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ABSTRACT

Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from
a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-
adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used
in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a
novel approach to intrusion detection based on the combination of channel attention and convolutional neural
networks (CNN). Furthermore, this dataset makes it easier to conduct a thorough assessment of the suggested
intrusion detection strategy. Furthermore, maintaining operating efficiency while improving detection accuracy is
the primary goal of this work. Moreover, typical NIDS examines both risky and typical behavior using a variety
of techniques. On the NSL-KDD dataset, our CNN-based approach achieves an astounding 99.728% accuracy rate
when paired with channel attention. Compared to previous approaches such as ensemble learning, CNN, RBM
(Boltzmann machine), ANN, hybrid auto-encoders with CNN, MCNN, and ANN, and adaptive algorithms, our
solution significantly improves intrusion detection performance. Moreover, the results highlight the effectiveness
of our suggested method in improving intrusion detection precision, signifying a noteworthy advancement in this
field. Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing
cyberthreats and adjust to changing network circumstances.
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RBM Restricted boltzmann machine
IoT Internet of things
SIEM Security information and event management
ML Machine learning
DNN Deep neural network
RF Random forest
KNN K-nearest neighbor
EBT Ensemble boosted learning
TCP Transmission control protocol
ICMP Internet control message protocol
R2L Remote to local
ECA Efficient channel attention
CBAM Convolutional block attention module
ROC Receiver operating characteristics
TN/TP True negative/true positive
AUC Area under the curve
FN/FP False negative/false positive
NIDS Network intrusion detection system
ANN Artificial neural network
MCNN Multiclass CNN
HIDS Host-based IDS
SIDS Signature-based IDS
DL Deep learning
SVM Support vector machine
DT Decision tree
PCA Principle component analysis
IDN Intrusion detection network
UDP User datagram protocol
U2R User to root
DoS Denial of services
GAP Global average pooling
ROC Receiver operating characteristics

1 Introduction

Amid the rapidly evolving landscape of cyber threats, network intrusion detection plays a vital
role in protecting against advanced attacks [1,2]. The traditional reliance on feature detection in
intrusion detection systems (IDS) has shown effectiveness but is encountering increasing challenges
[3,4]. The efficacy of IDS that rely on existing attack patterns to identify novel forms of attacks is
constrained by the finite capacity to update databases with such patterns. Researchers have recognized
this approach’s constraints and shifted their focus towards using sophisticated methods [5]. Machine
learning has become a practical approach for enhancing the capabilities of intrusion detection systems.
Moreover, the growing usage of computer networks and the integration of the Internet of Things (IoT)
in industrial environments, combined with a diverse set of applications running on these networks, have
heightened network security vulnerabilities [6]. The escalation of hazards has garnered the attention
of researchers and data scientists, spurring them to seek innovative approaches to enhance security
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systems [7]. Meanwhile, the KDD99 dataset and its subsequent refinement, the NSL-KDD dataset,
are crucial benchmarks for developing and evaluating network-based IDSs.

Further, an IDS is essential for safeguarding the integrity of a network. The system consistently
monitors network data transmission, identifying and alerting administrators of any abnormal behavior
that may indicate a security breach [7,8]. The IDS operate as a software application that conducts
scans across the network or system to detect malevolent activity or violations of regulations [9,10].
Any identified malicious behavior is promptly reported to the system administrator or consolidated
centrally using a Security Information and Event Management (SIEM) system. The SIEM system
employs several data sources and incorporates alert filtering methods to distinguish genuine security
threats from false positives.

Furthermore, within the realm of IDS, there exist two primary categorizations: Host-based IDS
(HIDS) and network-based IDS (NIDS) [11–13]. The HIDS is strategically deployed on specific
endpoints to provide comprehensive security measures against potential hazards from internal and
external sources. This specific IDS can observe the movement of network data to and from the host
machine, meticulously inspect the running processes, and scrutinize the system logs [14,15].

In contrast, NIDS is specifically designed to oversee and manage an entire network, offering
extensive understanding of all the data traversing the network [16,17]. The decision-making process in
NIDS is based on both packet information and contents, which allows for a more extensive perspective
that facilitates the detection of widespread threats [18,19]. However, NIDS cannot monitor the internal
processes of the individual endpoints it protects.

In addition, signature-based IDS employ pre-defined patterns, called signatures, to detect and
identify malicious attacks [20,21]. These patterns can be comprised of specific byte sequences or
the presence of identified malicious instructions in network traffic [22,23]. Signature-based intrusion
detection systems (IDS) identify attacks with documented signatures [24–26]. Nevertheless, they have
challenges discerning unfamiliar malware attacks that have not been previously encountered, mostly
due to the absence of a pre-existing template for comparison. Conversely, anomaly-based IDS bypasses
this limitation by employing machine learning to construct a reliable model of network behavior
[27–29]. The incoming data is subsequently compared to this model, and any departures from the
expected behavior are detected as suspicious. The anomaly-based IDS that utilizes machine learning
is characterized by its superior flexibility compared to signature-based systems [30]. This is due to
the ability of the models to be trained to operate well over a broader spectrum of applications and
hardware configurations.

In the realm of IDS, traditional CNNs have long been effective. However, as cyber threats evolve in
sophistication, the demand for more nuanced detection mechanisms arises. While CNNs excel at cap-
turing spatial correlations within data, they often overlook crucial inter-channel relationships, limiting
their ability to detect subtle harmful patterns. This shortfall underscores the necessity for enhanced
models that leverage geographical information and integrate methods to identify and prioritize salient
elements across channels. Dynamic feature map adjustments through channel attention techniques
offer a promising solution to this challenge. By incorporating such methods into CNN designs,
discriminative capacity is heightened, enabling a focus on pertinent information while minimizing
noise, consequently enhancing IDS detection accuracy. Our research delves into the fusion of CNN
with channel attention for intrusion detection, aiming to bolster IDS capabilities in combatting
contemporary cyber threats. Moreover, in the landscape of IDS and machine learning research,
the KDD99 dataset has maintained its significance despite its age of over 15 years. Nonetheless,
the emergence of the NSL-KDD dataset as a refined alternative has garnered attention. Our study
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undertakes a comprehensive analysis of a NSL-KDD datasets. While KDD99 remains prevalent, NSL-
KDD exhibits advancements in IDS and ML functionality.

