evidence shows that selecting larger convolutional
kernels leads to faster training. Specifically, with a kernel_size = 2, one training epoch takes around
170 s, while with kernel_size = 64, one training epoch takes less than 100 s. This might be related to
the overall model architecture and data format.

After convolutional layer processing, the feature vector’s dimension becomes (77, 64), which is not
favorable for subsequent processing. Therefore, a max-pooling layer is added after the convolutional
calculations, with a pool_size set to 8. This effectively reduces data dimensionality, lessening the
computational burden while retaining crucial information. For intrusion detection tasks, this helps
preserve key features in network traffic and reduces model complexity to prevent overfitting. Following
this, a batch normalization layer is added, providing a regularization effect and reducing the risk of
overfitting, thereby improving the model’s robustness.

4.2 Bi-LSTM Layer

As mentioned above, convolutional layers and pooling layers can extract features from data,
preserving the spatial hierarchy of the input data and helping the model learn crucial spatial patterns.
However, with the evolution of industrial network attack patterns, there is an increasing occurrence
of progressive, multi-step complex attacks. To identify these attacks, it is often necessary to capture
long-distance dependencies in the data sequence.

The Bi-LSTM model consists of two independent LSTM networks. The input sequences are put
into the two LSTM models in both the forward and reverse directions for feature extraction. The
final feature representation is formed by concatenating the output vectors from both LSTM models.
The design philosophy of the Bi-LSTM model is to enable the feature data obtained at time t to
simultaneously possess information from both the past and the future. Due to its ability to capture
contextual information, Bi-LSTM is commonly used for feature extraction in text content, facilitating
a more comprehensive understanding of attack behavior and underlying patterns. This mode can also
be applied to intrusion detection tasks. For progressive multi-step attacks, the attacker’s strategy may



CMC, 2024, vol.79, no.3 4307

change over time, and the dynamic nature of Bi-LSTM neural networks allows them to adapt better
to such variations.

The first Bi-LSTM layer in the model I proposed consists of 32 units, followed by normalization
and pooling processes. Subsequently, a second Bi-LSTM layer is added, comprising 64 units. The
advantage of this structure lies in the gradual increase in the number of units in the two Bi-LSTM
layers, representing a learning strategy from coarse to fine. This approach allows the model to capture
broader patterns and features in the early layers and then refine these representations in subsequent
layers. This is beneficial for learning hierarchical structures and complex representations in the data.

4.3 Fully Connected Layer and Output

After the processing, a fully connected layer is ultimately used to change the data dimension,
allowing for normal output. Before the output, a dropout layer is applied to randomly set a fraction
of the data outputs to zero. This serves as a powerful regularization method to effectively prevent
overfitting, especially given the combination of CNN and RNN in the model, which tends to increase
the risk of overfitting and could lead to suboptimal performance when applied to the test set. The
dropout parameter is set to 0.6. The SoftMax activation function is applied to transform the raw
outputs of the model into a form representing the probability distribution over classes. This serves as
the output layer of the model.

To summarize the entire contents of this chapter, the complete framework diagram of the intrusion
detection system proposed in this article can now be given in Fig. 3.

Figure 3: Process of my model

5 Comparative Analysis of Experimental Performance

This experiment utilizes two datasets to assess the effectiveness of my deep learning hybrid model
detection method: The CICIDS-2017 dataset and the natural gas pipeline dataset. Firstly, experiments
conducted on the CICIDS-2017 dataset are presented, showcasing various metrics to demonstrate that
the model is competent for intrusion detection tasks. A comparison is made with detection methods
proposed in other literature, highlighting the superior effectiveness of this approach over other deep



4308 CMC, 2024, vol.79, no.3

learning methods. Subsequently, my model is applied to the natural gas pipeline dataset, providing
evidence that the method can work on industrial data.

5.1 Evaluation Metric

The assessment of model performance incorporates several key metrics, including accuracy,
precision, recall, F1-score, and the ROC-AUC curve. Accuracy gauges the model’s proficiency in
predicting across all classes. Precision specifically signifies the model’s precision in predicting positive
examples. Recall means the degree of coverage of positive examples by the model. Precision and recall
may not fully describe a model’s performance alone, and F1-score provides a more realistic measure
of performance. The definitions for the indicators are presented in Eqs. (11)–(14).

