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ABSTRACT

In practical engineering, multi-objective optimization often encounters situations where multiple Pareto sets (PS)
in the decision space correspond to the same Pareto front (PF) in the objective space, known as Multi-Modal Multi-
Objective Optimization Problems (MMOP). Locating multiple equivalent global PSs poses a significant challenge
in real-world applications, especially considering the existence of local PSs. Effectively identifying and locating
both global and local PSs is a major challenge. To tackle this issue, we introduce an immune-inspired reproduction
strategy designed to produce more offspring in less crowded, promising regions and regulate the number of
offspring in areas that have been thoroughly explored. This approach achieves a balanced trade-off between
exploration and exploitation. Furthermore, we present an interval allocation strategy that adaptively assigns fitness
levels to each antibody. This strategy ensures a broader survival margin for solutions in their initial stages and
progressively amplifies the differences in individual fitness values as the population matures, thus fostering better
population convergence. Additionally, we incorporate a multi-population mechanism that precisely manages each
subpopulation through the interval allocation strategy, ensuring the preservation of both global and local PSs.
Experimental results on 21 test problems, encompassing both global and local PSs, are compared with eight state-
of-the-art multimodal multi-objective optimization algorithms. The results demonstrate the effectiveness of our
proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.
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Nomenclature

NP Population size
G Evolutionary generations
Ci; Cloning quantity of abi

Ri Nondominated rank of abi

m The number of objectives
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L The number of intervals
abi ith antibody
CDi Special crowding distance
TC Hypermutation operation
Ns Number of non-dominated solutions
Nc Initial number of intervals
K Number of clusters

1 Introduction

In many practical optimization problems, the consideration of multiple objectives is often neces-
sary. Taking feature selection problems [1] as an example, one typically needs to optimize not only for
the highest classification performance but also for minimizing the number of selected features to reduce
computational complexity. Such optimization problems involving the simultaneous optimization of
two or more objectives are well-known as multi-objective optimization problems (MOPs). Due to the
potential conflicts between objectives, finding a solution in MOPs that outperforms another solution
across all objectives is challenging. This leads to the establishment of a non-dominated relationship [2]
between solutions, where one solution is not consistently superior to another. The optimal solutions,
characterized by these non-dominated trade-off solutions in the decision space, are referred to as
Pareto sets (PS). In the objective space, these solutions form the Pareto front (PF).

In certain MOPs, such as flow-shop scheduling [3], fighter vehicle control [4] and space mission
design [5], it is common to encounter scenarios where multiple PSs correspond to the same PF,
or even situations where there are both local PSs and global PSs. This type of problem is defined
as a Multimodal Multi-Objective Optimization Problem (MMOP) with local PSs. The existence of
multiple PSs corresponding to a global PF and local PSs associated with superior local PFs proves to
be highly valuable in practical applications. Due to the complexity of real-world problems, they are
often influenced by uncertain factors, such as constraints or environ-mental changes, leading to some
optimal solutions becoming infeasible. Rapidly providing equivalent global optimal alternatives or
locally optimal solutions of acceptable quality can offer decision-makers more choices and reduce the
risks associated with uncertain factors. On the other hand, having multiple global PSs and local PSs
can present a more comprehensive fitness landscape for the problem, providing valuable information
for exploring the nature of practical optimization problems.

Recently, a notable focus has been on developing effective solutions for MMOPs. To solve
these complex problems, several Multi-modal Multi-Objective Evolutionary Algorithms (MMEAs)
have been introduced. A prevalent approach in this domain is the integration of techniques tailored
for multimodal problem, such as niching based technique, with well-established multi-objective
algorithms like Pareto-dominated based algorithms [2] and decomposition-based algorithms [6]. This
integration aims to enhance the algorithms’ ability to handle both the multimodality and multi-
objective aspects of the optimization problems effectively. For example, Liang et al. [7] introduced a
niching strategy in the decision space within Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
[2], effectively enhancing the diversity of solutions in the decision space. Yue et al. [8] utilized an index-
based ring topology to establish stable niches and proposes a special crowding distance to promote
distribution of solutions. The quality of solutions is evaluated by combining the special crowding
distance with non-dominated ranking.

While the previously mentioned MMEAs excel at discovering equivalent global PSs in the decision
space, the exploration of high-quality local PSs presents a significant challenge. Approaches like the
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Multimodal Multi-objective Genetic Algorithm (MMOGA) [9] and the MMEA with dual clustering
(MMOEA/DC) [10] leverage neighborhood and clustering techniques to partition niches, limiting
competition among individuals to local regions and enhancing the preservation of local PSs. However,
these algorithms often struggle with balancing the number and distribution of individuals across
different niches. To tackle this issue, innovative strategies such as the MMEA based on weighted
indicator (MMEA-WI) [11] and the MMEA with hierarchy ranking method (HREA) [12] introduce
metrics to assess the local convergence performance of solutions. By incorporating local convergence
quality, these methods restrict dominance relationships among individuals from the entire search space
to local regions, effectively preserving local PSs. However, the inclusion of local convergence quality
may come at the expense of global convergence capability. In situations where local PSs are distant
from global PSs, this may lead the population to converge locally, creating challenges in simultaneously
identifying both global and local PSs.

Compared to the introduced niching-based mechanism, an artificial immune system inherently
possesses the capability to handle both multimodality and multi-objectives. Through antibody affinity
maturation and variation [13], the immune system can concurrently recognize multiple antigens and
adaptively adjust antibody concentrations through immunoregulation mechanisms. This is particu-
larly advantageous for addressing MMOP with local PSs. Therefore, this paper proposes an immune-
inspired algorithm to simultaneously address the challenges of multimodality and multi-objectivity
in the problem. Moreover, we introduce an interval allocation based environmental selection to
concurrently locate local PSs. The main contributions of this paper are as follows:

1. To achieve comprehensive coverage of both global and local PSs, we propose an Immune-based
Reproduction Mechanism. This mechanism generates more offspring in sparse, promising regions
while reducing the number of offspring in crowded and already explored regions by controlling the
cloning size. Through adaptive allocation of computational resources, the exploration and exploitation
are balanced effectively.

