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ABSTRACT

Chinese named entity recognition (CNER) has received widespread attention as an important task of Chinese
information extraction. Most previous research has focused on individually studying flat CNER, overlapped CNER,
or discontinuous CNER. However, a unified CNER is often needed in real-world scenarios. Recent studies have
shown that grid tagging-based methods based on character-pair relationship classification hold great potential
for achieving unified NER. Nevertheless, how to enrich Chinese character-pair grid representations and capture
deeper dependencies between character pairs to improve entity recognition performance remains an unresolved
challenge. In this study, we enhance the character-pair grid representation by incorporating both local and global
information. Significantly, we introduce a new approach by considering the character-pair grid representation
matrix as a specialized image, converting the classification of character-pair relationships into a pixel-level semantic
segmentation task. We devise a U-shaped network to extract multi-scale and deeper semantic information from
the grid image, allowing for a more comprehensive understanding of associative features between character pairs.
This approach leads to improved accuracy in predicting their relationships, ultimately enhancing entity recognition
performance. We conducted experiments on two public CNER datasets in the biomedical domain, namely CMeEE-
V2 and Diakg. The results demonstrate the effectiveness of our approach, which achieves F1-score improvements
of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art (SOTA) models,
respectively.
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1 Introduction

Chinese named entity recognition (CNER) aims at locate entity mentions from unstructured
Chinese natural language text and classify them into predefined entity categories, which is the
foundation of many downstream tasks such as knowledge graph construction, entity linking, and
question answering system [1–5]. As a fundamental technology, it has widespread application scenarios

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050229
https://www.techscience.com/doi/10.32604/cmc.2024.050229
mailto:guojjgb@163.com


4150 CMC, 2024, vol.79, no.3

across general-purpose technology [6–11], cybersecurity [12], industrial production [13], clinical
records (biomedical) [14,15], and many other domains. However, CNER faces unique challenges not
present in English named entity recognition (NER). Chinese word lacks explicit boundaries, and an
entity may consist of multiple Chinese characters with no clear boundaries [3–5], or have complex
structures and combinations [6,7]. In real-world applications, especially in specialized domains, the
task of entity recognition becomes more challenging due to the technical nature of the text and the
complexity of semantics. As shown in Fig. 1, with Chinese medical texts, a single sentence densely
includes both flat and overlapped entities, requiring models to uniformly extract entities of different
structures. Most previous works focused on flat CNER and were unable to recognize entities with other
structures [4–9], leading to a significant amount of useful entity information not being extracted, which
affects the performance of downstream tasks. Therefore, researching a unified CNER has significant
implications.

Figure 1: Example of complex entity structures in Chinese medical text (from CMeEE-V2 dataset)

Early studies have demonstrated that Chinese Word Segmentation (CWS) based CNER methods
may propagate the word segmentation errors to the subsequent named entity recognition. Therefore,
the current mainstream CNER is character-based methods [4–6]. Consistent with NER, CNER can
be divided into three subtasks: Flat CNER, overlapped CNER and discontinuous CNER [9,16].
Previous research has mainly focused on flat CNER, which is usually regarded as a sequence labeling
problem. Neural sequence tagging models represented by the Bi-LSTM-CRF classic architecture have
become a general solution for flat CNER [17,18]. Later, researchers attained higher performance
by integrating more Chinese character prototype features. Most representative among these is the
technique of incorporating lexical information to enhance CNER [4–6,19], since Chinese words convey
more independent and abundant semantic content closely associated with entity boundaries. However,
due to the inherent complexity of Chinese and the multi-granularity of semantics, overlapping and
discontinuous entities are also commonly present [6,18,19]. Therefore, researchers have focused
attention on overlapped NER, and span-based methods have gained most prominence [18–22].
Yu et al. [21] explored all possible entity spans through a biaffine attention mechanism to achieve more
accurate named entity recognition. Yuan et al. [18] and Zhu et al. [22] improved the performance of
span-based NER methods by enhancing span feature representations. Su et al. [10] proposed a novel
span-based CNER method called Global Pointer, which realizes the unified recognition of nested and
non-nested entities. The latest research trend focuses on the study of unified NER framework, with
the most impactful being the W2NER [9] method based on grid tagging. W2NER transforms the
NER task into a word-pair relation classification problem, modeling the relationships between word
pairs based on the Grid Tagging Scheme (GTS). This approach achieves a unified extraction of flat
entities, nested entities, and discontinuous entities, attaining the latest SOTA results on multiple NER
benchmark datasets.

The general idea of the grid tagging-based method is: The input sequence is converted into a
character-pair grid vector matrix, and the character-pair relation tag matrix is obtained by feature
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learning of the character-pair grid vector matrix [4,9,16]. Each element in this relation tag matrix
represents a predefined relation category, and the entities and their categories in the sentence can be
obtained by decoding the relation tag matrix. As shown in Fig. 2 in the relation tag matrix, “NONE”
indicates that there is no predefined relation between character pairs; “Next-Neighboring-Character
(NNC)” indicates that two characters are adjacent to each other in an entity; “Tail-Head-Character-∗
(THC-∗)”represents the tail and head boundaries of the “∗”entity. By decoding the relation matrix, the
three entities of “ (Saliva)”, “ (Sweat)”, “ (Increased salivary secretion
and perspiration)” and their corresponding categories can be obtained.