Above, Fig. 1 shows the CNN Channel Attention Intrusion Detection System (IDS) procedure
using the NSL-KDD dataset. After data preparation, feature extraction extracts useful information
from network traffic for categorization and detection. As described in the methodology and model
evaluation sections, the trained model is tested using distinct data. During detection, the system
generates IDS alarms for unusual network traffic patterns, alerting potential intrusions. These sirens
notify security staff to investigate and neutralize hazards. Accuracy, precision, F1-score, recall, and
ROC curves are used to evaluate parameter testing findings, which optimize system performance.
These measurements show how well the system distinguishes between regular and malicious network
activity, determining intrusion detection success. This systematic approach helps the IDS protect
network infrastructure from security breaches, improving cybersecurity and threat mitigation.

Figure 1: CNN channel attention intrusion detection system framework implemented with the NSL-
KDD dataset

The contributions of this research paper are as follows:

i) Enhanced NSL-KDD dataset validation showcases its relevance, aiding in evaluating intru-
sion detection systems under various attack scenarios.

ii) Integration of CNN with channel attention techniques boosts detection accuracy, meeting the
evolving demands of cybersecurity.

iii) Adaptable solution addresses dynamic cybersecurity threats, aligning with the evolving nature
of intrusion detection.

iv) Contributes innovative intrusion detection system, improving feature selection and response
to cyber threats.

In addition, Section 2 examines pertinent literature, investigating prior research in the topic.
Subsequently, Section 3 elucidates the data collecting procedure, whereas Section 4 delineates the
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selected methodology. The collected results are presented in Section 5, and a full explanation is offered
in Section 6. The review is concluded in Section 7, where major findings and ideas are summarized.

2 Literature Review

The domain of intrusion detection systems (IDS) has witnessed a noteworthy surge in the creation
of innovative methodologies to augment the precision of threat identification [1–3]. Using the NSL-
KDD dataset as an example, this article examines the applications of convolutional neural networks
(CNN) and channel attention mechanisms in IDS [4,5]. Using the NSL-KDD dataset, eight eminent
researchers have thoroughly examined and improved intrusion detection methods, leading to notable
advancements in the area [6]. This work aims to improve threat detection capabilities by introducing
a CNN Channel Attention Intrusion Detection System. This literature review lays the basis for this
study.

Convolutional neural network-based intrusion detection systems (IDSs) were studied by
Mohammadpour et al. [7]. Emerging issues in network security are discussed in this article.
Understanding CNN’s many applications to identify network breaches and attacks is emphasized
in the introduction. Effectiveness is a prerequisite for intrusion detection systems (IDSs) to defend
against evolving cyber threats. The KDDCup99, NSL-KDD, UNSW-NB15, and CIC-IDS2017
databases are used for this. There are 22,544 testing samples and 125,973 training samples in NSL-
KDD. CNN-based IDS techniques are categorized using a brand-new system. The study found that
the hybrid auto-encoder with CNN achieved 84.39% accuracy on the NSL-KDD dataset [8,9].

Furthermore, Al-Turaiki et al.’s research [10] presents a novel anomaly-based network intrusion
detection method. For deep feature synthesis and dimensionality reduction, they employ a CNN. The
investigation exposes a significant vacuum in the body of knowledge regarding the model’s capacity
to expand and be stable under various network conditions. It is challenging to extrapolate the results
to datasets other than benchmark examples. There are 125,973 and 22,544 records in the NSL-KDD
and UNSW-NB15 datasets, respectively. The KDDTest+ and KDDTrain+ subsets are assessed in
the study. The technique produces deep features through feature engineering and dimensionality
reduction [11,12].

To assess IDSs, the KDDCup99 and NSL-KDD datasets are frequently utilized. Sapre et al. [13]
stress the importance of examining these datasets in-depth. More classification measures and several
machine learning (ML) classifiers are used in this study than in previous evaluations. The NSL-KDD
dataset performs better, with an average accuracy advantage of 20.18% over KDDCup99. The 67,343
normal sample NSL-KDD dataset is assessed using ANN and further machine learning techniques.
The ANN outperforms the average with an accuracy of 78.51% for the NSL-KDD dataset.

Similarly, investigating sophisticated methods for identifying unauthorized access is crucial to
cybersecurity in the digital age. The NSL-KDD dataset is used in this study by Gao et al. [17] to
address intrusion detection technology difficulties. Accurate detection by adaptive ensemble learning
is the main focus of the work. Multiple decision trees and modified training data proportions are
employed in the MultiTree approach. The work employs ensemble adaptive voting with decision trees,
random forests, kNN, and DNN to increase detection accuracy. Positive outcomes from validating
the NSL-KDD Test+ dataset demonstrate that the MultiTree algorithm attains 84.2% accuracy and
85.2% adaptive voting. Compared to earlier studies, the ensemble model increases detection accuracy
[18,19]. This illustrates how detection results are impacted by data quality.
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Furthermore, Magdy et al. [20] used the NSL-KDD dataset to test intrusion detection systems
(IDS). Decision Tree, CNN, Random Forest, SVM, KNN, and ANN intrusion detection techniques
are all compared in the study. The topic is how to effectively use IDS to improve network security. The
researchers used NSL-KDD, including 22,544 test records and 125,973 training records, and UNSW-
NB15. The work employs the NSL-KDD dataset; however, it extensively uses machine learning
techniques. Applying the results to other network configurations can be more difficult. Take note
that the CNN model’s accuracy on NSL-KDD was 79.48%. It is demonstrated how successful several
algorithms are in this intrusion detection scenario.

Moreover, Imamverdiyev et al. [23] improve cybersecurity by researching the use of deep learn-
ing—specifically, the Restricted Boltzmann Machine (RBM)—to identify denial-of-service (DoS)
threats. The NSL-KDD dataset is used in the study’s evaluation of the suggested methodology. This
research aims to increase detection accuracy to counteract denial-of-service (DoS) assaults, a problem
in cyber security. The study also examines RBM, deep learning, and SVM [24–26]. The study’s limited
application to other cyber-threat scenarios may stem from its sole focus on improving the precision
of DoS attacks. The RBM model’s accuracy on the NSL-KDD dataset is 73.23%, demonstrating how
successfully the deep learning method tackles cybersecurity issues.

In addition, Zakariah et al. [27] added cybersecurity expertise by examining an intrusion detection
system (IDS) using tailored machine learning techniques on the NSL-KDD dataset. Based on the
dataset, this study employs 22,544 testing samples and 125,973 training samples (KDDTrain+). This
research focuses on using intrusion detection to improve network security. ANN and PCA are used in
the research to mimic intricate network architectures. Despite the ANN model’s 97.5% accuracy, the
study admits its reliance on the NSL-KDD dataset is a constraint. Due to this limitation, the proposed
IDS might be challenging to modify for various network conditions and datasets [28–30].