2. Instead of using the objective value directly as fitness, an interval allocation strategy is proposed
to assign fitness. This strategy dynamically adjusts the relaxation of objective values through grid
scaling. In the early stages, it permits the coexistence of more similar objective values, thereby
enhancing diversity and providing survival space for multiple solutions. As the algorithm evolves,
it incrementally increases the differentiation of fitness values among individuals, complementing
environment selection to improve population convergence and facilitate exploitation capabilities.

3. A multi-population mechanism is introduced, wherein the interval allocation (IA) strategy is
applied to each subpopulation for environment selection. Through precise control over subpopula-
tions, it enables the algorithm to effectively locate and cover multiple global and local PSs.

4. Comparative experiments were carried out on 21 test problems encompassing both local and
global PSs, wherein the proposed algorithm was compared against seven representative algorithms.
The results of these experiments convincingly showcase the superior performance of our proposed
algorithm in effectively identifying both local and global PSs.

The remainder of this paper is organized as follows. Section 2 provides an overview of related
work on MMOP and immune-inspired algorithms. Section 3 elaborates on the specific strategies of
the proposed algorithm MMIA_IA. Section 4 presents the experimental setup, results analysis, and
discussions. Section 5 offers a summary and prospects for MMIA_IA.
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2 Related Works
2.1 Multimodal Multi-Objective Optimization

In recent years, MMOPs have gained attention, leading to the development of various MMEAs
targeting global PS acquisition. Initially, Deb and Tiwari [14] identified multimodal characteristics in
MOPs, introducing the first MMOP test problem, the omni-test problem. Subsequently, the SYM-
PART [15] test problem was proposed. To advance MMOP research, Yue et al. [16] designed more
complex MMOPs, the MMF benchmark test problems, with both local and global PSs. Numerous
MMEAs followed, with Liang et al. [7] introducing a decision space niche mechanism for enhanced
diversity, and Yue et al. [8] establishing a circular topology for stability and introducing a special
crowding distance. Guided by the special crowding distance, Yue et al. [17] proposed MMODE_ICD,
and Zhang et al. [18] employed K-means clustering for enhanced diversity. Liang et al. [19] used a
clustering mechanism, and Qu et al. [20] introduced a grid-based mechanism. Li et al. [21] integrated
a multi-population mechanism with grid techniques, and Qu et al. [22] utilized a species formation
mechanism. Wu et al. [23] presented a multi-stage strategy, while Wang et al. [24] introduced a
modified maximum extension distance metric. Hu et al. [25] and Liu et al. [26] segregated individuals
into diversity and convergence archives, and decomposition-based and indicator-based approaches
were employed, e.g., Tanabe et al. [27] proposed a decomposition-based multi-modal multi-objective
algorithm framework, which assigns one or more individuals to the same subproblem to handle
equivalent solutions. Similarly, Peng et al. [28] employed a decomposition-based framework, utilizing
a clearing mechanism and greedy removal strategy to preserve equivalent global PSs. Additionally,
Tanabe et al. [29] also introduced an indicator-based algorithm framework with a niche mechanism to
locate multiple PSs in the problem.

Liu et al. [30], considering practical applications, devised an imbalanced test problem set of PFs
with varying levels of search difficulty. Due to the predominant focus of many existing algorithms
on population convergence, these algorithms often swiftly converge to PF that are easier to explore
within the MMOP with the imbalance between convergence and diversity in the decision space
(MMOP_ICDs). They struggle to escape local search regions, resulting in the algorithms ultimately
identifying only one PS. In response to this challenge, Liu et al. [30] proposed a convergence-penalized
density method to prevent premature convergence of the population. Based on this method, they
proposed an evolutionary algorithm with convergence-penalized density method (CPDEA). Recently,
Tanabe et al. [31] conducted a notable review, emphasizing the significance of seeking both global and
local PSs. In practical applications, certain challenging to model uncertainties may render solutions
on the global PS practically infeasible. Consequently, locally acceptable PSs can offer decision-makers
a broader array of choices. However, within the existing landscape of MMEAs, only a handful of
algorithms can effectively handle MMOPs with both local and global PSs. To address this research
gap, Liang et al. [32] introduced the IEEE Congress on Evolutionary Computation (CEC) 2020 test
problem set, comprising nine MMOPs featuring both local and global PSs. In a bid to simultaneously
locate local and global PSs, Lin et al. [10] proposed an algorithm employing dual clustering in
both decision and objective spaces, referred to as MMOEA/DC. Li et al. [12] employed hierarchical
ranking methods to acquire both global and local PSs. Wang et al. [33] introduced a layer-to-layer
evolution strategy and a clearing-based niche method to preserve some locally acceptable solution sets.
Yue et al. [9] utilized a neighborhood mechanism to restrict competition among individuals, thereby
maintaining local solutions. Liu et al. [34] introduced a dual niche strategy to enhance diversity and
an additional archive set to preserve both global and local PSs.
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2.2 Immune Inspired Algorithm

The biological immune system has the ability to protect the body from antibody invasion and
possesses an adaptive immune regulation mechanism. Inspired by this, numerous immune algorithms
have been proposed. The primary concept derives from B lymphocytes, which can generate antibodies
matching antigens through cloning and hypermutation. Immune-inspired algorithms typically involve
five main operations: Initializing antibodies, evaluating antibody-antigen affinity, antibody cloning,
mutation, and selection, as depicted in Algorithm 1.

Cloning: In the immune algorithm, each feasible solution is considered an antibody, and antibodies
are replicated through a proportional cloning operation. The number of clones for each antibody is
determined by its affinity, usually assigning more clones to individuals with higher fitness values.

Hypermutation: Unlike traditional genetic algorithms, the immune-inspired algorithm does not
involve crossover operations. Instead, each antibody undergoes a hypermutation operation after
cloning. This operation enhances the diversity of antibodies, facilitating a more comprehensive
exploration of the solution space.