Figure 2: Overall idea of the grid-tagging-based entity recognition method

Although the grid tagging-based method has achieved great success on multiple general bench-
mark datasets, it still has deficiencies for CNER. First, existing methods do not fully consider the
semantic information of Chinese characters when constructing character-pair grid representations. To
address this problem, we enrich the character-pair information by fusing local and global information
between characters to obtain a more informative character-pair grid representation. In addition, in
terms of refining the grid representations, drawing inspiration from Computer Vision [23,24] and other
related research [25,26], we conceptualize the grid vector matrix as an image, its grids as pixels, and the
relation tag matrix as analogous to the pixel-level mask used in semantic segmentation. In this analogy,
the process of obtaining the relation tag matrix resembles that of image semantic segmentation. To
facilitate this semantic segmentation process, we have designed a U-shaped semantic segmentation
module, which enables the capture of comprehensive and profound relationships between different
character pairs, ultimately yielding a more accurate tag matrix.

The main contributions of this study are as follows:

(1) We propose a U-shaped network-based gird tagging model for CNER. To the best of our
knowledge, it is the first attempt to effectively convert the grid tagging-based CNER task into
an image semantic segmentation task. Specifically, we represent a sentence as a vector matrix of
Chinese character pairs, and employ the proposed U-shaped semantic segmentation network
to generate a high-quality character-pair relation tag matrix. This transformation enhances the
accuracy of entity recognition.
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(2) We design a grid feature extractor called the U-shaped segmentation network, characterized
by its symmetric structure and skip connections, allowing for the extraction of hierarchically
fused features at different scales. Additionally, we incorporate a spatial attention mechanism,
enabling the U-shaped network to focus on grid regions relevant to entities. Through the U-
shaped segmentation network, we extract comprehensive features of character-pair relation-
ships.

(3) We conduct experiments on two Chinese medical named entity recognition benchmark datasets
containing both flat and overlapped entities. Our method outperforms the baseline models
obviously.

2 Related Work

According to the different tagging schemes, the existing mainstream methods for CNER can be
broadly classified into the following categories: Sequence tagging-based methods, span-based methods
and grid tagging-based methods.

Sequence tagging-based methods. Most of the past CNER tasks have mainly addressed flat entities,
and most of these works viewed the CNER task as a sequence-labeling problem, where a specific
label is assigned to each tag in the sequence [2–4]. End-to-end Bi-LSTM-CRF models are the most
representative architecture [17]. Due to the natural differences between Chinese and English, word
granularity-based sequence-tagging models are susceptible to the influence of Chinese word-splitting
errors, leading to boundary errors. Therefore, most CNER are character-based approaches. However,
the character-based approaches cannot utilize word information that plays a very important role in
determining entity boundaries [4–6,19]. Therefore, researchers have proposed methods to enhance
the performance of CNER by incorporating external dictionaries. Zhang et al. [5] proposed Lattice-
LSTM, which incorporates lexical information into character-based CNER methods through the
Lattice structure. Li et al. [19] proposed FLAT model, which models the information interaction
between characters and lexicon while capturing long-distance dependencies, and solves the problems
of fuzzy word boundaries and missing word meanings. Wu et al. [20] improved CNER performance by
incorporating Chinese character structure information. Ma et al. [27] proposed a simple and effective
method to introduce lexical information with a simple adjustment in the character representation layer,
and this method can be easily migrated to other sequence tagging architectures. Sequence tagging-
based methods are simple and universal, and have become the de facto standard solution for flat
NER. However, entities with different structures generally require different representation or tagging
schemes, and it is difficult to design a unified sequence tagging scheme for all NER tasks [3,4,9,16],
which difficult to solve nested NER.

Span-based methods. The span-based approaches identify entity boundaries and assign entity cat-
egory labels by enumerating all possible entity spans and performing span classification. Su et al. [10]
devised the Global Pointer model, which utilizes the idea of global normalization, and can indiscrim-
inately identify nested and non-nested entities. Huawei Cloud [8] proposed the RICON model, which
utilizes entity-specific naming laws to enhance boundary information and further mitigates the effect
of naming laws on boundary recognition through contextual information, achieving superior perfor-
mance on multiple CNER datasets. Yan et al. [11] proposed the CNN-NER model to recognize nested
entities, and designed a multi-head dual affine decoder to represent all possible span-corresponding
features, achieving good performance. Zhu et al. [22] improved the model’s recognition performance
for long-span entities and nested structures through deep and span-specific representations. Span-
based methods are one of the most mainstream approaches for nested NER. However, it is limited by
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the enumeration property, which makes it more difficult to handle longer sequences and entities, and
the complexity of the model is particularly large [3,9,16].