To strengthen IoT cybersecurity, Abu Al-Haija et al. [31] also assessed machine-learning-based
network intrusion detection systems (NIDSs). Ensemble-boosted trees (EBT) are used in the assess-
ment. The paper tackles the pressing problem of protecting IoT networks from malevolent attackers.
Because the study only examined the NSL-KDD and distilled Kitsune-2018 datasets, its findings
might not generalize to other IoT networks. A large NSL-KDD dataset including 67,313 training and
9,711 testing samples is used to train the method. Testing the suggested strategy in real-world settings
is essential. Ensemble Boosted Trees achieve 99.1% accuracy on the NSL-KDD dataset, promising
results for IoT network traffic security [32–36].

Table 1 shows the list of past references including datasets, methodology, limitations and results.

Table 1: List of past references including datasets, methodology, limitations and results

Ref. Dataset Methodology Limitations Results

[7] NSL-KDD Deep-learning,
LSTM, RNN,
hybrid
autoencoder with
CNN

Absence of
real-world
validation,
potential CNN
bias, reliance on
existing datasets.

84.39% accuracy
with hybrid
autoencoder and
CNN.

(Continued)
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Table 1 (continued)

Ref. Dataset Methodology Limitations Results

[10] NSL-KDD,
UNSW-NB15

Intrusion
detection, CNN,
BCNN, multi-class
CNN

Lacks scalability
exploration,
limited to
benchmark
datasets.

MCNN achieves
99.5% accuracy on
NSL-KDD.

[13] KDDCup99,
NSL-KDD

ML classifiers,
ANN

Focus on accuracy
metrics,
overlooking other
aspects, dataset
generalization.

ANN achieves
78.51% accuracy
for NSL-KDD.

[17] NSL-KDD,
UNSW-NB15

Adaptive ensemble
model, multi-tree
algorithm, DNN

Limited insight on
scalability,
real-world
implementation
challenges.

Adaptive voting:
85.2%, multi-tree:
84.2% accuracy.

[20] NSL-KDD,
UNSW-NB15

Machine learning,
decision tree,
CNN, Random
Forest, SVM,
KNN, ANN

Focus on
NSL-KDD
restricts
applicability,
neglects other
datasets.

CNN model attains
79.48% accuracy on
NSL-KDD.

[23] NSL-KDD Deep-learning
method, RBM,
SVM

Concentration on
DoS attack
detection, limited
applicability.

RBM achieves
73.23% accuracy
with NSL-KDD.

[27] NSL-KDD PCA, ANN Sole focus on
NSL-KDD limits
IDS applicability.

ANN achieves
97.5% accuracy on
NSL-KDD.

[31] NSL-KDD Ensemble-learning,
EBT

Limited to specific
datasets, restricts
conclusions’
applicability.

EBT achieves
99.1% accuracy on
NSL-KDD.

Our paper NSL-KDD Combined CNN
and channel
attention

Focus on
NSL-KDD limits
generalizability.
Future research
needed.

Achieved 99.728%
accuracy on
NSL-KDD,
surpassing previous
methods.

3 Dataset

The NSL-KDD dataset, an improvement of the 1999 KDD Cup dataset, improves clarity and
reduces redundancy for intrusion detection and classification models. The four subgroups’ reduced
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properties and examples aid network security research. The dataset comprises KDDTrain+ and
KDDTest+ sets, with subcategories like KDDTrain+_20Percent and KDDTest-21 for evaluation.

Moreover, in the field of IDS and ML, the NSL-KDD dataset—a refined version of the original
KDD99—has gained popularity. In contrast to its forerunner, NSL-KDD tackles some drawbacks
such superfluous records and extraneous features, offering a more efficient and productive dataset for
testing. Its higher quality makes more thorough analysis and model training possible, which enhances
the efficacy of ML research and IDS. Researchers are beginning to see the advantages of NSL-KDD,
and as a result, it is being widely adopted in both academia and industry, sometimes even surpassing
the long-standing popularity of KDD99.

To update and streamline the data, the University of New Brunswick produced the NSL-KDD
dataset [7,13,20,27]. Moreover, KDDTrain+_20Percent helps train and validate models with 20% of
the training dataset. However, KDDTest-21, excluding record 21, allows controlled tests. The dataset
supports supervised learning with 43 features, including ‘attack’ and ‘level’ labels for attack kind and
intensity. The qualities of these properties classify them into four groups. For network security and
intrusion detection, the NSL-KDD dataset enables comprehensive machine learning and data mining
research.

The properties in the dataset can be classified into four distinct categories according to their
inherent characteristics.

The dataset under examination has category, binary, discrete, and continuous features. Binary
features (7, 12, 14, 20, 21, 22) describe attributes with two states, while categorical features (2, 3, 4, 42)
reflect qualitative variables with distinct categories. Discrete features (8, 9, 15, 23–41, 43) are unique
numeric variables, but continuous features (1, 5, 6, 10, 11, 13, 16, 17, 18, 19) can take any real value
within a range.

The dataset’s ‘attack’ label has 40 labels, categorizing attacks as revised, U2R, DoS, R2L, and
probing. Each main class has subclasses with attack types. U2R elevates user privileges, DoS disrupts
network traffic, R2L gains local access via remote systems, and Probe extracts information. Moreover,
Table 2 shows the classifying attacks divided into five classes.

Table 2: Classifying attacks into five primary classes

Classes DoS R2L Probe U2R

Subclasses apache2 ftp_write ipsweep buffer_overflow
back guess_passwd mscan loadmodule
land HTTP tunnel nmap Perl
Neptune imap portsweep ps
mailbomb multihop saint rootkit
pod named satan sqlattack
processable phf xterm
smurf send email
teardrop Snmpgetattack
udpstorm spy
worm snmpguess

warezclient

(Continued)
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Table 2 (continued)

Classes DoS R2L Probe U2R

warezmaster
xlock
snoop

Total 11 15 6 7

To summarize, the study utilizes a dataset that is extensive and varied, incorporating a broad
spectrum of characteristics and forms of attack. The organized architecture of this system allows
for the creation and assessment of machine learning models for detecting intrusions, which helps
to enhance cybersecurity research. The comprehensive analysis of feature categories and assault
classifications establishes a strong basis for the study and enables a meticulous examination of the
dataset’s complexities.

With a total of 39 types of attacks in addition to the ‘normal’ class, the total will be 40 subclasses.

