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ABSTRACT

Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot. However, there are some
problems that the features of different sizes and different directions are not sufficient when extracting the features
in lung X-ray images. A pneumonia classification model based on multi-scale directional feature enhancement
MSD-Net is proposed in this paper. The main innovations are as follows: Firstly, the Multi-scale Residual Feature
Extraction Module (MRFEM) is designed to effectively extract multi-scale features. The MRFEM uses dilated
convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.
Secondly, the Multi-scale Directional Feature Perception Module (MDFPM) is designed, which uses a three-
branch structure of different sizes convolution to transmit direction feature layer by layer, and focuses on the
target region to enhance the feature information. Thirdly, the Axial Compression Former Module (ACFM) is
designed to perform global calculations to enhance the perception ability of global features in different directions.
To verify the effectiveness of the MSD-Net, comparative experiments and ablation experiments are carried out. In
the COVID-19 RADIOGRAPHY DATABASE, the Accuracy, Recall, Precision, F1 Score, and Specificity of MSD-
Net are 97.76%, 95.57%, 95.52%, 95.52%, and 98.51%, respectively. In the chest X-ray dataset, the Accuracy, Recall,
Precision, F1 Score and Specificity of MSD-Net are 97.78%, 95.22%, 96.49%, 95.58%, and 98.11%, respectively. This
model improves the accuracy of lung image recognition effectively and provides an important clinical reference to
pneumonia Computer-Aided Diagnosis.
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1 Introduction

There are significant morbidity and mortality in Pneumonia worldwide. It is the leading infectious
death reason in all human ages [1]. Pneumonia is a lung inflammation in terminal airways, alveoli,
and pulmonary interstitium, which is caused by bacteria, viruses, or other pathogenic pathogens.
Alveoli are filled with inflammatory cells and fluid once the pathogen enters the lungs. The infection
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prevents gas from being exchanged in the lungs, increasing the patient’s risk of death [2]. Different
pathogens cause different symptoms of pneumonia. Each pneumonia treatment strategy is different.
Therefore, early recognition is critical for making pneumonia treatment strategies. The pneumonia
diagnosis based on X-ray images is an important means of screening in radiology departments. Lung
X-ray images are less costly, time-consuming, and can show the lung structure clearly. It is widely used
in clinical medicine [3]. However, different lung X-ray images have different lesion sizes and lesion
directions. It is difficult to distinguish different lesions only through doctor experience. There is a lack
of specificity in pneumonia clinical images, which brings challenges to the early disease diagnosis.

The development of deep learning provides new ideas and methods for Computer-Aided Diag-
nosis in pneumonia images [4]. CNN (Convolutional Neural Network) uses convolutional layers
to extract the image features and improve performance greatly [5]. ResNet (Residual Network)
[6] uses skip connections in the internal residual blocks to reuse features. It alleviates the disap-
pearing gradients problem in deep neural networks and improves the network expression ability.
Khurana et al. [7] propose a machine learning-based time-series Facebook NeuralProphet model, this
study aims to determine categorical predictions for COVID-19 (Corona Virus Disease 2019). Akbulut
[8] propose a powerful algorithm based on a new customized deep learning model, the model is trained
synchronously with the attention and LSTM (Long Short-Term Memory) model with CNN models
to classify healthy, COVID-19, and pneumonia. Kaur et al. [9] propose a new image processing-based
technique for the health care systems named “C19D-Net”. The proposed system extracts deep learning
features by applying the InceptionV4 architecture and Multiclass SVM (Support Vector Machine)
classifier to classify and detect COVID-19 infection into four different classes. Zhou et al. [10] propose
a COVID-ResNet auxiliary diagnosis model based on CT images, this model can focus lesion region
by attention mechanism into the residual block, and it improves the classification performance of
convolutional neural networks to improve the accuracy of COVID classification.

Although the residual network can improve the accuracy of lung X-ray image classification.
However, the size of pneumonia lesions is different, and the features cannot be extracted by a single-
size convolution operation. Zhou et al. [11] propose a cross-modal cross-scale global-local attention
detection model, which obtained rich multi-scale features by grouping multi-scale attention for feature
fusion and improving the model’s ability to extract lesion features. Xiao et al. [12] propose a multi-
scale spatial channel attention module and multi-feature fusion global local attention module, which
effectively solves the problem of low classification accuracy. Huo et al. [13] propose a hierarchical
multi-scale feature fusion network for medical image classification, The model can extract local and
global features effectively on different semantic scales, and it can improve the classification accuracy
of various medical images. Although the multi-scale module can improve the feature extraction ability,
it lacks the direction features perception ability about lung X-ray images.