In this experiment, a confusion matrix is employed to illustrate the practical detection perfor-
mance of the model [36]. The confusion matrix effectively presents the distinctions between observed
and predicted classes, offering a comprehensive depiction of the model’s detection outcomes. In the
matrix, it can be clearly seen that how much data is correctly classified and how much data is not
correctly classified.

In my tasks, the matrix utilized is of size N ∗ N, with N denoting the total number of data
categories. Table 5 is an example.

Table 5: The confusion matrix for multi classification tasks

CLASS1 CLASS2 . . . CLASSN

CLASS1 A11 A12 A1N

CLASS2 A21 A22 A2N

. . .

CLASSN AN1 AN2 ANN

According to the confusion matrix, parameters evaluating models are calculated:

Accuracy (A1) =

n∑
i=1

Aii

n∑
i=1

n∑
j=1

Aij

(11)

Percision (A1) = A11

n∑
i=1

Ai1

(12)

Recall (A1) = A11

n∑
i=1

A1i

(13)

F1 − score = 2 ∗ Percision ∗ Recall
Percision + Recall

(14)

5.2 Performance Analysis on CICIDS-2017 Dataset

First, experiments were conducted on the CICIDS-2017 data set to determine the data preprocess-
ing method and model parameters. The figure below shows the impact of k-fold cross-validation and



CMC, 2024, vol.79, no.3 4309

oversampling techniques on detection accuracy. As you can see from the Fig. 4, the experiment should
use 6-fold cross-validation and SMOTE-ENN oversampling technology to preprocess the data.

Figure 4: Accuracy of multiple categories on CICIDS-2017

Then adjusted the parameters and structure of my model. From the comparison in the Fig. 5, it
can be learned that the model I proposed has better detection performance. If k-fold cross-validation
was not performed, the detection accuracy would decrease. A smaller convolution kernel could reduce
the parameters of the model, accelerating training, but the detection accuracy would decrease too. If a
more complex network structure was introduced, such as adding a self-attention layer, in an attempt to
enhance the feature extraction capabilities of the model, the detection performance became unstable,
and the average result was still inferior to my method. Therefore, it can be said that my method is very
effective and the selection of parameters is reasonable.

Figure 5: Population selection



4310 CMC, 2024, vol.79, no.3

The Figs. 6–8 give more detailed detection results. My method not only has good overall detection
results but can also accurately classify each type of data.

(a) train accuracy and test accuracy (b) train loss and test loss

Figure 6: Accuracy and loss of multiple categories on CICIDS-2017

Figure 7: ROC curve for multi-class classification on CICIDS-2017 dataset



CMC, 2024, vol.79, no.3 4311

Figure 8: Confusion matrix for multi-class classification on CICIDS-2017 dataset

5.3 Comparison between CNN-Bi-LSTM and Other Models

Table 6 evaluates the detection performance by comparing the method proposed in my paper
with other existing methods introduced in other studies. The referenced papers utilized methods such
as MLP, LSTM, Deep-GFL, etc. In comparison to Paper 1 and Paper 2, my method demonstrates
superior precision, recall, and F1-score. In Paper 3, authors proposed an LSTM-based approach with
higher precision; however, this model is only suitable for binary classification, distinguishing between
normal and attack data. It cannot handle multi-class classification for various attack types, unlike my
method, which can classify multiple different categories within the dataset.

Table 6: The comparison with other method

Study Method Precision Recall F1-score

This paper CNN-Bi-LSTM 0.978 0.977 0.977
Paper1 [37] MLP 0.871 0.995 0.873
Paper2 [38] Deep-GFL 0.948 448 0.531
Paper3 [39] MLP 0.884 0.862 0.872
Paper3 [39] LSTM 0.984 0.898 0.895



4312 CMC, 2024, vol.79, no.3

5.4 Ablation Study and Theoretical Analysis

To demonstrate the rationality of the proposed model structure, this section employs an ablation
study method, conducting experiments to validate the respective roles of the CNN module and Bi-
LSTM in the model. Furthermore, the principles of the model are analyzed and discussed.

The Fig. 9 illustrates the detection performance of the model after removing certain modules. The
accuracy of the detection demonstrates that using either the CNN model or the Bi-LSTM model alone
does not achieve detection effectiveness comparable to the hybrid model.

Figure 9: The results of ablation study

Observing the Tables 7 and 8, it is evident that the Bi-LSTM model exhibits a significant advantage
in detecting DOS and PSCAN attacks, with higher accuracy compared to the CNN model. However,
the CNN model demonstrates lower accuracy but faster detection speed. This paragraph aims to
analyze and explain these results.