Further, Table 3 displays the categories of datasets with records. The research report emphasizes
datasets’ usefulness in network threat prediction models. While the dataset is divided into training and
test sets, subclass distribution differs greatly. It is useful for predicting primary classes and assessing
network protocols, services, and flags. The dataset comprises category elements like protocol type,
service, and flag and critical attributes like ‘attack’ for prediction models.

Table 3: Types of datasets with records

Dataset Records

Total Normal DoS Probe U2R R2L

KDDTrain+ 12597 67343 45927 11656 52 995
3 (53%) (37%) (9.11%) (0.04%) (0.85%)

KDDTest+ 22544 9711 7458 2421 200 2654
(43%) (33%) (11%) (0.9%) (12.1%)

Fig. 2 shows the relationship between attack kinds and network communication protocol flag
values. Understanding each attack’s communication protocols requires understanding the protocol
type characteristic, which has three values: ICMP, TCP, and UDP.

Moreover, Fig. 3 shows the distribution of attack methods over each protocol’s 11 flag values,
helping identify patterns and potential malicious activity. It illuminates network attacks across
communication channels.
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Figure 2: Types of attacks according to each protocol

Figure 3: Flag types according to attack type

4 Methodology

The suggested research aims to use a CNN that combines channel attention to build a robust
intrusion detection system (IDS). By using the NSL-KDD dataset, this effort seeks to increase
intrusion detection accuracy and efficacy. The approach is divided into discrete phases that include
data processing, feature engineering, and CNN implementation with a channel attention mechanism.

4.1 Data Processing and Feature Engineering

To begin, it is necessary to obtain the NSL-KDD dataset, which is a highly regarded benchmark
dataset commonly employed for intrusion detection purposes [37,38]. The collection consists of a wide
range of network traffic data, encompassing both regular and harmful activity.

i. Data Processing

In-depth data processing is done to confirm that the dataset is suitable for training a CNN. This
includes handling abnormal data points, removing duplicate entries, and managing null values. The
initial stage is to identify categorical traits. Next, categorical variables are converted into a numerical
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format that neural networks can comprehend using the appropriate preprocessing techniques, such as
one-hot encoding [38].

ii. Enhancing the Characteristics of the Data

Efficient feature engineering is essential for improving the performance of the intrusion detec-
tion system. The work concentrates on converting unprocessed data into a structure that captures
fundamental patterns for categorization. This process entails the identification and categorization of
certain characteristics, the transformation of tables into two-dimensional arrays, and the utilization of
mathematical operations on these arrays for subsequent examination [38].

iii. Matrix Padding and Normalization

To ensure uniform input size for the CNN, matrix padding is used to accommodate the varying
durations of network traffic sequences. This guarantees uniformity in the input dimensions, enabling
smooth incorporation into the neural network structure. Furthermore, matrix normalization is utilized
to rescale the feature values, enhancing the convergence and stability of the training process as shown
in Fig. 4.

Figure 4: Data processing steps

iv. Rearrangement and Extraction of Samples

To optimize the utilization of the CNN architecture, the matrices are rearranged by transposing
them to match the anticipated input format. This stage enhances the compatibility between the data
representation and the convolutional layers of the network. Afterward, data samples are produced to
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make a dataset that is evenly distributed, so resolving any problems related to imbalanced classes that
could impact the model’s effectiveness.

v. CNN Utilizing Channel Attention

The central component of the proposed Intrusion Detection System (IDS) is a CNN structure
enhanced with channel attention methods. Channel attention boosts the model’s capacity to concen-
trate on significant characteristics, hence enhancing classification precision. The CNN is trained using
the preprocessed and engineered dataset, and hyperparameter tuning is performed to optimize the
model’s performance [38].

vi. Assessment and Verification

The ultimate stage entails assessing the CNN-based IDS using established performance indicators,
including accuracy, precision, recall, and F1-score. Cross-validation techniques are used to assure the
reliability of the model, and the suggested approach’s effectiveness is validated by comparing it with
existing intrusion detection approaches.

To summarize, the methodology described above presents a structured approach for creating a
CNN Channel Attention Intrusion Detection System utilizing the NSL-KDD dataset. This approach
focuses on data processing, feature engineering, and incorporating sophisticated neural network
techniques.

4.2 Key Steps to Preprocess the Dataset and Train the CNN Model for Optimal Intrusion Detection
Performance.
i. Categorical Feature Renaming: The NSL-KDD dataset comprises 43 features, with 4 being

categorical. To streamline the categorization process, the objective feature ‘attack’ is converted
from 40 distinct labels to the designated 5 major labels, namely Normal, DoS, U2R, R2L, and
Probe. This stage optimizes the categorization task and guarantees that the model concentrates
on the pertinent attack types.

ii. One-Hot Encoding: To format the dataset for use in the neural network model, the remaining
3 category characteristics undergo one-hot encoding. This procedure converts categorical data
into numerical format by generating binary variables for every category. The numerical repre-
sentation improves the model’s capacity to acquire knowledge from the encoded characteristics,
as shown in Fig. 5.

Figure 5: Example of encoding the feature fFlag’ using one-hot encoding technique

iii. Conversion of Target Variable: The target variable ‘attack’ is transformed into a numerical
format to simplify the model training process. The transformation gives the attack types
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numerical labels: 0 represents normal, 1 represents denial of service (DoS), 2 represents Probe,
3 represents remote to local (R2L), and 4 represents user to root (U2R).

iv. Data Frame to Double Matrix Conversion: Since the dataset is initially in Pandas data frame
format, it is necessary to convert it into a 2D array (matrix) to input the data into the neural
network. The matrix format is compatible with the input requirements of the CNN model,
allowing for smooth incorporation into the training process. Moreover, Fig. 6 shows the data
frame as a 2D array.

Figure 6: Data frame in a 2D array (148517 × 124)

v. Input Reshaping for Neural Network Input: To prepare the input for the CNN model, which
operates on images with dimensions (N, N), where N is a specified size, matrix padding is
employed. This transformation enables each row of the matrix to be converted into a square
shape of dimensions N2. For this study, two distinct N (12 and 28) values are chosen to generate
two augmented datasets.

vi. Dataset Transformation: Utilizing matrix padding leads to generating two separate datasets
with different resolutions. This approach is employed to assess the influence of input size on
the performance of the CNN model. The prepared datasets are transformed for training and
subsequent comparison of outcomes. Below, Fig. 7 shows the array of padding method.