In summary, the existing network is not sufficient to extract the lesion size and directional features.
To solve the above problems, A pneumonia classification model based on multi-scale directional
feature enhancement is proposed in this paper. The main contributions of this model are as follows:

1. To solve the different lesion size problems in lung X-ray images, a Multi-scale Residual Feature
Extraction Module (MRFEM) is designed. The MRFEM uses dilated convolutions with
different expansion rates to extract features. It improves the model’s adaptability to different
sizes in pneumonia lesions, and the model’s ability to capture multi-scale features.

2. A Multi-scale Directional Feature Perception Module (MDFPM) is designed to further
enhance the feature extraction ability in the backbone network. The MDFPM uses three dif-
ferent sizes of convolutions, and the multi-branch structure is used to gather highly correlated
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features to enhance the lesion features. It can further improve the feature extraction ability of
the model.

3. To obtain the direction features in lung X-ray images and increase the extraction ability of
global features, the Axial Compression Former Module (ACFM) is added at the end of the
feature extraction network. The ACFM performs global calculations in different directions. It
enhances the global features perception in different directions and improves the classification
performance in pneumonia diseases.

2 Related Work

The residual network effectively alleviates the problems, which of gradient disappearance and
network degradation caused by the increase in network depth. It can greatly improve the generalization
ability and robustness of deep networks, and it has made a breakthrough in the field of pneumonia
image classification.

2.1 Pneumonia Classification Method Based on Residual Unit

In the residual unit, the problems of gradient disappearance and gradient explosion during deep
neural network training are solved by introducing skip connection. Gopatoti et al. [14] propose a
multi-textural multi-class attention recurrent residual convolutional neural network, it can classify
the CXR (chest X-ray) images into normal, COVID-19, viral pneumonia, and lung opacity using
extracted multi-textural features with improved accuracy. Zhang et al. [15] propose a dimension-
driven multi-path attention residual network, a dimension-driven multipath attention residual block is
developed to effectively obtain the multi-scale features, and differently treats these features containing
different amounts of information through the channel attention mechanism, which makes the data
depth features better expressed. Sreedevi et al. [16] propose a Dual Attention method based on the
Resnet-50 with bidirectional gated recurrent unit for image classification, the GRU (gated recurrent
unit) is combined with ResNET 50 to enhance the expressiveness of the model.

2.2 Pneumonia Classification Method Based on Overall Structure

The optimization of ResNet based on the overall structure can effectively reduce overfitting and
enhance the ability of the network to learn features. Hassan et al. [17] propose an architecture called
Medical Quantum Convolutional Neural Network, based on the Quantum Convolutional Neural
Networks model and a modified ResNet pre-trained model, for enhancing the biomedical image
classification in the MNIST medical dataset. Ejiyi et al. [18] propose a classification network named
ResfEANet, which is built upon ResNet and incorporates an External Attention mechanism to extract
features effectively. Nawaz et al. [19] propose a swish-based improved ResNet model, which introduced
multiple dense layers at the end of the proposed CNN structure to ensure more robust sample features
for classification purposes.

3 Method

Compared with the traditional neural network, ResNet is a good deep learning model to alleviates
the disappearing gradients. The problem that deep learning models are difficult to train is alleviated.
However, it is limited in capturing local and global features. In addition, there are different lesion sizes
and lesion directions in Lung X-ray images. The MSD-Net model is proposed, its structure is shown
in Fig. 1, the main introduction of three modules: Multi-scale Residual Feature Extraction Module
(MRFEM), Multi-scale Directional Feature Perception Module (MDFPM), Axial Compression
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Former Module (ACFM). In this model, ResNet50 is used as the main backbone network, there are
five stages in backbone network, that is Stage I–Stage V. Firstly, the lung X-Ray image is inputted
into Conv7 × 7 and Maxpool layers to extract shallow features. Then advanced semantic information
is obtained stage by stage through the first four stages Stage I–Stage IV. Each Stage is composed
by several MRFEMs, and rich multi-scale features are obtained through dilated convolutions with
different expansion rates. In Stage V, the ACFM is designed to extract global semantic features in
different spatial directions, which improves the model ability to perceive the global features of lung X-
ray images. Secondly, a MDFPM is designed between the previous stage and the next stage. The module
uses different size convolution and directional pooling to enhance the acquisition ability about multi-
scale and directional features. Finally, it is classified by full connection layer (FC). The pseudo-code
of the overall architecture is shown in Table 1.