Selection: The selection strategy focuses on choosing antibodies with promising prospects to enter
the next generation.

Algorithm 1: Immune-inspired algorithm
Input: NP (Number of antibody);
Output: P (Antibody population)
1. Initialize population P with NP antibodies randomly;
2. Evaluate the antibody-antigen affinity;
3. while stop criteria are not satisfied do
4. Clone antibodies based on affinity by Cloning;
5. Mutate the cloned antibodies through Hypermutation;
6. Select antibodies for the next generation based on their affinity by Selection;
7. end while

3 Proposed Method
3.1 General Framework of MMIA_IA

In order to simultaneously locate global and local PSs in MMOPs, a multimodal multi-objective
immune algorithm based on the interval allocation strategy (MMIA_IA) is proposed. The framework
of MMIA_IA is illustrated in Algorithm 2. The antibody population is initialized and evaluated at
first. Then, an immune-based recombination mechanism is introduced to generate offspring for each
antibody in the population. After merging the offspring with the parent populations, the population is
then partitioned into multiple subpopulations by using K-means clustering. Following this, the interval
allocation-based environmental selection is applied to each subpopulation to select the well-converged
and well-distributed antibodies to survive to the next generation. This process is repeated until the
termination condition is satisfied. Finally, the nondominated solutions in the population P are output.

Algorithm 2: Pseudocode of MMIA_IA
Input: P (Population), NP (Population size),
Output: P
1. Initialize the antibody population P = {

ab1, . . . , abNp

}
;

(Continued)
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Algorithm 2 (continued)
2. Evaluate the fitness of each antibody in the population P;
3. While the termination condition is not met do
4. Q←Generate the offspring by Immune-based Reproduction Mechanism;
5. P←P∪Q;
6. Divide P into subpopulations {subpop1, · · · , subpopNcs} using K-means clustering;
7. For each subpopulation subpopi

8. subpopi← Interval Allocation Based Environmental Selection;
9. End for
10. P = subpop1 ∪ subpop2 ∪ . . . ∪ subpopNcs;
11. End while
12. Return P;

3.2 Immune-Based Reproduction Mechanism

To meet the requirement of concurrently locating both global and local PSs in MMOPs with
local PSs, the algorithm must possess both global and local search capabilities. To address these
challenges, we designed an immune-based reproduction mechanism, which includes two methods for
implementation cloning. The pseudocode for immune-based recombination mechanism is shown in
Algorithm 3.

Algorithm 3: Pseudo-code of immune-based reproduction mechanism
Input: P (Population), NP (Population size)
Output: Q (offspring)
1. Nd←Calculate the number of non-dominated individuals in P;
2. for each antibody abi∈P
3. if Nd < 0.5×NP
4. Ci←Calculate the clone size of abi by Eq. (1);
5. else
6. Ci←Calculate the clone size of abi by Eq. (2);
7. end if
8. Generate Ci clones of abi according to Eq. (3);
9. Q←Hypermutate each clone according Eq. (4);
10. end for

Firstly, the number of non-dominated antibodies in population P is calculated and denoted as Nd.
If Nd is less than half of the total population size NP, indicating insufficient convergence capability
in the population, it is necessary to enhance the ability to explore local and global PF. In this case, the
cloning size of each antibody is evaluated using Eq. (1).

Ci =
⌈(

Rmax − Ri

Rmax − Rmin

)
× (Cmax − Cmin)

⌉
(1)

where Ci represents the cloning size of individual abi, Ri signifies the non-dominated rank of individual
abi, Cmax and Cmin represent the maximum and minimum cloning size respectively, Rmax and Rmin denote
the maximum and minimum non-dominated ranks according to non-dominated sorting.
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It can be observed from Eq. (1) that antibodies with stronger convergence will generate more
clones. When the number of non-dominated antibodies in the population exceeds half of the total
population size NP, we encourage the population to learn around individuals with better diversity
to enhance the uniformity of population distribution. In this situation, Eq. (2) is used to evaluate the
cloning quantity for each antibody, where antibodies with larger crowding distances will produce more
clones.

Ci =
⌈(

CDi − CDmin

CDmax − CDmin

)
× (Cmax − Cmin)

⌉
(2)

where CDmax and CDmindenote the maximum and minimum crowding distance among all individuals,
and CDi denotes the crowding distance of the individual abi.

For each abi ∈ P, it will go through the cloning operation as Eq. (3).

TC (ab1, ab2, · · · , abNab) = {
TC (ab1) , TC (ab2) , · · · , TC

(
abNp

)}
=

⎧⎪⎨
⎪⎩{ab1, ab1, · · · , ab1}︸ ︷︷ ︸

C1

, {ab2, ab2, · · · , ab2}︸ ︷︷ ︸
C2

, · · · ,
{
abNp, abNp, · · · , abNp

}︸ ︷︷ ︸
CNp

⎫⎪⎬
⎪⎭ (3)

Subsequently, the static hypermutation [18] is applied on each of the clones as Eq. (4).

TH (ab1, ab2, · · · , abNab) = {
TH (ab1) , TH (ab2) , · · · , TH (abNab)

}
(4)

Finally, all mutated clones are output as offspring Q. By adjusting the number of cloned
individuals, this mechanism achieves a balance between exploration and exploitation of the population
at different stages.

3.3 Interval Allocation Based Environmental Selection

To address the issue that local PSs are prone to domination by global PSs, an interval allocation
strategy is proposed. In the proposed strategy, the objective space is partitioned into distinct intervals,
where individuals within the same interval are assumed to possess identical fitness values. During
the early stages of evolution, larger intervals are employed, where the fitness values exhibit minimal
differentiation among individuals. This approach is conducive to retaining a diverse set of solutions,
steering the exploration towards both global and local PF. As the iterative process unfolds, the intervals
progressively shrink, leading to a gradual differentiation in fitness values among individuals. This
meticulous adjustment ensures precise exploration, allowing the algorithm to adapt to the changing
landscape of the optimization problem. The detailed implementation is outlined below:

Firstly, each dimension of the objective space is partitioned into intervals of size Lj, j = 1, · · ·, m,
which is calculated according to Eq. (5).