Figure 7: Example of array padding (Same padding method used)

vii. Matrix Normalization: Before inputting the data into the CNN model, it is subjected to matrix
normalization to normalize the range of values. It is essential to take this step to avoid certain
traits’ dominance and ensure that the model is not biased towards particular attributes. The
MinMaxScaler is selected as the normalization technique, which transforms each data point
(X_i) based on the following formula: The outcome is a standardized dataset in which all values
are confined to intervals between 0 and 1.

Xnorm = Xi − min(X)

max(X) − min(X)
(1)

viii. Reshaping Example: After normalizing, the dataset is converted into square matrices, an
essential process for preparing the data for input into a CNN. Two separate datasets are
used, with initial dimensions of (148517 × 144) and (148517 × 784). The samples are further
transformed into 2D square matrices, yielding two distinct types of samples: (12 × 12) and (28
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× 28). The process of reshaping the data allows for the extraction of spatial features, which
in turn enables the network to successfully identify patterns. Fig. 8 visually depicts several
examples, demonstrating converting raw data into reshaped matrices.

Figure 8: Sample arrays plotted as images

4.3 Efficient Channel Attention

The Efficient Channel Attention (ECA) mechanism has been recognized as a powerful attention
mechanism for deep CNNs. It has shown impressive performance improvements while keeping the
number of parameters relatively low. This study examines the ECA module, its superiority over
alternative attention systems, and its application in the NSL-KDD dataset for a CNN-based intrusion
detection system (IDS). Fig. 9 depicts the comparison of various attention modules.

i. Analyzing Attention Mechanisms in Convolutional Neural Networks

Attention processes in CNNs have a crucial impact on enhancing the representation of features
and the model’s overall performance. They facilitate the concentration of networks on informative
regions and features while reducing irrelevant ones. Squeeze-and-excitation networks (SE-net) have
been acknowledged for their efficacy; however, they entail heightened intricacy and computing
requirements. The SE module often employs fully-connected layers and global average pooling (GAP)
to capture non-linear cross-channel interactions. Nevertheless, reducing dimensionality in SE modules
might lead to inefficiencies and unintended consequences in channel prediction [38–40].
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Figure 9: Comparison of various attention modules

ii. The Efficient Channel Attention (ECA) Module

The ECA module presents an innovative method for recording cross-channel interactions without
utilizing dimensionality reduction, hence overcoming the constraints of SE modules. Unlike SE, ECA
examines each channel and its k neighboring channels. This is achieved by employing a 1D convolution
layer with a kernel size of k, efficiently capturing the local interactions among channels.

iii. Enhancing Efficiency in Interactions across Multiple Channels

The main benefit of ECA is its capacity to effectively capture interactions across different channels.
Instead of depending on worldwide operations, ECA considers local neighborhoods, enabling a more
intricate comprehension of feature relationships. This is accomplished by utilizing a 1D convolution
process, which allows for the inclusion of local cross-channel interactions.

iv. Efficiency of Parameters

The ECA model demonstrates significant improvements in performance while utilizing a relatively
limited set of parameters. This critical component guarantees that the model maintains a low weight
and high computational efficiency. The ECA module’s simplified design enhances its efficacy in diverse
applications, such as intrusion detection.

v. Comparison with Other Attention Modules

To emphasize the benefits of ECA, it is crucial to do a comparative analysis with other attention
mechanisms, such as SE and CBAM modules.

a) Challenges faced in the SE module

Although SE modules provide exceptional performance, using global average pooling and fully
connected layers imposes significant computational overhead. The dimensionality reduction process,
aimed at handling complexity, has exhibited inefficiency and unintended consequences in channel
prediction. ECA addresses these difficulties by directly recording local cross-channel interactions,
hence obviating the necessity for dimensionality reduction [39,40].

b) Comparison between ECA and CBAM
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The efficacy of ECA is particularly evident when compared to the Convolutional Block Attention
Module (CBAM). CBAM integrates channel and spatial attention mechanisms, augmenting computa-
tional complexity. On the other hand, ECA attains same or better results with a more straightforward
structure, making it a more desirable option for applications with limited resources, such as intrusion
detection.

vi. Utilization of the NSL-KDD Dataset for Intrusion Detection

Its practicality is demonstrated by the addition of ECA (Enhanced Channel Attention) to a CNN-
based Intrusion Detection System (IDS) that uses the NSL-KDD dataset. The model’s ability to
distinguish between benign and malevolent network events depends on its ability to record cross-
channel interactions. The intrusion detection system will remain extremely responsive and appropriate
for deployment in various network circumstances thanks to the lightweight design of the ECA module.

Above, Fig. 10 shows the se module of the left-hand side and ECA Module on the right-hand side.

Figure 10: Diagram of SE-module (Left) vs. ECA-module (Right)

Moreover, the ECA mechanism is becoming increasingly popular in deep CNNs, especially in
scenarios where there is a need for lightweight models that can deliver high performance. ECA
surpasses conventional attention modules such as SE [41] and CBAM [41] by disregarding the necessity
for dimensionality reduction and emphasizing local cross-channel interactions. Within the framework
of an intrusion detection system that utilizes the NSL-KDD dataset, including ECA is proven to
be an indispensable element. ECA significantly enhances the accuracy and efficiency of recognizing
potential security threats. As technology progresses, attention methods such as ECA remain crucial in
influencing the development of deep learning applications, guaranteeing strong and effective solutions
in many fields.

4.4 Architectural Element

The NSL-KDD dataset is used in the design phase of a convolutional neural network (CNN)
model for an intrusion detection system (IDS), and careful consideration of numerous architectural
features is necessary to achieve maximum performance in detecting network intrusions. Within the
CNN model, every layer is essential to extracting pertinent characteristics from the input data and
effectively utilizing the ECA mechanism for improved attention allocation. Here, we explore the
thinking behind the decisions we made on the design of each layer.
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i. Input Layer

The NSL-KDD dataset provides the raw network traffic data to the CNN’s input layer. This layer
acts as the neural network’s entry point for input processing. Since the input layer connects with the
dataset directly and does not require any complicated changes, choosing it is simple [38,40].

ii. Convolutional Layers

Fundamental elements of CNNs, convolutional layers are in charge of applying convolutional
operations to extract features. These layers seek to locate spatial patterns and structures in the network
traffic data that can point to malicious activity in the context of intrusion detection [38–40]. The
network can detect more abstract and complicated information by adding several convolutional layers,
which improves its ability to distinguish between typical and aberrant network behavior.