Table 7: The precision, recall, F1-score of CNN model

Number Pre Rec F1-score

0 0.990 0.900 0.943
1 0.759 1.00 0.863
2 0.808 0.993 0.891
3 0.968 0.987 0.977
4 0.958 0.999 0.978
5 0.918 0.953 0.935

The superior performance of the Bi-LSTM model in detecting DOS and PSCAN attacks can
be attributed to its ability to capture long-term dependencies and contextual information inherent in
sequential data. DOS and PSCAN attacks often involve intricate patterns and subtle variations over
time, which are better captured by the sequential nature of Bi-LSTM. Additionally, the bidirectional
modeling of Bi-LSTM enables it to effectively incorporate past and future information, enhancing its
ability to discern abnormal patterns in network traffic data.



CMC, 2024, vol.79, no.3 4313

Table 8: The precision, recall, F1-score of Bi-LSTM model

Number Pre Rec F1-score

0 0.994 0.949 0.971
1 0.903 0.994 0.946
2 0.950 0.993 0.971
3 0.980 0.995 0.987
4 0.958 0.999 0.978
5 0.947 0.989 0.968

On the other hand, the CNN model’s lower accuracy may stem from its limitation in capturing
long-range dependencies and contextual information present in sequential data. CNNs excel in
extracting local features through convolutional operations but may struggle to capture temporal
dynamics inherent in sequential data. However, the CNN model’s faster detection speed can be
advantageous in scenarios where real-time detection is paramount, as it processes data in parallel
across different regions. the Bi-LSTM model’s superior performance in detecting DOS and PSCAN
attacks underscores its capability to capture long-term dependencies and contextual information in
sequential data. Meanwhile, the CNN model’s faster detection speed makes it suitable for scenarios
requiring real-time detection, albeit at the expense of slightly lower accuracy.

In summary, the CNN-Bi-LSTM deep learning model can effectively extract features, capture
sequence information, and understand context in intrusion detection tasks, and has good robustness
and generalization capabilities, so it has great potential and superiority in practical applications.

5.5 Performance Analysis on Natural Gas Pipeline Dataset

The experimental data in the previous section was mainly obtained on the CICIDS-2017 data set,
which initially proved the detection performance of this method. In order to further prove that this
method is still effective in real industrial Internet intrusion detection tasks, this detection model was
applied to a natural gas pipeline data set collected in a real industrial system.

Raw natural gas pipeline data only has 17 features, but the data volume is larger and there are
more categories. Before training, the size of the input and output layers need to be adjusted, as well
as the convolution kernel, so that the model can process the data smoothly, and other parameters do
not need to be changed. It can be seen from Table 9, Fig. 10 that the model’s ability to identify certain
attack data is insufficient.

To solve this problem, the classification strategy must be changed. For an industrial system, it
only needs to receive normal industrial data and does not need other data. If it can prevent attacks
from entering the system, it does not care about the type of intrusion data. Therefore, the natural gas
pipeline data set can be classified into two categories. As can be seen from Fig. 11, this model can
correctly identify normal data and attack data. It can therefore be concluded that this model can work
in industrial systems.



4314 CMC, 2024, vol.79, no.3

Table 9: The precision, recall, F1-score of every kind of data in natural gas pipeline dataset

Categories Pre Rec F1-score

0 0.851 0.997 0.919
1 0.000 0.000 0.000
2 0.880 0.020 0.040
3 0.910 0.402 0.557
4 0.968 0.460 0.623
5 0.927 1.00 0.962
6 0.982 0.442 0.610
7 1.000 0.895 0.944

Figure 10: ROC curve for multi-class classification on natural gas pipeline dataset



CMC, 2024, vol.79, no.3 4315

Figure 11: Confusion matrix for binary classification on natural gas pipeline dataset

5.6 Final Discussion

This section summarizes all the processes and results of my experiments in Chapter 5. To assess
the model’s capabilities, clear criteria need to be established. In Section 5.1, metrics are provided to
validate the model, along with explanations of their significance and calculation methods. Starting
from the second section, the experimental steps are progressively elucidated. The experiments in
Section 5.2 showcase the process of adjusting model parameters, including cross-validation during
data preprocessing and improvements to the deep learning model based on training results. Compared
to existing works in Tables 1 and 6, my model not only demonstrates superior detection performance
but also can be utilized on a natural gas pipeline dataset, which is closer to the real industrial
systems. The results in Section 5.5 ensure the model’s practical feasibility and promising application
prospects. To further validate the method’s scientific validity, Section 5.4 conducts an ablation study
and theoretical analysis of my method to better understand the contribution of each component to
the model’s performance. From a theoretical perspective, explain the role and superiority of the CNN-
Bi-LSTM deep learning model in intrusion detection tasks.