Lj =
(
f max

j − f min
j

)
Nc × G

(5)

where m is the number of objectives, Nc is the initial number of intervals, f max
j and f min

j represent the
maximum and minimum j-th objective.

Subsequently, the objective value of each individual is evaluated based on the determined intervals.
The objective value is then adjusted according to the corresponding interval number. Individuals
falling into the same interval are assigned identical fitness values. The fitness value of each individual
is evaluated as Eq. (6).
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f
′

j =
⌈(

fj − f min
j

)
Lj

⌉
(6)

where fj represents the j-th objective value, f ′
j represents the defined fitness value, �·� represents ceiling

function.

The size of the grid cells is inversely proportional to the number of generations during the
evolutionary process, as indicated by Eq. (5). In the initial stages, the grid has larger intervals,
facilitating the coexistence of individuals in the same grid cell. This results in a weakened impact
of differences in objective values between individuals, making it less likely for solutions to dominate
each other. Consequently, this encourages the preservation of solutions with favorable convergence
traits, promoting effective exploration in the early stage of evolution. As the algorithm progresses and
the population becomes diverse with numerous non-dominated solutions, the grid intervals decrease,
leading to a continuous increase in the number of grids. This dynamic adjustment enhances the
discriminative capability of the grids, allowing for a more nuanced exploration of the solution space.

Algorithm 4: Interval allocation based environmental selection
Input: subpopi, i = 1, . . . , K (subpopulation), Nc (initial number of intervals), G (generation count)
Output: subpopi

1. Calculate the number of antibodies Nsi in subpopi;
2. Utilize Eq. (5) to calculate the size of intervals Lj for each objective;
3. For each antibody abi

j∈subpopi

4. Assign fitness values according to Eq. (6);
5. End for
6. Perform non-dominated sorting on subpopi based on their fitness values;
7. subpopi← Keep the first Nsi/2 antibodies;
8. Return subpopi;

Fig. 1 provides an illustrative example to enhance the understanding of the interval allocation
strategy. Assuming current iteration G = 1, with a predefined number of Nc set to 5. The range
of the objectives f1 and f2 are both [0.5, 5.5]. L1 = L2 = 1 can be calculated according to Eq. (5).
Consequently, the search space in the f1 and f2 dimensions is partitioned into 5 intervals of lengths L1

and L1, respectively. The interval numbers are then assigned as the fitness values for individuals within
those intervals. Specifically, the original objective values for ab1 and ab2, given as (0.7, 5.1) and (1.3,
5.2), respectively, fall within the interval with the number (1, 5). Consequently, the fitness values for
ab1 and ab1 are updated to (1, 5). Similarly, the original fitness values for ab3, represented as (4.0, 4.9),
are updated to (4, 5) as it belongs to the interval numbered (4, 5).
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Figure 1: Illustration of interval allocation strategy, where f1 and f2 represent two objective values

Algorithm 4 describes the environmental selection process based on the interval allocation
strategy. Firstly, the size of each subpopulation is calculated. Then, the size of intervals Lj is calculated
according to Eq. (5). For each individual, fitness values are assigned using Eq. (6). Subsequently, the
subpopulation is non-dominated sorted based on the allocated fitness values. Finally, the first half of
the sorted individuals is retained to update the subpopulation.

4 Experimental Results and Analysis

To evaluate the performance of the proposed algorithm in tackling MMOPs with local PSs,
three test suites were utilized: The CEC 2020 MMOPs benchmark [32], the imbalanced distance
minimization benchmark problems with epsilon-efficient solutions (IDMP_e) [12], and the Polygon-
based MMOPs [34]. In the CEC 2020 MMOPs benchmark, 9 test problems feature local PSs, namely
MMF10_l, MMF11_l, MMF12_l, MMF13_l, MMF15_l, MMF15_a_l, MMF16_l1, MMF16_l2, and
MMF16_l3, respectively. These problems exhibit diverse PS shapes and various PF shapes, including
convex PS, concave PS, nonlinear PF, and linear PF. Importantly, they demonstrate varying numbers
of global PSs and local PSs. In the IDMP_e test suite, 8 test problems feature local PSs, includ-
ing IDMPM2T1_e, IDMPM2T2_e, IDMPM2T3_e, IDMPM2T4_e, IDMPM3T1_e, IDMPM3T2_e,
IDMPM3T3_e, and IDMPM3T4_e. These test functions possess multiple global PSs and concurrent
local PSs. For instance, IDMPM2T4_e-e and IDMPM3T4_e-e feature 2 global PSs and 6 local PSs.
These test functions present additional challenges as they are unbalanced, i.e., the computational
resources required for solving different PSs differ.

Additionally, four Polygon-based MMOP test problems, denoted as Polygon1-4, were designed.
These problems involve a variable number of global PSs and local PSs, along with variable radius and
vertices of the polygon. Table 1 outlines the characteristics of these four polygonal test problems. In
Table 1, M denotes the number of objectives, Radius signifies the size of the four PSs, and Global
PS and Local PS indicate the quantity of global and local PSs, respectively. In Fig. 2, Polygon1-4
are illustrated to demonstrate the polygon-based MMOPs. Specifically, for Polygon1, Polygon3, and
Polygon4, there are four equivalent PSs, consisting of a global PSs and three equivalent local PSs,
respectively. For Polygon2, there are 2 global PSs and 2 inequivalent local PSs.
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Table 1: The characteristics of polygonal test problems

Problems m Radius Global PS Local PS

Polygon1 3 {5, 10, 10, 10} 1 3
Polygon2 3 {5, 5, 10, 10} 2 2
Polygon3 3 {5, 10, 10, 15} 1 3
Polygon4 3 {5, 10, 15, 20} 1 3

(1) True PS of Ploygon1 (2) True PS of Ploygon2 (3) True PS of Ploygon3 (4) True PS of Ploygon4

(5) True PF of Ploygon1 (6) True PF of Ploygon2 (7) True PF of Ploygon3 (8) True PF of Ploygon4

Figure 2: The true PS and true PF of three Polygon-based MMOPs

To assess the performance of algorithms in searching for global and local PSs, we employ the
Inverted Generation Distance (IGD) [35] for both decision space and objective space. The IGDx
indicator reflects the average Euclidean distance between the solutions obtained by the algorithm in
the decision space and the true PS of the test problem. The IGDf indicator reflects the difference
between the objective values of the solutions obtained by the algorithm and the true PF of the test
problem. The calculation of these indicators is given by Eqs. (7) and (8).