iii. Activation Functions

Activation functions like as Rectified Linear Unit (ReLU) are used to make the network less linear
after every convolutional operation. ReLU in particular facilitates faster computation of gradients,
which helps ease the vanishing gradient problem and promotes convergence during training. ReLU
is the preferred activation function due to its simplicity, efficiency, and capacity to promote sparse
activation in the network.

iv. Pooling Layers

Pooling layers are used to downsample the feature maps produced by the convolutional layers.
They are commonly implemented as max-pooling or average-pooling operations [38,40]. Because
pooling layers lower the size of the feature maps while retaining the most crucial data, the translated
model is more reliable and runs faster. Incorporating pooling layers facilitates the extraction of resilient
features, encourages parameter sharing, and mitigates overfitting of the model.

v. Efficient Channel Attention (ECA) Mechanism

The CNN model can now be modified to adjust feature calibration according to the way each
channel depends on the ECA mechanism. ECA makes it easier to selectively improve informative
feature channels while suppressing noisy or irrelevant ones by explicitly modeling inter-channel
connections. By dynamically altering the relevance of various feature channels, this attention method
improves the CNN’s overall performance in intrusion detection tasks and increases its discriminative
power.

In conclusion, careful consideration of each layer’s functionality and contribution to the system’s
overall performance is part of the CNN model for intrusion detection design process. The resulting
CNN model can efficiently and accurately identify and classify network intrusions by utilizing con-
volutional layers for feature extraction, activation functions for introducing non-linearities, pooling
layers for downsampling, and integrating the ECA mechanism for attention allocation.

4.5 Model Implementation

The CNN Channel Attention Intrusion Detection System was implemented using the NSL-KDD
dataset. This was achieved using the ECA-Net module, which is crucial in enhancing the model’s
ability to detect intricate characteristics in the input data. The module was specifically designed as
a component within the TensorFlow 2.0 framework, utilizing pre-existing layers like Conv2D and
GlobalMaxPooling2D to provide a customized attention mechanism [38,39].
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The ECA-Net module is inspired by the ECA mechanism, which presents a new method for
recalibrating channel-wise features in CNNs as shown in Fig. 11. This method effectively extracts
pertinent information from several sources, allowing the network to prioritize the most informative
characteristics while suppressing irrelevant ones. The purpose of including the ECA-Net module was
to enhance the intrusion detection system’s capability to identify subtle trends in network traffic that
may indicate potential security risks.

Figure 11: Convolutional neural network with ECA layers architecture

After the ECA-Net module was created, the remaining parts of the network were developed
according to the architectural blueprint shown in Fig. 10. This architectural design functioned as
a blueprint, determining the organization and interconnections of succeeding layers to guarantee a
unified and efficient neural network. The network has 288,357 parameters, designed specifically to
handle input samples with dimensions of 12 × 12 and 28 × 28.

The Adam optimizer was utilized with a learning rate 0.001 to enhance the network’s parameters
and promote efficient learning. Utilizing the sparse categorical cross-entropy loss function throughout
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the training process was highly beneficial in quantifying the dissimilarity between the predicted and
real labels. Having established these settings, the model was trained for 100 epochs, with each epoch
involving the iteration over a dataset divided into 90% training data, 9% validation data, and 1%
testing data.

The training method was conducted on Google’s Colab Research platform, utilizing the compu-
tational capabilities of NVIDIA T4 Tensor Core GPUs. Utilizing this advanced computing system
allowed for effective parallel processing, accelerating the training iterations and promoting the
convergence of the model. Using GPUs is highly beneficial in deep learning applications because it
expedites matrix computations used in neural network training, resulting in substantial savings in
training time.

The CNN Channel Attention Intrusion Detection System was developed by first creating the
ECA-Net module. This module is a customized attention mechanism that improves the model’s ability
to extract features. Subsequently, the network was meticulously constructed, the parameters were fine-
tuned, and the training process was thoughtfully strategized. The outcome yielded a robust intrusion
detection system capable of analyzing and categorizing network traffic patterns to identify potential
security risks.

4.6 Model Evaluation

Using a CNN Channel Attention model, the study highlights the need of channel-wise feature
selection to improve intrusion detection accuracy. Moreover, by employing the channel attention
strategy, the model can focus on relevant features, which improves its overall performance. In addition,
recall, F1-score, accuracy, and precision are used to assess a model’s performance.

• The harmonic means of precision and recall, or F1-score, provides a fair assessment of model
performance.

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2)

• It takes recall, which gauges the model’s accuracy in identifying real positives, to find every
instance of intrusion.

Recall = TP
TP + FN

(3)

• The accuracy score indicates that the model can distinguish between undesired and typical
network activities, demonstrating its dual detection capabilities.

Accuracy = TN + TP
TN + FP + TP + FN

(4)

• Precision is a parameter used to assess the model’s ability to reduce false positives, which
measures the percentage of correctly detected positive cases out of all anticipated positive cases.

Precision = TP
TP + FP

(5)

Using the NSL-KDD dataset, the research offers a comprehensive analysis of a CNN Channel
Attention Intrusion Detection System. A comprehensive evaluation using measures like accuracy,
precision, recall, F1-score, and AUC reveals that the proposed CNN model performs better than the
current models. The study opens the door for future advancements in designing robust and effective
network security solutions and offers important insights into intrusion detection.
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5 Results

The assessment of the suggested system entails a meticulous examination of the training and
validation accuracy and the loss performance throughout numerous epochs.

An important consideration for evaluating the model’s ability to learn and generalize is the
training and validation accuracy performance curve. The model’s performance on the training set
is reflected in the training accuracy, which evaluates the model’s capacity to predict the labels for the
training data. By evaluating the model’s performance on a separate validation set that was not used for
training, validation accuracy gauges the model’s ability to generalize to new data. Effective learning
and generalization are demonstrated when the performance curve’s slope increases for training and
validation accuracy. A persistent discrepancy between the training and validation sets’ accuracy could
be a sign of overfitting, emphasizing the need for regularization techniques.

A useful tool for understanding the convergence and optimization of the model during training is
the training and validation loss performance curve. The main objective of training is to reduce the loss,
a metric that measures the difference between expected and actual values. A decrease in the model’s
training and validation losses indicates an improvement in its ability to produce accurate predictions.
However, a growing difference between the training and validation losses may indicate overfitting, or
the model becoming overly adapted to the training data.

Fig. 12, which shows the relationship between epochs and performance, is essential to understand-
ing how the model improves over time. The number of epochs, or complete iterations over the entire
training dataset, is represented by the x-axis. The pertinent accuracy and loss values are shown on the
y-axis. When the model finds patterns in the data, the loss decreases, but the training and validation
phases’ accuracy increases initially. However, to determine the optimal number of epochs, it is crucial
to closely observe the point at which the model begins to overfit or converge.