Grid tagging-based methods. This idea first appeared in Relation Extraction (RE), Aspect-oriented
Fine-grained Opinion Extraction (AFOE). Wang et al. [28] proposed the TPLinker model, which
transforms the entity-relation joint extraction task into token-pair linking, which exhibits superior
performance on overlapping and multiple relation extraction tasks. Wu et al. [29] proposed a novel
GTS to solve the complete AFOE tasks by means of unified tags. GTS approaches show strong
performance in information extraction tasks. Recently, researchers have also proposed some GTS
approaches to handle the NER task. The current most advanced methods transform the NER
into word-word relation classification by modeling the relationship between entity boundary words
and internal component words, achieving a unified NER framework [9]. Liu et al. [16] built on
W2NER by enhancing the interrelations between tags, words to better recognize discontinuous entities.
Li et al. [30] designed a word pair relation tagging scheme for Joint Multimodal Entity-Relation
Extraction (JMERE) task, which can fully exploit the bidirectional interaction information between
entity recognition and relation extraction, and avoids error propagation due to the pipeline framework
problems. In real-world usage scenarios, it is often necessary to recognize entities of different structures
simultaneously, and the Grid tagging-based methods provides a new idea for handling all NER
tasks in a unified way [4,9,16]. However, for CNER, existing methods have somewhat overlooked
global semantic information between Chinese characters, as well as Chinese lexical information. When
dealing with domain-specific corpora, the performance has not been satisfactory.

In particular, the innovative combination of concepts and methods from Computer Vision into
the field of Natural Language Processing (NLP) helps us to understand the task itself from more
perspectives while improving the performance and diversity of NLP models. Liu et al. [25] investigated
Incomplete Utterance Rewriting as a semantic segmentation task, and achieved SOTA performance on
multiple datasets. Zhang et al. [26] considered the correlation features between entity pairs as images,
and for the first time innovatively transformed the document-level relation extraction problem into
a semantic segmentation problem, achieving SOTA performance on multiple document-level relation
extraction benchmark datasets. These approaches also inspire us to study the NER task from the
perspective of semantic segmentation in computer vision.

3 Our Model
3.1 Preliminary

The unified NER framework based on grid tagging can be formalized as follows: Given an input
sentence composing of N Chinese characters, the goal is to extract the relation ri,j ∈ R between every
character-pair(xi, xj), where R = {NONE, NNC, THC − ∗} is a predefined relation set. Our goal is
to obtain an N ∗ N character-pair relationship matrix, where each element in the matrix represents
the relationship between the corresponding character pairs. The character-pair relationship matrix is
similar to the pixel-level mask in semantic segmentation, establishing a connection between character-
pair relation classification and semantic segmentation.

Our model framework, as depicted in Fig. 3, comprises four key components: 1) Character
Representation: Initially, we process the input sentence to obtain character representations that
encompass both contextual information and word-level information. 2) Character-Pair Grid Vector
Matrix Acquisition: We sent the character representation of the sentence to Biaffine Attention and
Conditional Layer Normalization (CLN), for the acquisition of the character-pair grid feature matrix.
3) Character-Pair Relation Tag Matrix Extraction: We utilize a U-shaped segmentation network
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to extract both local and global features from the Character-Pair Grid Vector Matrix, leading to
the generation of a high-quality character-pair relation matrix. 4) Entity Prediction: We decode the
character-pair relation tag matrix to identify the potential entities and their categories.

Figure 3: Overall architecture

3.2 Character Representation

An input sentence X = {x1, x2, . . . , xN} is fed into the pre-trained language model BERT [31] to
derive embedding for each Chinese character. Subsequently, the character embedding is further refined
through the application of a Bi-LSTM network [32]. After this encoding process, the input sentence
X can be represented as ec ∈ R

N×dh :

ec = Encoder {x1, x2, . . . , xN} = {ec1, ec2, . . . , ecN} (1)

where xi represents the i-th Chinese character in the sentence, eci represents the character embedding
of xi, dh represents the embedding dimension, and N represents the length of the sentence.

In contrast to Chinese characters, Chinese words contain independent semantic information. For
this reason, we incorporate word information into character embedding based on the FLAT structure
[19]. The word wj matched by the dictionary is mapped to the word embedding ewj ∈ R

dh .

ewj = Ew(wj) (2)

where Ew(·) represents the pre-trained word embedding lookup table.

The character and word embedding are concatenated to form the composite embedding, denoted
as ex:

ex = Concat (ec, ew) = {
ec1, ec2, . . . , ecN, ew1, ew2, . . . , ewj

}
(3)
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where ex ∈ R
(N+Nw)×dh , Nw represents the number of the matched words, Concat() is concatenation

operation.

Subsequently, we enable full interaction between character embedding and word embeddings
using the same approach as in Transformer-XL [33] and FLAT [19], which leverages relative position
encoding for spans, combines the outcomes of the attention heads within the Transformer encoder,
and feeds them into the feed-forward neural network layer [34]. This process yields the final hybrid
character representation, denoted as: H = {h1, h2, . . . , hN} ∈ R

N×dh .