6 Conclusion

In the realm of industrial network security, the increasing openness of ICS has led to a rise in the
complexity of attacks faced by industrial networks. To tackle this challenge, this paper introduces a



4316 CMC, 2024, vol.79, no.3

deep learning-based intrusion detection method. The preprocessing of data involves the application
of the SMOTE-ENN algorithm to address data imbalance issues. The model is constructed using a
combination of CNN and Bi-LSTM. This amalgamation allows the model to capture both spatial
and temporal features. The network structure is fine-tuned by adjusting model parameters to achieve
optimal detection performance. By testing on the CICIDS-2017 dataset and comparing with other
methods, it demonstrates the model’s exceptional detection effectiveness. Subsequent testing on a
natural gas pipeline dataset reveals the model’s ability to effectively discern normal data from attacks in
real industrial networks, albeit with challenges in achieving high accuracy for certain attack categories.

To improve my model, I can attempt to utilize better sample balancing techniques to address data
imbalance issues in future research or apply data augmentation techniques to increase the diversity of
the training dataset, thus improving the model’s generalization capability.

Acknowledgement: The authors sincerely appreciate the support from the Liaoning Province Nature
Fund Project; and Scientific Research Project of Liaoning Province Education Department.

Funding Statement: The authors sincerely appreciate the support from the Liaoning Province Nature
Fund Project (No. 2022-MS-291); the Scientific Research Project of Liaoning Province Education
Department (LJKMZ20220781, LJKMZ20220783, LJKQZ20222457, JYTMS20231488).

Author Contributions: The authors confirm contribution to the paper as follows: Study conception
and design: J. W, C. S, Q. F; data collection: J. W, Q. F, Z. W; experiment analysis and interpretation of
results: J. W, C. S, Z. W; writing—original draft preparation: J. W, C. S; writing—review and editing:
J. W, C. S, Q. F. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] H. C. Altunay, Z. Albayrak, A. N. Özalp, and M. Çakmak, “Analysis of anomaly detection approaches

performed through deep learning methods in SCADA systems,” in 2021 3rd Int. Cong. Human-Comput.
Intact., Optim. Robotic Appl. (HORA), Ankara, Turkey, IEEE, 2021, pp. 1–6.

[2] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan and N. Meskin, “Cybersecurity for industrial
control systems: A survey,” Comput. Secur., vol. 89, pp. 101677, 2020. doi: 10.1016/j.cose.2019.101677.

[3] K. Tange, M. de Donno, X. Fafoutis, and N. Dragoni, “A systematic survey of industrial internet of things
security: Requirements and fog computing opportunities,” IEEE Commun. Surv. Tut., vol. 22, no. 4, pp.
2489–2520, 2020. doi: 10.1109/COMST.2020.3011208.

[4] J. Liang and Y. Kim, “Evolution of firewalls: Toward securer network using next generation firewall,” in
Proc. 12th CCWC, Las Vegas, NV, USA, 2022, pp. 752–759.

[5] L. Chen, X. Kuang, A. Xu, S. Sou, and Y. Yang, “A novel network intrusion detection system based on
CNN,” in Proc. 8th CBD, Taiyuan, China, 2020, pp. 243–247.

[6] S. Badillo et al., “An introduction to machine learning,”Clin. Pharmacol. Ther., vol. 107, no. 4, pp. 871–885,
2020. doi: 10.1002/cpt.1796.

[7] K. G. Narayan, S. Mookherji, V. Odelu, R. Prasath, A. C. Turlapaty and A. K. Das, “IIDS: Design of
intelligent intrusion detection system for internet-of-things applications,” arXiv:2308.00943, 2023.

https://doi.org/10.1016/j.cose.2019.101677
https://doi.org/10.1109/COMST.2020.3011208
https://doi.org/10.1002/cpt.1796


CMC, 2024, vol.79, no.3 4317

[8] R. Panigrahi et al., “A consolidated decision tree-based intrusion detection system for binary and multiclass
imbalanced datasets,” Mathematics, vol. 9, no. 7, pp. 751, 2021. doi: 10.3390/math9070751.