Figure 1: MSD-Net overall framework

Table 1: Pseudo-code for the overall architecture

Input: X-Ray image of pneumonia
output: Results of pneumonia image classification
1. input X
2. X0 = Maxpool (Conv7 × 7 (X))
3. for (i = 1; i < 6; i++) {
4. if (i = 1) {Xi =MRFEM (X0);}
5. else if (i = 2) {Xm = MRFEM (X1); Xn = MDFPM (X1); Xi = Concat (Xm, Xn);}
6. else if (2 < i < 5) {Xm = MRFEM (Xi); Xn = MDFPM (Xn); Xi = Concat (Xm, Xn);}
7. else {Xm = ACFM (Xi); Xn = MDFPM (Xn); Xi = Add (Xm, Xn);}
8. F = FC (Xi);
9. Output F;

3.1 Multi-Scale Residual Feature Extraction Module

ResNet is a typical deep learning network with great feature extraction ability. However, the basic
resblock extract features using a single convolution operation, which limit the perceptive range of the
input images. To solve these problems, a Multi-scale Residual Feature Extraction Module (MRFEM)
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is proposed in this paper. In this model, dilated convolutions with different expansion rates are added
to enlarge perceptive field, which makes the model handle multi-scale and multi-level features greatly.
It improves the ability of feature extraction and expression in lung X-ray images. Its structure is shown
in Fig. 2.

Figure 2: Multi-scale residual feature extraction module

There are four-branch structures in this model: The first branch preserves the initial features. In
branch 2–branch 4, there are three expanding convolutions with different expansion rates that are
used to extract features. The calculation method of dilated convolution is similar to the chessboard
form. Since the feature maps of each layer are obtained by the convolution calculation of the feature
maps of the previous layer. The convolution result is lack of interdependence and continuity, which
is gridding effect [20]. Therefore, the residual connection is used to obtain pixel information in wider
range, which avoid gridding effect. Each branch features are added to next branch which fully fuse
each branch features. Finally, a 1 × 1 convolution operation is used to adjust the channel number.

The specific process is as follows: The feature map Xc ∈ RC×H×W is inputted into Conv1×1, the results
are divided into 4 feature map subsets, represented by xi, i ∈ {1, 2, 3, 4}. Each feature subset xi has the
same space size and 1/4 number of channels compared with the input features. Except for x1, there are
corresponding 3 × 3 dilated convolution in each xi, and the expansion rate is increased gradually with i.
Three perceptive fields are obtained by three different sizes of convolution, which improve the module
perception ability. Because the four branches have different ability to extract features, the features
of each branch are sufficiently fused by transferring each branch output into the next branch. The
residual connection is added to avoid the gridding effect caused by dilated convolution. The specific
formula is shown in (1)–(4):

xi = Split (XC) i ∈ {1, 2, 3, 4} (1)

x
′
2 = x2 + Dconv3×3,d=1(x1 + x2) (2)

x
′
3 = x3 + Dconv3×3,d=2(Dconv3×3,d=1(x1 + x2) + x3) (3)

x
′
4 = x4 + Dconv3×3,d=3(Dconv3×3,d=2(Dconv3×3,d=1(x1 + x2) + x3) + x4) (4)

where, Dconv3×3,d=1, Dconv3×3,d=2, Dconv3×3,d=3 represent dilated convolution with expansion rates of 1,
2, 3. Finally, the feature maps x1, x′

2, x′
3, x′

4 from all branches are merged into the channel dimension.
Then a 1 × 1 convolution operation is carried out on the fused features, and the final output result is
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obtained by adding residual connection. The specific operation is shown in formula (5).

output = Conv1×1(Concat(x1, x
′
2, x

′
3, x

′
4)) + XC (5)