3.3 Character-Pair Grid Vector Matrix Acquisition

In our study, to capture the dependency relationships between character pairs, a crucial step is
obtaining a high-quality character-pair grid vector matrix representing character-pairs.

Specifically, we first mine the local and global character-pair relation representations. we employ
Conditional Layer Normalization [9,16,35–37], where the representation hi of the character xi and the
representation hj of character xj serve as the condition vector and input vector, respectively, to generate
the local character-pair relation vector V (pair) ∈ R

N×N×dh .

V (pair)
ij = CLN(hi, hj) = γi �

(
hj − μ

σ

)
+ λi (4)

where γi = Wαhi + bα and λi = Wβhi + bβ , all W and b are learnable parameters, μ and σ are the mean
and standard deviation across the elements of hj.

In addition, we use Biaffine Attention [8,21,38,39] to obtain the global character-pair relation
vector V (span)

ij ∈ R
N×N×dh that implies the correlation of the span between xi and xj:

V (span)

ij = Biaffine Attention(h(head)

i , h(tail)
j ) (5)

h(head)

i = LeakyReLU (hiWs) , h(tail)
j = LeakyReLU(hjWe) (6)

where LeakyReLU() is the activation function, Ws and We are learnable parameters.

Subsequently, we fuse the local and global relation vectors through a gating mechanism [8], to
obtain the final character-pair representation V ∈ R

N×N×dh :

gsi,j = σ(Wz[V (pair)
ij , V (span)

ij ] + bz) (7)

Vij = gsi,j · V (pair)
ij + (1 − gsi,j) · V (span)

ij (8)

where Wz and bz are learnable parameters, σ() is the sigmoid function.

Finally, we obtain the relative position vector Ed ∈ R
N×N×dd and the position vector Et ∈ R

N×N×dt

that distinguishes the upper and lower triangular areas in the matrix, following the approach outlined
in [9,16,40]. We then combine these two position vectors with the previously mentioned character-pair
relation vector through the multi-layer perceptron (MLP) to obtain the ultimate character-pair grid
vector matrix G ∈ R

N×N×D:

G = MLP([V ; Ed; Et]) (9)

3.4 Character-Pair Relation Tag Matrix Extraction

Considering the character-pair grid vector matrix G obtained in the previous module as a D-
channel image, we can formalize the character-pair relation prediction as a pixel-level mask within
this image. Inspired by the seminal U-Net architecture [23–26], we utilize the U-shaped segmentation
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network to achieve this goal. As shown in Fig. 3, it consists of two down-sampling and up-sampling
blocks, connected in the middle by skip connection, with a U-shaped overall architecture [23–26].

In detail, each down-sampling block consists of two convolutional layers and a maximum pooling
layer. The number of channels in each down-sampling stage is doubled compared to the previous stage.
By enlarging the receptive field of character pairs (xi, xj), we can capture dependency information
between character pairs at different distances, extract more diverse associative features. These features,
in turn, provide richer information for the subsequent up-sampling stage. Let Qi

l represent the output
of the i-th convolutional layer in the l-th down-sampling block, and Ml represents the output of the
l-th down-sampling block. The input of each convolutional layer comes from the previous module or
the output of the previous convolutional layer, and the calculation is as follows:

Qi
l = ReLU (Conv3×3 (InputConv)) (10)

Qi+1
l = ReLU(Conv3×3(Qi

l)) (11)

Ml = MaxPool(Qi+1
l ) (12)

where Conv3×3 represents a convolution operation with the filter size of 3 × 3, ReLU() represents the
activation function, MaxPool() represents max pooling, InputConv represents the input vector of the
convolution layer.

Conversely, each up-sampling block comprises a deconvolution layer followed by two convo-
lutional layers. In these up-sampling stages, the number of channels is reduced by a factor of two
compared to the previous stage. This process facilitates the distribution of aggregated information to
each pixel-level character-pair. Let Zl represent the output stemming from the deconvolutional layer
within the l-th up-sampling block, and Ui

l represents the output of the i-th convolutional layer in
the l-th up-sampling block. The input of the first deconvolution layer comes from the deepest layer
of down-sampling, and the input of the subsequent deconvolution layer comes from the output of the
previous part. The input of each convolutional layer comes from the output of the deconvolution layer
or the previous convolutional layer, and the calculation is as follows:

Zl = DeConv2×2(InputDeConv) (13)

Ui
l = ReLU(Conv3×3(Zl)) (14)

Ui+1
l = ReLU(Conv3×3(Ui

l )) (15)

where DeConv2×2 represents the deconvolution operation with a filter size of 2 × 2, InputDeConv represents
the input vector of the deconvolution layer.

Next, by employing skip connections, we integrate the up-sampling features with the down-
sampling features, thereby achieving multi-scale feature fusion.

fl = ReLU(Conv3×3(Concat(Ml+1, Ul)) (16)

where fl represents the feature map after skip connections.