[9] A. K. Balyan et al., “A hybrid intrusion detection model using EGA-PSO and improved random forest
method,” Sensors, vol. 22, no. 16, pp. 5986, 2022.

[10] M. Aljanabi, M. A. Ismail, and A. H. Ali, “Intrusion detection systems, issues, challenges, and needs,” Int.
J. Comput. Int. Sys., vol. 14, no. 1, pp. 560–571, 2021. doi: 10.2991/ijcis.d.210105.001.

[11] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, “An adaptive ensemble machine learning model for intrusion
detection,” IEEE Access, vol. 7, pp. 82512–82521, 2019. doi: 10.1109/ACCESS.2019.2923640.

[12] D. P. Gaikwad and R. C. Thool, “Intrusion detection system using bagging ensemble method of machine
learning,” in Proc. ICCUBEA-2015, Pune, India, 2015, pp. 291–295.

[13] J. C. Huang, G. Q. Zeng, G. G. Geng, J. Weng, K. D. Lu and Y. Zhang, “Differential evolution-based con-
volutional neural networks: An automatic architecture design method for intrusion detection in industrial
control systems,” Comput. Secur., vol. 132, no. 2, pp. 103310, 2023. doi: 10.1016/j.cose.2023.103310.

[14] J. C. Huang, G. Q. Zeng, G. G. Geng, J. Weng, and K. D. Lu, “SOPA-GA-CNN: Synchronous optimisation
of parameters and architectures by genetic algorithms with convolutional neural network blocks for
securing industrial internet-of-things,” IET Cyber-Syst. Robot., vol. 5, no. 1, pp. e12085, 2023. doi:
10.1049/csy2.12085.

[15] J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, “CNN-based network intrusion detection against denial-
of-service attacks,” Electronics, vol. 9, no. 6, pp. 916, 2020. doi: 10.3390/electronics9060916.

[16] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A. Razaque, “Deep recurrent neural
network for IoT intrusion detection system,” Simul. Model. Pract. Theor., vol. 101, pp. 102031, 2020. doi:
10.1016/j.simpat.2019.102031.

[17] A. A. Süzen, “Developing a multi-level intrusion detection system using hybrid-DBN,” J. Ambient Intell.
Humaniz Comput., vol. 12, no. 2, pp. 1913–1923, 2021. doi: 10.1007/s12652-020-02271-w.

[18] C. Tang, N. Luktarhan, and Y. Zhao, “An efficient intrusion detection method based on lightGBM and
autoencoder,” Symmetry, vol. 12, no. 9, pp. 1458, 2020. doi: 10.3390/sym12091458.

[19] B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, “Network intrusion detection model based on CNN and
GRU,” Appl. Sci., vol. 12, no. 9, pp. 4184, 2022. doi: 10.3390/app12094184.

[20] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep learning methods on network intrusion
detection using NSL-KDD dataset,” IEEE Access, vol. 8, pp. 29575–29585, 2020. doi: 10.1109/AC-
CESS.2020.2972627.

[21] P. Sun et al., “DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion detection
system,” Secur. Commun. Netw., vol. 2020, pp. 1–11, 2020.

[22] H. C. Altunay and Z. Albayrak, “A hybrid CNN+LSTM-based intrusion detection system for industrial
IoT networks,” Eng. Sci. Technol., vol. 38, pp. 101322, 2023. doi: 10.1016/j.jestch.2022.101322.

[23] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp.
6232–6251, 2016. doi: 10.1109/TGRS.2016.2584107.

[24] H. Gholamalinezhad and H. Khosravi, “Pooling methods in deep neural networks, a review,”
arXiv:2009.07485, 2020.

[25] A. M. Schaefer, S. Udluft, and H. G. Zimmermann, “Learning long-term dependencies with
recurrent neural networks,” Neurocomputing, vol. 71, no. 13–15, pp. 2481–2488, 2008. doi:
10.1016/j.neucom.2007.12.036.

[26] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: LSTM cells and network
architectures,” Neural Comput., vol. 31, no. 7, pp. 1235–1270, 2019. doi: 10.1162/neco_a_01199.