3.2 Multi-Scale Directional Feature Perception Module

In X-ray images of pneumonia, the lesion shape is complex and the size is different, so it is difficult
to extract the size, shape and direction information of different lesions. Moreover, it is insufficient to
extract the size and direction features of lesion region using single-scale convolution, and small lesion
region features are easily ignored. In this paper, a Multi-scale Directional Feature Perception Module
(MDFPM) is designed to enhance features in three different scales. Two different ways of enlarging
the convolution size are used to enlarge the perceptive field: Firstly, convolution with kernel size 3, 5,
7 is used to obtain different scale features, and the output feature are pooled in H and W directions to
obtain the lesion direction features. Then, dilated convolutions with expansion rates 1, 2, 3 are used to
increase the perceptive field again and capture multi-scale context features. Finally, the different scale
features are fused in proper order. In this model, directional features are obtained by three-branch
structure. It can improve the network ability to locate interesting targets. Its structure is shown in
Fig. 3.

Figure 3: Multi-scale directional feature perception module

There are three branches in MDFPM. Convolutions of size 3 × 3, 5 × 5, and 7 × 7 are processed
in parallel to obtain the multi-scale features. The features are aggregated by two spatial directions to
capture cross-channel and direction-perception features. It helps the model to obtain spatial features
and restrain irrelevant features. X2T is supplemented by the feature map X3T using the 7 × 7 convolution,
and then X1T is supplemented by the feature map X3T using the 7 × 7 convolution and the feature map
X2T using the 5 × 5 convolution. Thus, the feature supplement of the three branches is realized. Dilated
convolution is added to improve the extraction ability of local features further. The specific process is
as follows:
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Firstly, the features XT is dealt with three different sizes to get three feature mappings. The specific
formulas are shown in (6)–(8):

Xt1 = Conv3×3(XT) (6)

Xt2 = Conv5×5(XT) (7)

Xt3 = Conv7×7(XT) (8)

Secondly, taking the first branch as an example, the feature map Xt1 ∈ RC×H×W is calculated by
average pooling in the H and W direction, respectively, which can get the attention maps Xt1(H) ∈ RC×H×1

and Xt1(W) ∈ RC×1×W . Specifically, the input feature Xt1 is encoded by a pooling kernel (H-avgpool, H-
Ap) with size 1 × W in the horizontal direction. The output result formula is shown in (9):

Xt1(H) = Ap(H)(Xt1) (9)

Ap(H) is a pooling kernel of size 1 × W. Similarly, the input feature is encoded by a pooling kernel
(W-avgpool, W-Ap) with size H × 1 in the vertical direction. The output result formula is shown
in (10):

Xt1(W) = Ap(W)(Xt1) (10)

Ap(W) is a pooling kernel of size H × 1. The feature maps in H direction and W direction are
merged, and then the Conv1×1 operation, BN operation and Sigmoid operation are used to get the
fused feature map X1m ∈ RC/r×H×W , where, r is scale factor and the formula is shown in (11):

X1m = Sigmoid(BN(Conv1×1(concat(Xt1(H), Xt1(W))))) (11)

Thirdly, the feature map X1m is Split into two independent feature maps X (H)

1m ∈ RC/r×H×1 and X (W)

1m ∈
RC/r×1×W along the space dimension. The attention maps in H, W direction is obtained by Conv1 × 1,
Sigmoid. Then it is fused with the original features to output X1T . The specific formula is shown in
(12) and (13):

X (H)

1m , X (W)

1m = Split(X1m) (12)

X1T = X1 × Sigmoid(Conv1×1(X (H)

1m )) × Sigmoid(Conv1×1(X (W)

1m )) (13)

And so on, the feature map X2T , X3T is obtained.

Finally, in order to improve the degree of feature complementarity among different branches,
the features are transferred from the feature extraction branch of the larger perceptive field to the
feature extraction branch of the smaller perceptive field. Then the enhanced features are obtained by
using convolution of different expansion rates. X3T is used to obtain the enhanced features by a 3 × 3
convolution with dilation rate 3. X2T is used to obtain the enhanced features by a 3 × 3 convolution
with dilation rate 2. X1T is used to obtain the enhanced features by a 3 × 3 convolution with dilation
rate 1. The final features of each branch are obtained by 1 × 1 convolution. It is fused together and the
dimension of the feature is adjusted by convolution, output the final result X ′

T . The specific formula
is shown in (14)–(17):

X
′
3T = Conv1×1(Dconv3×3,d=3 (X3T) + X3T) (14)