Additionally, we employ Spatial Attention mechanisms [41,42] to selectively focus on regions
and positions within the feature map. Specifically, we begin by aggregating channel information
within the feature map through average pooling and max pooling operations. Subsequently, we adopt
convolutions to generate spatial attention maps. Finally, we fuse these maps with the original feature
map to obtain the ultimate output.

Ms(fl) = σ(Conv7×7([AvgPool(fl); MaxPool(fl)])) (17)
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Fl = Ms(fl) ⊗ fl (18)

where Conv7×7 represents the convolution operation with a filter size of 7 × 7, AvgPool() represents
average pooling, ⊗ represents element-wise multiplication, and Fl represents the final feature output
after using Spatial Attention.

Finally, we obtain the character-pair relation tag matrix F ∈ R
N×N×du , where du represents the

embedding dimension of the matrix.

3.5 Entity Prediction

Previous work has shown that co-prediction allows the network to better utilize shallow and
deep features for joint inference and enhance the classification of the model [9,16,43,44]. We apply
the same approach to improve the performance of NER models. After obtaining the character-pair
relation tag matrix F , we use the MLP predictor and the Biaffine classifier to compute two independent
relationship distributions y′

ij and y′′
ij for the character pair (xi, xj), respectively, and combine them to

enhance the final prediction of the model.

Specifically, the character-pair relation tag matrix F is sent to the MLP predictor, and the
relationship prediction score for each character pair (xi, xj) is:

y
′
ij = MLP

(
Fij

)
(19)

The character representation is sent to the Biaffine classifier [39], and the relationship score for
each character pair (xi, xj) is computed as in the following equation:

y
′′
ij = s�

i Uoj + W [si; oj] + b (20)

si = MLP (hi) , oj = MLP
(
hj

)
(21)

where U , W and b are learnable parameters.

Finally, the scores of the two predictors are combined as the final score:

yij = Softmax (y′ + y′′) (22)

We decode the associated entities and their respective categories using a depth-first path search
algorithm [9]. For entities comprised of a single character, they are directly recognized based on the
THC-∗ tag. In the case of entities composed of multiple characters, we create a character graph where
the constituent characters serve as nodes, and the NNC tags between characters serve as edges. We
apply a depth-first search algorithm to identify all paths within the graph, each path corresponding
the character index sequence of an entity. We determine the entity’s category based on the THC-∗ tag
between the head node and the tail node.

3.6 Training Objective

For a given input sentence X = {x1, x2, . . . , xN}, the objective function of model training is to
minimize the negative log-likelihood loss between the predicted label probability yij and the gold label
ŷij for the character pair (xi, xj):

L = − 1
N2

∑N

i=1

∑N

j=1

∑|R|

r=1
ŷr

ijlogyr
ij (23)

where r denotes the r-th relation in the set R of predefined relations.
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4 Experimental Settings
4.1 Datasets

To verify the effectiveness of our proposed method, we conducted evaluations on the CMeEE-V2
dataset and Diakg dataset. The CMeEE-V2 dataset is sourced from the Chinese Biomedical Language
Understanding Evaluation (CBLUE) [14], while the Diakg dataset is a high-quality Chinese dataset
for Diabetes knowledge graph [15].

Statistical details of these datasets are presented in Table 1. It is worth noting that both datasets
include not only flat entities but also a certain proportion of overlapping entities. CMeEE-V2
encompasses nine entity categories, including diseases, clinical manifestations, and medical procedures,
whereas Diakg comprises 18 entity categories, such as diseases, pathogenesis, and drug names.

Table 1: Detailed statistics of each dataset

CMeEE-V2 Diakg

Train Dev Test Train Dev Test

Sentence 14881 2477 2478 1899 407 408
Entity 80166 12556 12669 14865 3177 3087
Overlapped entity 12192 1781 1795 1810 377 360
Overlapped entity (%) 15.21 14.18 14.17 12.18 11.87 11.66

4.2 Parameter Setting and Evaluation Metrics

To get the word embedding lookup table Ew(·) in formula (2), we used the open source word
segmentation toolkit pkuseg1 to segment the collected corpus2,3, and conducted pre-training on the
segmented corpus using the skip-gram model [45]. We employed the Adam optimizer for the parameter
optimization, and the primary hyperparameter settings used in our experiments are shown in Table 2.
If there are multiple values, they represent the values on the CMeEE-V2 and Diakg data sets,
respectively. Our model is implemented with PyTorch and trained on NVIDIA RTX 3090 GPU, and
all hyperparameter values are obtained after tuning on the development set.

Table 2: Main experimental parameter settings

Parameters Values Parameters Values

Bert hidden size 768 dd 20
Bi-LSTM hidden size 256, 512 dt 20
Biaffine hidden size 512 du 288
Learning rate (Bert) 5e-6 Weight decay 0.1, 0.001
Learning rate (others) 1e-3, 1e-4 Word dropout 0.01, 0.5

1https://github.com/lancopku/pkuseg-python.git
2https://github.com/GanjinZero/awesome_Chinese_medical_NLP.git
3https://github.com/Toyhom/Chinese-medical-dialogue-data.git

https://github.com/lancopku/pkuseg-python.git
https://github.com/GanjinZero/awesome_Chinese_medical_NLP.git
https://github.com/Toyhom/Chinese-medical-dialogue-data.git
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Consistent with previous research in named entity recognition, we use Precision (P), Recall (R),
and F1-score (F1) as evaluation metric for our model. In line with the conventions of previous Span-
based methods [8,10,11] and Grid-tagging-based methods [9,16], a predicted entity is considered to be
true positive when its characters and corresponding category exactly match the true entity.