IGDx(ps, PS) =
∑

v∈PS d (v, ps)
|PS| (7)

IGDf (pf , PF) =
∑

v∈PF d (v, pf )

|PF | (8)

where ps represents the obtained PS by the MMEA, pf represents the obtained PF by the MMEA. PS
represents the true PS. PF represents the true PF. v represents the solution values in the true PS and
PF, d (x, y) denotes the minimum Euclidean distance between all solutions in x and y. A smaller IGD
value indicates better algorithm performance.
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4.1 Experimental Setup

To ensure fair comparisons, the population size (NP) is set to 100 times the number of decision
variables (d), and the maximum function evaluation count (FES) is set to 5000 ∗ d. All the experiments
are 30 independent runs. Parameter settings for all comparative algorithms are maintained in line with
the original literature. In MMIA_IA, the parameters Cmin and Cmax are set to 1 and 3, respectively.
The number of initial intervals (Nc) is set to 100, and the number of cluste rs (K) is set to 10. For
a comprehensive and intuitive analysis of results, the Wilcoxon rank sum test [36] is employed for
statistical analysis, with a significance level set at 5%.

4.2 Comparison with the State-of-the-Art Algorithms

To evaluate the performance of MMIA_IA, this study conducts a comparative analysis with
seven representative MMEAs: Omni-optimizer [14], MO-Ring-PSO-SCD (MRPS) [8], MMOHEA
[25], CPDEA [30], MMEA_WI [11], MMOGA [9], MMOEA/DC [10] and CEA-LES [33]. These
algorithms were chosen based on their prominence in solving MMOPs, and their performance has been
widely validated. Omni-optimizer and MRPS are notable algorithms for MMOPs, while MMOHEA is
a hybrid evolutionary algorithm incorporating a dual-archive approach. CPDEA and MMEA_WI are
specifically designed to address imbalanced test problems. MMOGA, MMOEA/DC and CEA-LES
are tailored for MMOPs featuring local PSs.

Table 2 displays the experimental results of average and variance in IGDx values for all compared
algorithms. From the results of the rank-sum test, it is evident that MMIA_IA outperforms Omni-
optimizer, MRPS, MMOHEA, CPDEA, and MMEAWI algorithms on almost every test problem,
with a considerable advantage in terms of p-values. Furthermore, MMIA_IA exhibits superior perfor-
mance compared to MMOGA, MMOEAD/C, and CEA-LES, which are state-of-the-art algorithms
designed for MMOP with local PS. Although MMOEAD/C and CEA-LES achieve comparable
performance to MMIA_IA on some problems, the calculated p-values demonstrate that MMIA_IA
outperforms them significantly. Notably, MMIA_IA consistently emerges as the top-performing algo-
rithm across 14 test problems: MMF10_l, MMF11_l, MMF13_l, MMF15_l, MMF16_l1, MMF16_l2,
IDMPM2T4_e, IDMPM3T1_e, IDMPM3T3_e, IDMPM3T4_e, and Polygon1∼4. In contrast, Omni-
optimizer, MRPS, MMOHEA, MMOGA, CPDEA, MMEAWI, and MMOEA/DC secure the best
IGDx values on 0, 0, 0, 0, 0, 0, and 7 test problems, respectively. MMOEA/DC ranks second, slightly
behind MMIA_IA. MMOGA, designed for local PS localization, outperforms algorithms like Omni-
optimizer, MRPS, and MMOHEA, which are tailored for global PS localization.

Table 2: The average IGDx values of compared algorithms

Problems MMIA_IA Omni-optimizer MRPS MMOHEA MMOGA CPDEAC MMEAWI MMOEAD/C CEA-LES

MMF10_l 0.00808 0.17138 0.16672 0.16901 0.07805 0.20091 0.19573 0.00982 0.00898
(0.0012) (0.0306) (0.0083) (0.0193) (0.0272) (0.0025) (0.0126) (0.0076) (0.0018)

MMF11_l 0.00615 0.2503 0.19988 0.24757 0.01521 024855 0.24746 0.00749 0.00635
(0.0003) (0.0014) (0.0192) (0.0019) (0.0021) (0.0009) (0.0039) (0.0014) (0.0023)

MMF12_l 0.00355 0.24631 0.19290 0.22942 0.05291 0.24469 0.24447 0.00321 0.00224
(0.0002) (0.0024) (0.0434) (0.0224) (0.024) (0.0003) (0.0003) (0.0035) (0.0010)

MMF13_l 0.07824 0.28486 0.23868 0.25267 0.16581 0.25431 0.25235 0.10365 0.11563
(0.0047) (0.0081) (0.0161) (0.008) (0.0193) (0.0089) (0.0088) (0.0245) (0.0023)

(Continued)
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Table 2 (continued)

Problems MMIA_IA Omni-optimizer MRPS MMOHEA MMOGA CPDEAC MMEAWI MMOEAD/C CEA-LES

MMF15_l 0.04881 0.24435 0.15386 0.18754 0.16299 0.22567 0.25761 0.05372 0.04557
(0.0009) (0.0204) (0.0173) (0.0248) (0.0264) (0.0145) (0.0014) (0.0037) (0.0009)

MMF15_a_l 0.14298 0.21273 0.16436 0.16562 0.18901 0.20442 0.20930 0.10624 0.08115
(0.0567) (0.0161) (0.0104) (0.0132) (0.0165) (0.0663) (0.072) (0.0319) (0.0049)