[27] F. Zou, H. Zhang, F. Sang, X. Li, W. He and X. Liu, “Bearing fault diagnosis based on combined multi-
scale weighted entropy morphological filtering and Bi-LSTM,” Appl. Intell., vol. 51, no. 10, pp. 6647–6664,
2021.

[28] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing intrusion detection
systems,” Int. J. Eng. Technol., vol. 7, no. 3.24, pp. 479–482, 2018.

https://doi.org/10.3390/math9070751
https://doi.org/10.2991/ijcis.d.210105.001
https://doi.org/10.1109/ACCESS.2019.2923640
https://doi.org/10.1016/j.cose.2023.103310
https://doi.org/10.1049/csy2.12085
https://doi.org/10.3390/electronics9060916
https://doi.org/10.1016/j.simpat.2019.102031
https://doi.org/10.1007/s12652-020-02271-w
https://doi.org/10.3390/sym12091458
https://doi.org/10.3390/app12094184
https://doi.org/10.1109/ACCESS.2020.2972627
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.1109/TGRS.2016.2584107
https://doi.org/10.1016/j.neucom.2007.12.036
https://doi.org/10.1162/neco_a_01199


4318 CMC, 2024, vol.79, no.3

[29] M. N. Goryunov, A. G. Matskevich, and D. A. Rybolovlev, “Synthesis of a machine learning model for
detecting computer attacks based on the CICIDS2017 dataset,” in Proc. ISP of the RAS, vol. 32, no. 5, pp.
81–94, 2020. doi: 10.15514/ISPRAS-2020-32(5)-6.

[30] D. Stiawan, M. Y. B. Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 dataset feature analysis
with information gain for anomaly detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020. doi:
10.1109/ACCESS.2020.3009843.

[31] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, “Data mining techniques in intrusion
detection systems: A systematic literature review,” IEEE Access, vol. 6, pp. 56046–56058, 2018. doi:
10.1109/ACCESS.2018.2872784.

[32] I. P. Turnipseed, A New Scada Dataset for Intrusion Detection Research. Mississippi, USA: Mississippi State
University ProQuest Dissertations Publishing, 2015, pp. 10–14.

[33] A. K. Rastogi, N. Narang, and Z. A. Siddiqui, “Imbalanced big data classification: A distributed
implementation of smote,” in Proc. Workshop Program 19th Int. Conf. Distrib. Comput. and Netw., Varanasi,
India, 2018, pp. 1–6.

[34] M. M. R. Khan, R. B. Arif, M. A. B. Siddique, and M. R. Oishe, “Study and observation of the variation
of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine
learning repository,” in Proc. 4th iCEEiCT , Dhaka, Bangladesh, 2018, pp. 124–129.

[35] A. Puri and M. Kumar Gupta, “Improved hybrid bag-boost ensemble with K-means-SMOTE-ENN
technique for handling noisy class imbalanced data,” Comput. J., vol. 65, no. 1, pp. 124–138, 2022. doi:
10.1093/comjnl/bxab039.

[36] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability
assignment based on the confusion matrix for classification problem,” Inf. Sci., vol. 340, no. 1, pp. 250–261,
2016. doi: 10.1016/j.ins.2016.01.033.

[37] O. Belarbi, A. Khan, P. Carnelli, and T. Spyridopoulos, “An intrusion detection system based on deep belief
networks,” in Proc. SciSec 2022, Cham, Springer International Publishing, 2022, vol. 13580, pp. 377–392.

[38] Y. Yao, L. Su, and Z. Lu, “DeepGFL: Deep feature learning via graph for attack detection on flow-based
network traffic,” in Proc. MILCOM, Los Angeles, CA, USA, 2018.

[39] M. Roopak, G. Yun Tian, and J. Chambers, “Deep learning models for cyber security in IoT networks,” in
Proc. 9th CCWC, Las Vegas, NV, USA, 2019, pp. 452–457.

https://doi.org/10.15514/ISPRAS-2020-32(5)-6
https://doi.org/10.1109/ACCESS.2020.3009843
https://doi.org/10.1109/ACCESS.2018.2872784
https://doi.org/10.1093/comjnl/bxab039
https://doi.org/10.1016/j.ins.2016.01.033

	A New Industrial Intrusion Detection Method Based on CNN-BiLSTM
	1 Introduction
	2 Background Knowledge
	3 Datasets and Data Preprocessing
	4 IDS Architecture
	5 Comparative Analysis of Experimental Performance
	6 Conclusion
	References