4.3 Baseline Models

To evaluate the performance of our proposed method, we compared it with several baseline
methods employing different tagging schemes:

Simple-Lexicon [27]: This approach optimizes the integration of lexical information into Lattice
by obtaining a collection of vocabulary for each character’s corresponding BMES (Beginning, Middle,
End, Single) positions. This simple method seamlessly incorporates word information into character
representations, avoiding the complexity of model structures and facilitating easy adaptation to other
sequence labeling frameworks.

FLAT [19]: The model introduces a Flat-Lattice Transformer structure that represents the Lattice
structure using a set of spans. It employs four different positional encodings to interact with both
character and word-level information. FLAT also addresses the issue of non-parallelizable operations
in Lattice-LSTM, achieving state-of-the-art results on multiple CNER datasets at that time.

MECT [20]: By utilizing multivariate data embedding, MECT fuses the features of Chinese char-
acters with sub-radical-level embedding through a cross-transformer architecture. This enhancement
allows the model to better capture the semantic information of Chinese characters and further improve
performance with random attention.

DSpERT [22]: A method of deep span representations that aggregates token information into span
representations progressively from bottom layers to top layers. This allows effectively decoupling rep-
resentations of overlapping spans and making representations of different categories more separable
in the feature space, improving the model’s recognition of long entities and nested entities.

CNN-Nested-NER [11]: This approach utilizes a multi-head Biaffine decoder to obtain prediction
score matrices, treating them as images. It employs CNN to model the spatial relationships between
adjacent spans in the score matrix, enhancing the model’s ability to recognize nested entities.

Global Pointer [10]: Using a global normalization approach and a multiplicative attention mech-
anism, Global Pointer incorporates relative positional information. By considering the start and end
positions of entities, it achieves a global view for the unified recognition of both non-nested and nested
entities.

W2NER [9]: This approach employs a GTS method that transforms the NER task into word-
pair relation classification. It effectively models the adjacency and head-tail relationships between
word pairs, converting sentences into two-dimensional tables. W2NER achieves state-of-the-art
performance on multiple Chinese and English NER benchmark datasets by using multi-granularity
dilated convolutions to capture relationships between words at different distances.

TOE [16]: The enhanced version of W2NER incorporates two additional tags, focusing not
only on the relationships between words but also on the relationships between words and tags. The
prediction of the relationship between words and tags is strengthened through a more fine-grained tag
system.
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5 Result Analysis
5.1 Overall Results

We compare our proposed model with the existing CNER methods on two datasets to validate
the superiority of the proposed method, as shown in Table 3.

Table 3: Experimental results of different models

Tagging scheme Model CMeEE-V2 Diakg

P R F1 P R F1

BIO/BMES Simple-Lexicon 61.00 60.31 60.64 72.39 67.48 69.85
Simple-Lexicon + BERT 65.60 66.80 66.19 72.84 73.40 73.11
FLAT 61.83 66.42 64.03 75.42 82.32 78.72
FLAT + BERT 65.28 68.53 66.86 79.13 84.25 81.61
MECT 70.54 73.11 71.80 72.75 70.91 71.83

Span DSpERT 73.74 68.15 70.83 83.15 83.28 83.21
CNN-Nested-NER 72.29 73.69 72.98 78.86 74.55 76.65
Global Pointer 73.10 72.25 72.54 84.27 83.46 83.79

GTS W2NER 74.58 75.19 74.87 83.56 84.20 83.87
TOE 75.92 74.37 75.14 84.69 84.21 84.45
Ours 82.20 82.11 82.16 86.40 84.64 85.51