MMF16_l1 0.06760 0.18525 0.12064 0.12140 0.15568 0.14299 0.15180 0.06834 0.07012
(0.0044) (0.0087) (0.0067) (0.0101) (0.0094) (0.0054) (0.0045) (0.0366) (0.0006)

MMF16_l2 0.15061 0.30038 0.20125 0.23523 0.22122 0.29701 0.33134 0.16797 0.16501
(0.0053) (0.0332) (0.0247) (0.0244) (0.0243) (0.0221) (0.0018) (0.0186) (0.0132)

MMF16_l3 0.15429 0.22586 0.15684 0.16075 0.19981 0.19416 0.20761 0.13803 0.08523
(0.0038) (0.0142) (0.0133) (0.0091) (0.0173) (0.0088) (0.0026) (0.0286) (0.0015)

IDMPM2T1_e 0.00135 0.30333 0.10294 0.2990 0.00303 0.67322 0.67338 0.00095 0.00105
(0.0004) (0.3221) (0.2176) (0.3259) (0.0013) (0.0006) (0.0004) (0.0006) (0.0151)

IDMPM2T2_e 0.00321 0.26851 0.00818 0.09998 0.00392 0.67340 0.67348 0.00280 0.00302
(0.0006) (0.3218) (0.0036) (0.2182) (0.0004) (0.0003) (0.0005) (0.0014) (0.0015)

IDMPM2T3_e 0.00819 0.62356 0.12722 0.44119 0.00785 0.30085 0.32529 0.00149 0.00650
(0.0061) (0.1668) (0.1951) (0.2222) (0.0039) (0.0005) (0.1075) (0.0065) (0.0045)

IDMPM2T4_e 0.13734 0.96170 0.54630 0.39147 0.22498 1.00800 0.86694 0.16345 0.15084
(0.0062) (0.1618) (0.2200) (0.2052) (0.1078) (0.0051) (0.2567) (0.0073) (0.0045)

IDMPM3T1_e 0.01051 0.81967 0.64309 0.65968 0.23019 0.62699 0.62540 0.01231 0.01131
(0.0004) (0.1745) (0.0094) (0.1658) (0.2077) (0.0021) (0.0011) (0.0015) (0.0051)

IDMPM3T2_e 0.02341 0.78354 0.61323 0.76955 0.20468 0.49693 0.49726 0.01980 0.01874
(0.0046) (0.1858) (0.2108) (0.2004) (0.1375) (0.0015) (0.012) (0.0324) (0.0045)

IDMPM3T3_e 0.06025
(0.0992)

0.75142
(0.2346)

0.50570
(0.0063)

0.43089
(0.1133)

0.23006
(0.1231)

0.53219
(0.0032)

0.50317
(0.0028)

0.06211
(0.0489)

0.06855
(0.0045)

IDMPM3T4_e 0.09492 1.01149 0.73510 0.61547 0.41731 0.90484 0.84953 0.09691 0.10352
(0.0797) (0.1391) (0.2007) (0.1810) (0.1901) (0.352) (0.1598) (0.0814) (0.0213)

Polygon1 0.95332 80.2547 39.1023 73.0255 67.2773 76.9209 25.5772 2.08814 1.02452
(0.0812) (11.403) (24.104) (7.2983) (10.317) (29.460) (28.669) (0.0743) (0.0076)

Polygon2 0.82439 88.5105 42.2135 92.4664 76.8635 56.8247 54.4061 5.97437 0.99122
(0.0114) (19.066) (30.379) (8.7189) (19.755) (24.132) (24.218) (0.1123) (0.0154)

Polygon3 1.27958 88.3161 46.4167 81.7507 88.4400 81.8663 52.2772 3.60092 1.63385
(0.1802) (15.736) (20.272) (10.627) (21.965) (23.405) (24.691) (0.4201) (0.0287)

Polygon4 1.50753 100.168 69.4378 105.0809 93.3233 81.7351 45.0258 10.9962 3.58967
(0.2647) (11.428) (24.319) (26.920) (9.0918) (27.261) (26.058) (0.8121) (0.0741)

+/−/∼ 0/21/0 1/20/0 1/20/0 0/20/1 0/20/1 0/20/1 5/12/4 7/10/4

p-value 5.97e-05 9.22e-05 7.98e-05 1.22e-04 6.89e-05 5.96e-05 8.80e-03 3.29e-02

Among these comparative algorithms, Omni-optimizer, MRPS, and MMOHEA guide offspring
generation through individuals with good convergence, while using a combination of crowding dis-
tance and non-dominance sorting for environment selection to locate equivalent global PSs effectively.
However, the mechanism to maintain diversity in these algorithms fails to prevent local PSs from
being dominated, resulting in only global PSs being located ultimately. MMOGA employs individual
neighborhood information to guide offspring generation, using a predefined fixed neighborhood
radius to partition individual neighborhoods. However, this neighborhood construction method
performs poorly on test problems with complex PS shapes and numerous PSs. CPDEA and MMEAWI
are designed for test problems with imbalanced PSs, introducing different local convergence qualities
to judge the superiority of individuals. This approach limits competition among individuals to local
regions, effectively preventing the population from clustering around a single PS. However, this
method also fails to avoid local PSs being dominated by global PSs in MMOPs with local PSs,
resulting in some PSs not being preserved. MMOEA/DC adopts a dual-clustering approach in decision
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space and objective space to enhance diversity in both spaces. The combination of these clustering
methods can distinguish all PSs, and in environment selection, individuals from the most crowded
clusters in the objective space are removed each time, preventing local PSs from being discarded when
using non-dominance sorting for environment selection. Thanks to dual-space clustering in decision
space and objective space, MMOEA/DC slightly outperforms MMIA_IA in handling MMF12_l,
IDMPM2T2_e, and IDMPM2T3_e, which have more PSs. However, as the number of objectives
increases, such as in IDMPM3T1_e, IDMPM3T3_e, IDMPM3T4_e, and the 4 Polygon test problems,
MMIA_IA outperforms MMOEA/DC. This is because the effectiveness of objective space clustering
decreases as the number of objectives increases. MMIA_IA effectively balances population diversity
and convergence by adopting different cloning strategies in different convergence stages. The clustering
method controls environmental selection pressure within local regions, allowing the algorithm to
effectively handle complex problems with numerous and widely dispersed PSs in the decision space.
Moreover, the interval allocation strategy relaxes dominance relationships in the early stages, allowing
more potential solutions to be preserved, and conducts refined local search in the later stages.
This interval allocation strategy maintains good performance even as the number of objectives
increases, as demonstrated in IDMPM3T1_e, IDMPM3T3_e, IDMPM3T4_e, and Polygon1∼4 test
problems. CEA-LES employs a layer-to-layer evolutionary strategy and selection operation based on
a clearing radius, effectively confining the search space to local regions. However, when the number
of PSs is high and they are widely dispersed, the efficiency of the distance-based clearing strategy
decreases. Additionally, interactions among individuals in adjacent layers with lower non-dominance
ranks may lack elite guidance, leading to excessive local search. MMIA_IA effectively balances
diversity and convergence by adopting different cloning strategies in different convergence stages.
The clustering method controls environmental selection pressure within local regions, and the interval
allocation strategy relaxes dominance strength in local regions. Consequently, MMIA_IA preserves
well-distributed global and local PSs in MMOPs with local PSs. According to p-values, MMIA_IA
significantly outperforms other comparative algorithms.