Ultimately, a comprehensive understanding of the CNN Channel Attention IDS—developed
using the NSL-KDD dataset—is provided by the performance curves and the relationship between
epochs and performance. These visualizations help assess the model’s ability to learn, extrapolate to
new data, and optimize while it is being trained. By thoroughly examining these graphs, researchers and
industry professionals can enhance the model’s efficacy in intrusion detection scenarios by optimizing
hyperparameters.

5.1 Confusion Matrix

The Confusion Matrix is an essential tool when assessing the CNN Channel Attention Intrusion
Detection System’s performance using the NSL-KDD dataset. It provides a comprehensive examina-
tion of the model’s predictions and actual outcomes.

True negative (TN) indicates accurate identifications of non-intrusive occurrences, whereas true
positive (TP) refers to situations where the system correctly detects intrusions. A false positive (FP)
happens when the model erroneously identifies normal activities as intrusions, while a false negative
(FN) indicates cases where true intrusions are mistakenly categorized as normal.

Based on the NSL-KDD dataset, the confusion matrix is shown in Fig. 13 and shows the true
labels vs. predicted labels of the CNN Channel Attention Intrusion Detection System. To facilitate the
evaluation of model performance, this visual representation offers a concise summary of true positives,
true negatives, false positives, and false negatives.
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Figure 12: Training and validation accuracy and loss performance

5.2 Comparative Analysis

In Table 4, the proposed CNN Channel Attention Intrusion Detection System outperforms
existing models with perfect scores on all tests using the NSL-KDD dataset. With flawless scores
of 0.99 in accuracy, precision, recall, and F1-score, our model stands out from earlier models that
have demonstrated varied degrees of performance. In contrast, reference [7] obtains a good 0.843
accuracy but does poorly in terms of recall and F1-score. In a similar vein, references [10] and [13]
show passable accuracy but neither recall nor precision. Reference [20] exhibits subpar accuracy
performance, pointing to a large false positive rate. Although it lacks recall data, reference [23] displays
unbalanced results with respectable precision and F1-score. Although reference [27] obtains excellent
ratings, our proposed model performs better, especially when it comes to precision. Our model is
preferable because it can attain high accuracy with similarly excellent precision, recall, and F1-score.
In intrusion detection systems, where minimizing false alarms and improving detection accuracy are
critical, this all-encompassing performance is essential. Our suggested model shows that it is effective
in improving intrusion detection and network security due to its outstanding performance on all
metrics.

6 Discussion

A noteworthy development in network security is the CNN Channel Attention Intrusion Detec-
tion System, which uses the NSL-KDD dataset. Incorporating the ECA-Net module was a key factor
in enhancing the model’s ability to detect complex features in the input data. In the age of developing
cyber dangers, there is an increasing need for effective intrusion detection systems, and this creative
solution aims to meet that requirement.
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Figure 13: Confusion matrix

Table 4: Performance comparison of our proposed model with other references

Models Methods Accuracy Precision Recall F1-score

[7] Hybrid
Auto-encoder
with CNN

0.843 0.933 0.781 0.85

[10] MCNN 0.694 0.84 0.69 0.74
[13] ANN 0.78 0.966 0.6205 0.7557
[20] CNN 0.79 0.234 0.686 –
[23] RBM

(Boltzman
Machine)

0.7323 0.6233 – 0.753

[27] ANN 0.975 0.99 0.967 0.957
Our proposed
model

CNN with
channel
attention

0.99 0.99 0.99 0.99

i. Importance of Deep CNNs’ ECA Mechanism

Our model’s ECA mechanism has become well-known in deep convolutional neural networks
(CNNs). It excels especially when striking a compromise between high performance and model
complexity is essential. The model is superior at identifying subtle patterns in network traffic due to
the ECA mechanism’s capacity to capture channel-wise dependencies, making it perfect for intrusion
detection applications as shown in Fig. 14.

ii. Comparing Our Model with Others

A thorough comparison between the CNN Channel Attention Intrusion Detection System and
other models that are currently in the literature is part of our research. Performance measures were
used in the evaluation on the NSL-KDD dataset. The outcomes showed that our model outperformed
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every other model examined in earlier references. This accomplishment demonstrates how well the
suggested strategy provides enhanced intrusion detection capabilities.

Figure 14: Effective intrusion detection system

iii. Accuracy and Performance Metrics

The precision, accuracy, recall, and F1-score metrics assessed the model’s performance. With
an outstanding accuracy rate of 99.728%, our CNN Channel Attention Intrusion Detection System
exhibits remarkable accuracy. This outcome shows how well the model can discriminate between
typical network behavior and invasive activity.

iv. Strongness and Broadness

Our model’s resilience and ability to generalize to various network circumstances is one of its
noteworthy features. Using the ECA-Net module, the CNN with channel attention produced reliable
and efficient results under various network circumstances. This robustness is essential in real-world
applications where network settings might be dynamic and prone to change.

v. Adjustability for Compact Models

The need for high-performing, lightweight models in the intrusion detection is always increasing.
Our CNN Channel Attention Intrusion Detection System meets this requirement, which includes the
ECA-Net module. The model demonstrates that cutting-edge performance can be attained without
compromising computing economy. The practicality and scalability of our suggested solution are
improved by its adaptation to lightweight architectures.

vi. Consequences for Real-World Intrusion Monitoring

Our model’s outstanding results on the NSL-KDD dataset have encouraging ramifications for
actual intrusion detection applications. Preserving confidential data and preserving the integrity of
networked systems require the capacity to precisely detect and categorize network breaches. According
to our research, the CNN Channel Attention Intrusion Detection System may be useful for improving
different companies’ security postures.
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vii. Restrictions and Upcoming Developments

Although our study offers a strong intrusion detection system, it must be acknowledged that it has
limitations. Subsequent investigations may examine possible improvements aimed at mitigating these
constraints and enhancing the model’s functionality. Furthermore, further research is necessary to
confirm the generalizability and efficacy of the CNN Channel Attention Intrusion Detection System
in a variety of scenarios before applying it to additional datasets and real-world network environments.