The following observations can be made: (1) Our model demonstrates superior performance on
both datasets. When compared to the state-of-the-art model W2NER in the baseline, our proposed
method exhibits a remarkable improvement of 7.29 percentage points in the F1-score on the CMeEE-
V2 dataset and an enhancement of 1.64 percentage points on the Diakg dataset. These improvements
can be attributed to two key innovations. Firstly, when constructing character-pair representations, we
integrated both local and global information between characters to obtain a more enriched character-
pair grid representation. Secondly, we utilized the U-shaped network to extract deeper dependencies
between character pairs on the image-style three-dimensional character pair grid, which helps to
obtain a more accurate character pair relationship matrix, thereby improving the accuracy of entity
recognition. As an improved version of W2NER, TOE achieved performance gains on both datasets,
mainly because TOE extended the label system by modeling multi-granular interactions between
characters and labels. However, this also led to another problem: TOE itself is only suitable for
single-entity-type datasets. To adapt to multi-entity-type datasets, TOE needs to bind the Head-
Tail relations and entity types following the method in W2NER. With the expansion of the label
system, the number of labels would increase exponentially after binding entity types, and too many
labels could easily make prediction more difficult. Therefore, for multi-entity-type datasets, W2NER
and our method are more suitable. (2) Overall, across various tagging schemes, the performance
trends are as follows: GTS methods exhibit the best performance, followed by span-based methods,
while performance is relatively lower for sequence tagging methods. Grid-tagging-based methods
show superior performance as this labeling approach can simultaneously represent entity boundaries
and the relationships between characters within the entity, providing rich information. This is more
advantageous for handling complex CNER tasks, facilitating the achievement of unified CNER,
and resulting in better model performance and generalization. (3) On the whole, nearly all methods
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demonstrate superior performance on the Diakg dataset compared to the CMeEE-V2 dataset. This
observation aligns with the statistical information presented in Section 4.1. The Diakg dataset has a
higher average number of entities per sentence and a lower proportion of nested entities. Additionally,
entities in the Diakg dataset are generally shorter in length. These factors provide more representation
learning opportunities to distinguish entity features.

5.2 Ablation Study

In order to validate the impact of the proposed modules on the performance of our model, we
conducted the following ablation experiments:

w/o All U-Net: remove the full U-shaped segmentation network from our model.

w/o global: remove the global character-pair relation representation from our model.

w/o local: remove the local character-pair relation representation from our model.

w/o Spatial Attention: remove the Spatial Attention from the U-shaped segmentation network.

w/o Skip Connections: remove the Skip Connections from the U-shaped segmentation network.

r/w DConv: replace our proposed U-shaped segmentation network with Multi-Granularity Dilated
Convolution.

r/w Conv: replace our proposed U-shaped segmentation network with vanilla convolution net-
work.

The experimental results, as shown in Table 4, lead to the following observations: (1) Ablation
experiments on two datasets show that removing either global or local character pair information leads
to varying degrees of decline in named entity recognition performance. The model achieves optimal
performance when integrating both types of information, consistent with our analysis in Section 1.
Indicating that local and global character pair information can promote each other synergistically
and provide richer semantic information. (2) There is a significant decrease in F1-scores on both
datasets when removing the U-shaped segmentation network. This indicates that this module plays
a crucial role in refining character-pair grid representations. By fusing shallow and deep multi-scale
features, this module enhances relationship modeling and boundary delineation between character
pairs. This leads to gains in overall entity recognition. (3) Removing the Spatial Attention or Skip
Connections has various impacts on the model’s performance. This can be attributed to that the
Spatial Attention module assists the network in selectively attending to regions more relevant to
entities and Skip Connections effectively merges low-level positional information with high-level
semantic information. These elements may contribute to entity boundaries and category recognition,
thus affecting the model’s overall performance. (4) When the U-shaped segmentation network is
replaced with Multi-Granularity Dilated Convolution, there is a significant decrease in performance.
We speculate that this is because Multi-Granularity Dilated Convolution might not integrate multi-
scale contextual information as effectively as the U-shaped network. The U-shaped network, with its
unique structure that includes both downsampling and upsampling paths as well as skip connections,
obtains hierarchically fused features at different scales. This aids the model in understanding the
relationships between Chinese characters, capturing more intricate detail features and associative
information. In contrast, although Multi-Granularity Dilated Convolution offers varied receptive
fields, it lacks the necessary hierarchical integration of features, which is crucial for comprehensive
entity recognition in complex datasets. (5) When replacing the proposed U-shaped segmentation
network with the vanilla convolution, there is a significant drop in the model performance, especially
on the CMeEE-V2 dataset. Combining the analysis based on the statistical information of the datasets
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analyzed earlier, we attribute this phenomenon primarily to the generally longer entity lengths present
in the CMeEE-V2 dataset. As a result, the vanilla convolution struggles to capture long-distance
dependency relationships between characters in the CMeEE-V2 dataset, thereby affecting the model’s
performance.

Table 4: Results of ablation experiments

Model CMeEE-V2 Diakg

P R F1 P R F1

Ours 82.20 82.11 82.16 86.40 84.64 85.51
w/o global 78.18 80.81 79.47 85.28 85.06 85.17
w/o local 79.78 80.74 80.26 84.90 84.41 84.65
w/o All U-Net 81.40 80.18 80.79 84.70 85.03 84.86
w/o Spatial Attention 81.24 82.57 81.90 83.34 85.90 84.60
w/o Skip Connections 80.68 82.49 81.58 82.38 86.03 84.17
r/w DConv 79.70 82.70 81.17 83.76 85.74 84.74
r/w Conv 73.70 76.00 74.63 84.33 85.26 84.79

5.3 Effect of the U-Shaped Segmentation Network Depth

We further investigated the influence of the U-shaped segmentation network depth. Specifically,
we measured the network depth by the skip connections number in the U-shaped segmentation
network. The experimental results are shown in Fig. 4.
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Figure 4: Experimental results for different U-shaped network depths