To visually illustrate the exceptional performance of MMIA_IA in the decision space, Fig. 3 show
the experimental results for four algorithms (CPDEA, MMOHEA, MMOGA, and MMIA_IA) across
test problems MMF12_l, IDMPM2T3_e, IDMPM3T2_e and Polygon4. Figs. 3(1) to 3(4) depict the
results for MMF12. MMF11 features one global PS and one local PS, whereas MMF12 exhibits four
global PSs and four local PSs. Notably, CPDEA and MMOHEA converge solely to global PSs on
both test problems, neglecting local PSs.

While MMOGA captures global and local PSs on MMF11, it exhibits poor convergence and fails
to locate all global and local PSs on MMF12. In stark contrast, MMIA_IA successfully identifies all
global and local PSs on these test problems, achieving a uniformly distributed and well-converging
solution set. Figs. 3(5) to 3(12) present the results for IDMPM2T3_e and IDMPM3T2_e. CPDEA
converges effectively on multiple global PSs but falls short in locating any local PSs. MMOHEA,
on both test problems, fails to identify all global and local PSs. MMOGA successfully captures all
global and local PSs on IDMPM2T3_e but exhibits uneven distribution on local PSs. Additionally,
on IDMPM3T2_e, MMOGA completely neglects local PSs, capturing only global PSs. In contrast,
MMIA_IA excels in locating all global and local PSs on both problems, yielding a well-converging
solution set. Figs. 3(13) to 3(16) depict the decision space performance of MMIA and the comparative
algorithms on the Polygon4 test problem. It can be observed that MMIA_IA is capable of identifying
all four PSs, despite variations in the size and considerable distances between them. Furthermore,
MMIA_IA exhibits a well-distributed presence on each PS.



4250 CMC, 2024, vol.79, no.3

(1) CPDEA on MMF12_l     (2) MMOHEA on MMF12_l   (3) MMOGA on MMF12_l   (4) MMIA_IA on MMF12_l

(5) CPDEA on IDMPM2T3_e (6) MMOHEA on IDMPM2T3_e (7) MMOGA on IDMPM2T3_e (8) MMIA_IA on IDMPM2T3_e

(9) CPDEA on IDMPM3T2_e(10) MMOHEA on IDMPM3T2_e(11) MMOGA on IDMPM3T2_e(12) MMIA_IA on IDMPM3T2_e

(13) CPDEA on Polygon4    (14) MMOHEA on Polygon4   (15) MMOGA on Polygon4     (16) MMIA_IA on Polygon4

Figure 3: Distribution of PS obtained by several competing algorithms

Fig. 4 presents the boxplots of IGDf results for different algorithms. It can be observed that
the MMIA_IA algorithm achieves the best IGDf in 13 test functions: MMF10_l, MMF11_l,
MMF12_l, MMF13_l, MMF15_l, MMF16_l1, MMF16_l2, IDMPM2T4_e, MMFM3T3_e and
Polygon1∼Polygon4. Moreover, the variance is very small in almost all test problems, indicating the
high robustness of MMIA_IA. Additionally, MMOEAD/C performs exceptionally well, ranking
second to MMIA_IA and demonstrating excellent performance on the IDMP_e test problem.
However, several other algorithms fail to achieve the best IGDf values in any of the test problems.
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Figure 4: (Continued)
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Figure 4: The boxplot of IGDf values for the comparative algorithms

The analysis of experimental figures in this section suggests that MMIA_IA excels in handling
MMOPs with local PSs, showing outstanding performance in both decision space and objective space
simultaneously.

4.3 Analysis of the Parameters

In our proposed algorithm, we introduce two main mechanisms: The immune-inspired recombi-
nation operation and the interval allocation-based environmental selection strategy. The parameters
involved in the immune-inspired recombination operation, such as Ri, Rmin and Rmax are computed
based on nondominated rank of individuals and CDi, CDmin and CDmaxRmax are computed based on
crowding distance, eliminating the need for manual tuning. The thresholds of clone size Cmin and
Cmax are set to 1 and 3, respectively. This decision is influenced by both previous literature [37] and
our experimental experience. Moreover, setting the clone size too high would consume excessive
computational resources, while setting it to be too low lacks adaptability. In the environmental
selection, we employed K-means clustering to partition the entire population into K subpopulations.
When partitioning the grid, we introduced the parameter Nc to denote as the initial number of
intervals.