X
′
2T = Conv1×1(Dconv3×3,d=2 (X3T + X2T) + (X3T + X2T)) (15)

X
′
1T = Conv1×1(Dconv3×3,d=1 (X3T + X2T + X1T) + (X3T + X2T + X1T)) (16)
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X
′
T = Conv1×1

(
Concat

(
X

′
1T , X

′
2TX

′
3T

))
(17)

In order to resize the feature map while retaining more feature, a hybrid downsampling module
is used in this paper. Its structure is shown in Fig. 4. The module steps are as follows: Firstly, the
feature map X ′

T is processed by 3 × 3 convolution, Average pooling (Avgp) and max pooling (Maxp)
operations to retain more useful features. Secondly, the feature maps obtained from the three branches
are concatenated. Finally, the number of channels is adjusted by GroupNorm and 1 × 1 convolution,
and the final feature map is output. The specific formula of the module is shown in (18):

X ′′′
T = Conv1×1

(
GroupNorm

(
Concat(Conv3×3

(
X ′

T

)
, Maxp

(
X ′

T

)
, Avgp(X ′

T))
))

(18)

Figure 4: Hybrid downsampling module

3.3 Axial Compression Former Module

There are some advantages in CNN, it has great superiority in local feature extraction. In lung X-
ray images, lesion regions are widely distributed, its shape and size are different. The perceptive field of
convolution operation is limited. In contrast, the Transformer model [21] can extract global features
by capturing long distance dependencies. However, the perception ability of the lesion direction is
ignored in Transformer. An Axial Compression Former Module is designed in this paper. Its structure
is shown in Fig. 5.

The input feature map is calculated by 1 × 1 convolution to get Q, K, V, it is processed by
three branches: In the first branch, Q, K, V are compressed along the horizontal direction to obtain
horizontal direction features Q(h), K(h), V(h), In the second branch, Q, K, V are compressed along the
vertical direction to obtain vertical direction features Q(v), K(v), V(v), Since different dimensions have
different relationships and features. Self-attention is calculated in two branches, long-distance context
information is captured in horizontal and vertical directions. The perception ability of direction
features is improved in transformer, it can make the model to capture multiple relationships and
features. In the third branch, Q, K and V are concatenated together through channels, it is computed
by deep convolution to supplement the detail features. Then, the globlal features with direction and
position perception and the enhanced local features are fused, and the feature map with rich global
semantic and local detail features is obtained. The specific process is as follows.
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Figure 5: Axial compression former module

Firstly, the input features Xf ∈ RC×H×W is mapped to obtain Query Q ∈ RCq×H×W , Key K ∈ RCk×H×W ,
and Value V ∈ RCv×H×W by 1 × 1 convolution operation. The calculation formula is shown in (19)–(21):

Q = Conv1×1(Xf ) (19)

K = Conv1×1(Xf ) (20)

V = Conv1×1(Xf ) (21)

Secondly, in order to obtain Q(h) ∈ RCq×H , K(h) ∈ RCk×H , V(h) ∈ RCv×H , Q, K, V are compressed
into two-dimensional features along the horizontal direction. Q is reshaped and multiplied with the
key V, an attention map with size H × H in the horizontal direction is obtained by Softmax. And it
is multiplied with the value V to obtain the horizontal attention map. The attention formula is shown
in (22):

Attention(h) = Softmax
(

QT
(h)

K(h)√
dK

)
V T

(h)
(22)

Thirdly, in order to obtain Q(v) ∈ RCq×W , K(v) ∈ RCk×W , V(v) ∈ RCv×W , Q, K, V are compressed into
two-dimensional features along the vertical direction. Q is reshaped and multiplied with the key V, an
attention map with size W × W in the vertical direction is obtained by Softmax. And it is multiplied
with the value V to obtain the vertical attention map. The attention formula is shown in (23). Then
the attention map Attention(h) obtained in the horizontal direction and the attention map Attention(v)

obtained in the vertical direction are fused together as the output result y. The attention formula is
shown in (24):

Attention(v) = Softmax
(

QT
(v)K(v)√

dK

)
V T

(v) (23)

y = Attention(h) + Attention(v) (24)