Furthermore, the NSL-KDD dataset exhibits significant improvements compared to the KDD99
dataset, making it a more advantageous choice for modern IDS and MLR efforts. The training
and evaluation benefits from its refined and balanced nature, which effectively solves the inherent
shortcomings of its predecessor. NSL-KDD employs careful curation to create a more accurate
representation of real-world network traffic, hence reducing biases and inconsistencies that are
inherent in KDD99. Furthermore, the dataset covers a wider range of attack types and scenarios,
enhancing its appropriateness for thorough intrusion detection investigations. NSL-KDD’s growing
popularity among researchers highlights its effectiveness in producing strong and widely applicable
models. Looking towards the future, it is anticipated that NSL-KDD will continue to be the favored
option for researchers exploring the complexities of machine learning and network intrusion detection
in this field. The results of our study have important implications for network security, highlighting
the capacity of our methodology to make a substantial contribution to the detection and reduction of
cyber risks. It is recommended to pursue additional research and improvement in order to enhance the
capabilities of intrusion detection systems and strengthen the resilience of networked systems against
the ever-changing problems posed by cybersecurity.

7 Conclusion

In short, this research study used a convolutional neural network (CNN) with a channel attention
mechanism to provide a novel approach for intrusion detection systems. The NSL-KDD dataset was
used to test and apply the suggested methods. Promising outcomes have been observed when the ECA
mechanism is added to deep convolutional neural networks (CNNs), particularly in scenarios where
very effective and efficient models are required. After extensive testing, we obtained an astounding
accuracy of 99.728% for our suggested model, which outperformed all other models examined in this
research.

This research demonstrates the efficacy of CNN with channel attention mechanisms through a
comparative examination. Significantly, our model achieved superior performance compared to sev-
eral existing models, such as the hybrid auto-encoder with CNN, MCNN, ANN, adaptive algorithm,
CNN, RBM (Boltzman machine), ANN, and ensemble learning. The significant superiority of our
model over these benchmarks emphasizes its resilience in identifying intrusions in network traffic,
showcasing its potential for practical use. Moreover, the importance of intrusion detection systems
in protecting networks from hostile activities cannot be overemphasized. The growing intricacy and
refinement of cyber threats necessitates the implementation of innovative and effective intrusion
detection technologies. Our suggested CNN with channel attention model demonstrates exceptional
accuracy, making it a strong contender for use in real-world situations. This would greatly improve
cybersecurity measures.

Although this research has been successful, there are still opportunities for further investigation
and enhancement. Subsequent research should prioritize improving the capacity of the suggested
model to be applied to many datasets other than the NSL-KDD dataset, thereby increasing its
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generalizability. Assessing the model’s performance across various network topologies and traffic
patterns would yield useful insights into its flexibility and resilience in diverse situations.

Additionally, it is important to examine the scalability of the Convolutional Neural Network
(CNN) when incorporating channel attention mechanisms, especially in network infrastructures of
significant scale. It is essential to assess the model’s performance as network traffic volume grows to
determine its suitability for enterprise-level networks and critical infrastructure.

Furthermore, integrating real-time functionalities into the intrusion detection system is a crucial
area for future research, alongside scalability. Real-time detection and response to breaches are
essential for minimizing the potential harm caused by cyber-attacks. Investigating methods to decrease
latency and enhance response times will enhance the feasibility and efficiency of the suggested
paradigm in dynamic network situations.

Further research can be conducted to investigate the application of transfer learning techniques
toto improve the model’s performance in situations where labeled data are scarce. Transfer learning
is the utilization of knowledge acquired from one domain to enhance the performance of a model in
a related but distinct domain. This is especially significant in cybersecurity, where acquiring labeled
data can be difficult.

This study represents a notable advancement in intrusion detection systems by introducing a CNN
with a channel attention mechanism. This model demonstrates exceptional accuracy when applied to
the NSL-KDD dataset. Our model’s encouraging results and the suggested topics for future research
establish it as a vital contribution to the ongoing efforts to strengthen network security against
increasing cyber threats. The continuous development of intrusion detection field leads to valuable
knowledge that will enable the creation of more sophisticated and adaptable cybersecurity solutions.

7.1 Future Work

Using the NSL-KDD dataset, this paper offers a unique method for intrusion detection using
a convolutional neural network (CNN) and channel attention mechanisms. Even though the perfor-
mance is encouraging, there are a number of directions this research might go in the future to be further
explored and improved.

i. Exploration of Alternative Attention Mechanisms: Although channel attention has been demon-
strated to enhance feature representations, investigating varying attention mechanisms such as
spatial attention or multi-head attention may provide additional insights into how to enhance
the model’s ability to discriminate between objects. More resilient intrusion detection systems
may result from research on the interactions and complementarities of various attention
mechanisms.

ii. Integration of Advanced Architectures: Opportunities to enhance model performance arise from
ongoing developments in deep learning architectures. More complicated patterns in network
traffic data may be captured by integrating more sophisticated designs, such as transformer-
based networks or hybrid models that combine CNNs with recurrent structures. This would
improve the system’s capacity to identify complex intrusions.

iii. Feature Engineering and Selection: The effectiveness of machine learning models is greatly
dependent on feature engineering. More investigation into feature engineering techniques
tailored to network intrusion detection, such using domain expertise or extracting domain-
specific features, may result in more valuable representations and more precise detection.

iv. Data Augmentation and Imbalanced Data Handling: Resolving dataset imbalances and improv-
ing the model’s generalizability across various intrusion classes continue to be significant
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problems. Techniques like data augmentation, the synthetic minority oversampling technique
(SMOTE), or ensemble learning approaches that are made to function with irregular data could
be used to solve these issues. Additionally, this would increase the overall reliability of the
intrusion detection system.

v. Adversarial Robustness: As security threats change, it is more important than ever to make
sure intrusion detection systems are resilient to adversarial attacks. The system may become
more dependable in practical deployment scenarios if methods such as adversarial training,
defensive distillation, or input sanitization are investigated to strengthen the model’s resistance
to modifications made by adversaries.

vi. Real-Time Implementation and Deployment: Practical factors like computational efficiency
and real-time processing requirements must be addressed in order to move the established
model into real-world deployment situations. For practical applicability, methods for hardware
acceleration, quantization, or model optimization that are designed to deploy CNN-based
intrusion detection systems in resource-constrained contexts must be investigated.

vii. Evaluation on Diverse Datasets: The NSL-KDD dataset serves as a reference for studies on
intrusion detection. A more thorough understanding of the suggested method’s effectiveness
in actual use would be obtained by testing it on various datasets that depict various network
settings and attack scenarios.

To sum up, the above-mentioned future work offers a number of viable avenues for improving the
suggested CNN Channel Attention Intrusion Detection System. Our goal in pursuing these paths is
to enhance the system’s functionality, resilience, and suitability for practical cybersecurity situations.
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