Fig. 5 presents a bar chart of IGDx results for MMIA_IA using Nc values of 50, 100, 150, and 200,
respectively. The optimal performance is observed when Nc is set to 100. A low number of intervals
leads to slow population convergence and a small number of elite individuals, potentially causing
the algorithm to converge only to local PSs within limited computational resources. Conversely, an
excessively large number of intervals results in rapid convergence to global PSs, leading to an over-
aggregation of the population towards global PSs, reducing search efficiency, and possibly neglecting
local PSs. Fig. 6 displays the IGDx bar chart for MMIA_IA using different K on CEC 2020 MMOPs
benchmark and IDMP_e test functions. The optimal performance is observed when the K is set to 10.
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The environmental selection strategy in MMIA_IA operates within clusters, and a too small K might
lead to the neglect of certain local and global PSs in test functions with a significant number of PSs,
resulting in inferior final results. On the other hand, when K is too large, some clusters may be placed
in search regions without potential, reducing the search efficiency of the population.

Figure 5: IGDx values obtained by MMIA_IA with different Nc

Figure 6: IGDx values obtained by MMIA_IA with different K

From Figs. 5 and 6, it is evident that the algorithm demonstrates overall insensitivity to the
parameters K and Nc. Although some fluctuations are observed in individual test cases when K and Nc
reach their maximum and minimum values, the overall range of variation in the experimental results
(as indicated by the y-axis representing IGDx) is minimal (within the range of 0 to 0.14). This indicates
the algorithm’s robustness to variations in these parameters.

In summary, the experimental results suggest that configuring K to 10 and Nc to 100 optimizes the
search efficiency for both global and local PSs within the population. This configuration ultimately
results in the best overall performance.
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4.4 Analysis of the Effectiveness of Interval Allocation Strategy

To evaluate the effectiveness of the proposed Interval Allocation (IA) Strategy in han-
dling MMOPs with local PSs, we conducted a comparative experiment. In this experiment,
MMIA_without_IA does not incorporate target space interval allocation during environmental
selection, utilizing actual objective values as its fitness. The performance of the proposed MMIA_IA
and MMIA_without_IA is compared across 21 test functions. Table 3 presents the IGDx and IGDf
metrics for both algorithms.

Table 3: The IGDx and IGDf values of MMIA_IA and MMIA_without_IA

Problems MMIA_IA MMIA_without_IA

IGDx IGDf IGDx IGDf

MMF10_l 0.00810 (0.0012) 0.01542 (0.0051) 0.02628 (0.0381) 0.05047 (0.0323)
MMF11_l 0.00642 (0.0003) 0.02679 (0.0030) 0.01079 (0.0060) 0.03453 (0.0121)
MMF12_l 0.00345 (0.0002) 0.00744 (0.0004) 0.03375 (0.0303) 0.01824 (0.0014)
MMF13_l 0.07974 (0.0047) 0.02315 (0.0029) 0.45620 (0.0837) 1.23574 (0.1342)
MMF15_l 0.04941 (0.0009) 0.11210 (0.0017) 0.10345 (0.0458) 0.15108 (0.0112)
MMF15_a_l 0.14298 (0.0567) 0.12907 (0.0032) 0.15135 (0.0458) 0.16651 (0.0125)
MMF16_l1 0.06773 (0.0044) 0.11265 (0.0034) 0.10841 (0.0266) 0.14021 (0.0320)
MMF16_l2 0.15061 (0.0053) 0.15921 (0.0107) 0.18825 (0.0598) 0.20482 (0.0088)
MMF16_l3 0.20429 (0.0238) 0.16703 (0.0144) 0.16762 (0.0280) 0.1823 (0.0121)
IDMPM2T1_e 0.00148 (0.0004) 0.00281 (0.0012) 0.00162 (0.0004) 0.00278 (0.0003)
IDMPM2T2_e 0.00315 (0.0009) 0.00383 (0.0004) 0.00433 (0.0006) 0.00464 (0.0006)
IDMPM2T3_e 0.00819 (0.0061) 0.00623 (0.0035) 0.01782 (0.0088) 0.00257 (0.0010)
IDMPM2T4_e 0.14174 (0.1062) 0.00750 (0.0029) 0.33073 (0.0852) 0.00250 (0.0034)
IDMPM3T1_e 0.01051 (0.0004) 0.01051 (0.0004) 0.05960 (0.1004) 0.01043 (0.0014)
IDMPM3T2_e 0.02341 (0.0546) 0.01317 (0.0010) 0.11980 (0.1233) 0.01277 (0.0022)
IDMPM3T3_e 0.06025 (0.0992) 0.01321 (0.0016) 0.12905 (0.1216) 0.01526 (0.0011)
IDMPM3T4_e 0.09492 (0.0797) 0.01582 (0.0014) 0.45422 (0.0792) 0.01586 (0.0014)
Polygon1 0.95332 (0.0141) 0.60484 (0.0078) 1.44050 (0.2451) 0.68600 (0.1265)
Polygon2 0.82439 (0.0217) 0.60363 (0.0104) 1.95203 (0.2141) 0.72481 (0.1048)
Polygon3 1.27958 (0.0884) 0.99606 (0.0651) 1.42042 (0.5475) 1.22950 (0.1141)
Polygon4 1.50753 (0.1026) 1.52303 (0.1874) 5.10234 (1.3127) 2.70823 (0.7115)

In summary, MMIA_IA exhibits better performance on MMOPs with local PSs, showcasing the
effectiveness of the Interval Allocation strategy.

5 Conclusion

This paper introduces MMIA_IA, a novel immune-inspired algorithm. The paper proposes
an innovative strategy that combines clustering technology with interval allocation, enhancing the
capability of the immune algorithm to address MMOPs characterized by local PFs. Unlike existing
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algorithms that primarily tackle scenarios with multiple equivalent global PSs, MMIA_IA is specifi-
cally tailored to situations where local PSs offer decision-makers diverse solution options, potentially
enhancing the effectiveness of addressing real-world problems. Through experimental comparisons
with state-of-the-art algorithms, MMIA_IA demonstrates the ability to obtain a set of solutions with
both good convergence and diversity in MMOP with local PFs. In future applications, our goal is to
utilize this algorithm to optimize process parameters, ensuring efficient fermentation, and maintaining
consistent high-quality tobacco leaf production, particularly in the context of cigar fermentation.
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