Fourthly, although the global semantic features are improved by the compress operation effec-
tively, local detail features are lost in some degree. Therefore, the convolution operation is used to
enhance spatial features in this paper. Q, K, V are concatenated in the channels, and the 3 × 3 depth
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wise convolution (DWconv3×3) and BN operations are performed. Then the features of Cq + Ck +
Cv dimension are compressed into C channels after ReLU6, BN operation and 1 × 1 convolution
operation. The detail enhancement features are got. The formula is shown in (25) and (26):

W1 = Concat(Q, K, V) (25)

W2 = BN(Conv1×1(ReLU6(BN(DWconv3×3(W1))) (26)

The global features obtained by 1 × 1 convolution is fused with the local features. The output yf

is obtained after the residual connection operation. The calculation formula is shown in (27):

yf = Xf + (Conv1×1 (y) × W2) (27)

Finally, the feature maps are passed through the LayerNormal and the MLP layer. Then the
residual connection operation is used to better capture the complex relationship among features. The
final output of this stage is FOut. The specific formula is shown in (28):

FOut = MLP(LayerNorm(yf )) + yf (28)

4 Experiments and Analysis
4.1 Datasets and Data Pre-Processing

The dataset uses in this paper is a publicly available dataset from the COVID-19 RADIOGRA-
PHY DATABASE, created by a team of researchers from Qatar University and Dhaka University in
Bangladesh, along with collaborators from Pakistan and Malaysia, in collaboration with physicians
[22,23]. A total of 5374 medical images are selected, including 1332 images of COVID-19, 1335 images
of lung opacity, 1362 images of normal lung and 1345 images of viral pneumonia. The images are
shown in Fig. 6. The ratio of 9:1 is divided into the training set and the verification set. In order to
match the model input size, the image is randomly cropped to 224 × 224, then it is converted to vector
format and the pixel value is normalized.

COVID-19 Lung Opacity Normal Pneumonia

Figure 6: Lung X-ray image samples

4.2 Experimental Environment

The experimental environment for this experiment is a 64-bit Windows Server 2019 Datacenter
system equipped with an Inter (R) Xenon (R) Gold 5218 CPU @2.3 GHZ, the computer has 64 GB
of RAM and uses NVIDIA TITAN RTX graphics cards to speed up image processing. The program
is written in Python, based on the GPU version of the Pytorch framework for network construction
and training. Optimiser is performed using the Adam with a learning rate decay value of 0.001. The
training period for the lung X-ray dataset is set to 150 and the training batch size is set to 8. The loss
function is the cross-entropy loss. Cross entropy is a measure of how similar two distributions are.
In machine learning, it is expressed as the difference between the true probability distribution and
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the predicted probability distribution. The lower the value of cross-entropy is, the better the model
prediction effect is. Where the cross entropy loss function of multiple classes is:

L = 1
N

∑
i
Li = − 1

N

∑
i

∑M

c=1
yic log(pic) (29)

where M is category; i is ith sample; yic is the label of the ith sample class c (0 or 1); pic is the probability
of the ith sample class c. Finally, the model architecture is tested and evaluated.

4.3 Evaluation Metrics

Evaluation index is a quantitative index for model performance. In order to reasonably and
comprehensively evaluate the classification performance of the overall structure, and facilitate the
comparison with other networks. the confusion matrix of each model for pneumonia classification
is visualized by using four index values of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN). Accuracy (Acc), Recall-Macro (Rec), Precision-Macro (Pre), F1 Score-Macro
(F1), and Specificity (Spe) are used as the evaluation criterion to explore the effect of improved network
model on the classification of different pneumonia. The calculation formula of each evaluation index
is as follows:

Acc = TP + TN
TP + FP + FN + TN

(30)

Rec = 1
C

∑C

i=1

TPi

TPi + FNi

(31)

Pre = 1
C

∑C

i=1

TPi

TPi + FPi

(32)

F1 Score = 2 × Pre × Rec
Pre + Rec

(33)

Spe = 1
C

∑C

i=1

TNi

TNi + FPi

(34)

4.4 Ablation Experiment

To verify the validity of the methods used in this paper, ablation experiments are performed on
the same dataset. As shown in Table 2, a total of 8 groups are designed in ablation experiment, and it
is as follows.