We can observe that the network depth also affects the model performance. When the skip
connections number is 2, the model performs best. We believe the main reasons are as follows: Shallow
networks have limited feature representation capabilities due to insufficient layers, making them unable
to learn the complex dependency relationships between character pairs. As the number of layers
increases, the network’s expressive power is continuously enhanced, enabling learning increasingly rich
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feature dependencies. When the network reaches a certain depth, its feature representation capabilities
are sufficient to learn the dependencies between character-pair grid features. Further increasing
the depth leads to marginally decreasing performance gains. Adding too many layers significantly
increases the number of network parameters, reducing the model’s generalization ability and easily
leading to overfitting, resulting in degraded performance on the test set. There exists an optimal
network depth that strikes a balance between feature representation power and overfitting to ensure
best model performance.

5.4 Effect of the Character-Pair Representation Dimension

We explored the impact of the character-pair representation dimension dh on model performance,
and the experimental results are shown in Fig. 5.
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Figure 5: Experimental results of different character-pair grid feature channel numbers

We observe that the model performs best when dh is around 256 and 512 on CMeEE-V2 and Diakg,
respectively. Too low or too high dimensions can adversely affect the performance. We speculate that
the embedding dimension of the character-pair determines the model’s ability to express the features
of the character-pair. A shallow dimension prevents the U-shaped network from fully capturing the
dependency information in the character-pair grid vector matrix, setting the dimension too high will
significantly increase the number of model parameters, thereby reducing its generalization ability and
making it prone to overfitting. An appropriate character pair representation dimension can balance
information richness and model complexity, and thus achieve optimal performance.

5.5 Case Study

We selected several samples from CMeEE-V2 and Diakg for conducting case studies on different
models. The results are shown in Fig. 6.

We have the following analysis: (1) For the first case, we can observe that the Simple-Lexicon
method cannot recognize the second entity in a sequence of consecutive flat entities, while the other
models can successfully recognize all entities. Demonstrating that sequence tag-based methods lack
the ability to identify multiple contiguous entities. (2) For the second case, the challenge for the model
arises from the short length of the sentences densely containing two semantically similar but distinct
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entities of the same category. It requires distinguishing very closely related and similar entities. Both
sequence tagging and span-based methods struggle with this task as they typically rely on broader
context information or struggle to handle high-density entity recognition efficiently. On the contrary,
grid-based methods successfully identify the correct entity sequences. Our approach further accurately
identifies entity categories, possibly because the grid-based character pair relationship classification
method can more finely analyze the relationships between characters. This approach considers the
potential relationships between each character pair, allowing the model to recognize and differentiate
neighboring entities in more detailedly. Therefore, in this scenario, it successfully identifies the correct
entity sequence, and our method integrates and captures richer Chinese character-pair information,
which may contribute to the accurate identification of entity categories. (3) For the third case, this
sentence contains both nested and flat entities, with a high density of entities, making the situation
more complex. Simple-Lexicon failed to identify nested entities, mainly due to the limitations of the
BIO/BMES tagging framework. The model cannot learn relevant information under this framework.
The other tagging schemes accurately recognized the overlapped entities. However, Global Pointer
failed to recognize subsequent flat entities. This may be because the nested entity “ ” (kidney) within
the nested entity “ ” (diabetic nephropathy) and the flat entity “ ” (renal function)
have overlapping semantic relationships. The Global Pointer method focuses only on the start and
end positions of spans without explicitly modeling information within the span. Therefore, it performs
poorly in complex scenarios with dense and semantically overlapping entities. Both W2NER and our
model correctly identified entities and their categories, indicating that understanding the relationships
between Chinese characters can address more complex scenarios effectively.

Figure 6: Case analysis. Note: Red italics indicates that the model failed to recognize the corresponding
entity in the sequence. N/A indicates that the model failed to recognize any entities in the current
sequence. Orange italics indicates that the model failed to correctly identify the entity category

6 Conclusion

In this paper, we propose a new unified CNER method based on the grid tagging framework. The
key innovation lies in our approach to handling CNER from the perspective of semantic segmentation
in Computer Vision. We integrate local and global inter-character information via Conditional Layer
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Normalization and Biaffine Attention to obtain semantically richer and more comprehensive grid
representations. Moreover, we propose a new U-shaped network to distill deep dependencies between
character pairs, which leads to a more accurate character-pair relationship matrix and improved
entity recognition performance. Extensive experimental results on two Chinese medical NER datasets
demonstrate that the proposed method significantly outperforms competing approaches. In-depth
analysis is also conducted to validate the effectiveness of each proposed module. Although the texts in
our datasets are derived from real medical natural language texts and contain flat and overlapped
entities due to the professional and complex nature of medical texts, they have been well-chosen
and annotated. Real industrial application scenarios may present additional challenges, such as non-
standard expressions, redundant information in the texts, and the scarcity of annotated data, which
increase the difficulty of the CNER task. In future work, we will continue to explore how to improve
the model’s performance in real-world, low-resource application scenarios.
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