Table 2: Design of the ablation experiment

ResBlock MRFEM ACFM MDFPM

Experiment_1 √
Experiment_2 √
Experiment_3 √ √
Experiment_4 √ √
Experiment_5 √ √ √
Experiment_6 √ √

(Continued)
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Table 2 (continued)

ResBlock MRFEM ACFM MDFPM

Experiment_7 √ √
Experiment_8 √ √ √

Experiment_1: Basic Resnet50 network.

Experiment_2: The Multi-scale Residual Feature Extraction Module is used to replace the original
residual block for feature extraction, and then it is passed into FC layer for classification.

Experiment_3: Original residual blocks are used to extract features. And the Axial Compression
Former Module is added to enhance the global semantic information of the backbone network.

Experiment_4: Original residual blocks are used to extract features. A multi-scale direction feature
perception module is added after residual blocks of each stage. it expands the perceptive field network
of the entire network to capture diverse features.

Experiment_5: Original residual blocks are used to extract features. A multi-scale direction
feature perception module is added after residual blocks of each stage. At the same time, the Axial
Compression Former Module is added to enhance the global semantic information of backbone
network.

Experiment_6: The Multi-scale Residual Feature Extraction Module is used for feature extraction,
and the Axial Compression Former Module is added to enhance the global semantic information.

Experiment_7: The Multi-scale Residual Feature Extraction Module is used for feature extraction.
And the multi-scale directional feature perception is added to enrich the features.

Experiment_8 (the MSD-net in this paper): The Multi-scale Residual Feature Extraction Module
is used for feature extraction. A multi-scale direction feature perception module is added to enhance
the direction feature. The Axial Compression Former Module is added to obtain the global informa-
tion.

The comparative results with different networks of ablation experiments are shown in Table 3.
Experiment_2, Experiment_3, Experiment_4 are improved in various indicators compared to Exper-
iment_1. Experiment_2 is improved in various indicators compared to Experiment_1, accuracy,
precision, recall rate, F1 value and Spe value increase by 1.02%, 2.17%, 2.06%, 2.08% and 0.69%.
It shows that the Multi-scale Residual Feature Extraction Module can improve the ability of the
model to extract multi-scale features. Experiment_3 is improved in various indicators compared to
Experiment_1, accuracy, precision, recall rate, F1 value and Spe value increase by 1.12%, 2.56%,
2.23%, 2.24% and 0.75%. It is evident that the Multi-scale Direction Feature Perception Module
can improve the network extraction ability to extract direction features. Experiment_4 is improved
in various indicators compared to Experiment_1, accuracy, precision, recall rate, F1 value and Spe
value increase by 1.58%, 3.39%, 3.18%, 3.23%, 1.06%. It is proved that the Axial Compression Former
Module enhances the extraction of global and direction features. It can complement the insufficient
of convolution in the extraction of features. Experiment_5 is improved in various indicators compared
to Experiment_1, accuracy, precision, recall rate, F1 value and Spe value increase by 1.68%, 3.31%,
3.37%, 3.39%, 1.12%. Experiment_6 is improved in various indicators compared to Experiment_1,
accuracy, precision, recall rate, F1 value and Spe value increase by 1.77%, 3.47%, 3.56%, 3.74%, 1.19%.
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Experiment_7 is improved in various indicators compared to Experiment_1, accuracy, precision, recall
rate, F1 value and Spe value increase by 1.77%, 3.47%, 3.56%, 3.58%, 1.19%. Experiment_8 is improved
in various indicators compared to Experiment_1, accuracy, precision, recall rate, F1 value and Spe
value increase by 1.86%, 3.78%, 3.75%, 3.74%, 1.25%. They proved that the pairwise concatenation of
modules can improve the feature extraction ability of the model more. Compared to Experiment_8,
MSD-net has the best results. The accuracy of the model increased from 95.06% to 97.76%, the
precision increased from 90.20% to 95.57%, the recall rate from 90.10% to 95.52%, the F1 Score from
90.08% to 95.52%, and the Spe value increased from 96.70% to 98.51%.

Table 3: Comparative results of ablation experiments

Model Acc Pre Rec F1 Score Spe

Experiment_1 0.9506 0.9020 0.9010 0.9008 0.9670
Experiment_2 0.9608 0.9237 0.9216 0.9216 0.9739
Experiment_3 0.9618 0.9276 0.9233 0.9232 0.9745
Experiment_4 0.9664 0.9359 0.9328 0.9331 0.9776
Experiment_5 0.9674 0.9351 0.9347 0.9347 0.9782
Experiment_6 0.9683 0.9367 0.9366 0.9366 0.9789
Experiment_7 0.9692 0.9398 0.9385 0.9382 0.9795
Experiment_8 0.9776

(↑2.7%)
0.9557
(↑5.35%)

0.9552
(↑5.42%)

0.9552
(↑5.44%)

0.9851
(↑1.81%)

It can be seen that the MSD-net has a better classification effect for the four types of lung X-
ray images. The experiments are compared more intuitively by drawing the radar map of the ablation
experiment results in this paper, as shown in Fig. 7. MSD-net represented by the red line is at the outer
end, which proves that the model has the best performance.

Figure 7: Radar chart of the ablation experiment results
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In addition, to investigate the difference between the prediction label and the true case for the
classification of test samples in different models, the results of each ablation experiment in the test
set are visualized by using the confusion matrix. The visualization result is shown in Fig. 8. In the
confusion matrix, the diagonal elements represent the same number of predicted and true labels. The
higher the number of diagonal elements, the better the classification accuracy of the model. The same
number of true labels and predicted labels for MSD-Net is the highest. It can be seen that the MSD-
Net has a more balanced detection and better classification effect for the four types of lung X-ray
images in the confusion matrix, which indicates that this model can achieve accurate classification of
pneumonia.

Experiment_1 Experiment_2 Experiment_3 Experiment_4

Figure 8: Confusion matrix of each model in ablation experiments

4.5 Comparison Experiment

This paper mainly discusses the classification effect of 11 network architectures and MSD-
Net in this paper on the same dataset. The experiments are divided into three categories: The first
uses the original convolutional neural network architecture. The second uses Transformer network
architecture. The third is the network architecture proposed in this paper. The experimental evaluation
indexes are Acc, Pre, Rec, F1 Score and Spe for quantitative analysis. The specific experimental results
are shown in Table 4.

Table 4: Classification results of pneumonia X-ray images for each model

Model Acc Pre Rec F1 Score Spe

ResNet50 [6] 0.9506 0.9020 0.9010 0.9008 0.9670
DenseNet121 [24] 0.9664 0.9349 0.9328 0.9327 0.9776
ResNeXt50 [25] 0.9524 0.9060 0.9048 0.9042 0.9682
Res2Net50 [26] 0.9049 0.8129 0.8093 0.8088 0.9366
RegNet [27] 0.9151 0.8298 0.8298 0.8298 0.9434
ResNest50 [28] 0.9412 0.8856 0.8822 0.8797 0.9608
ConvNeXt [29] 0.9132 0.8277 0.8261 0.8261 0.9422
Vision transformer [30] 0.9384 0.8794 0.8767 0.8767 0.9590
Swin transformer [31] 0.9496 0.9023 0.8992 0.8991 0.9664

(Continued)



CMC, 2024, vol.79, no.3 4877

Table 4 (continued)

Model Acc Pre Rec F1 Score Spe

MobileViT [32] 0.9674 0.9351 0.9348 0.9347 0.9783
SMT [33] 0.9608 0.9245 0.9217 0.9213 0.9739
Ours 0.9776

(↑2.7%)
0.9557
(↑5.35%)

0.9552
(↑5.42%)

0.9552
(↑5.44%)

0.9851
(↑1.81%)

From the data in Table 4, The Acc of the model in this paper is 97.76%, the Pre is 95.57%, the
Rec is 95.52%, the F1 Score is 95.52% and the Spe is 98.51%. For convolutional networks, the MSD-
Net model is better than the common classification convolutional networks. MSD-Net is improved
in various indicators compared to DenseNet121, accuracy, precision, recall rate, F1 value and Spe
value increase by 1.12%, 2.08%, 2.24%, 5.44% and 0.75%. MSD-Net is improved in various indicators
compared to ResNeXt50, Acc, Pre, Rec, F1 Score and Spe increase by 2.52%, 4.97%, 5.04%, 5.1% and
1.69%. MSD-Net is improved in various indicators compared to Res2Net50, Acc, Pre, Rec, F1 Score
and Spe increase by 7.27%, 14.28%, 14.59%, 14.64% and 4.85%. MSD-Net is improved in various
indicators compared to Reget, Acc, Pre, Rec, F1 Score and Spe increase by 6.25%, 12.59%, 12.54%,
12.54% and 4.17%. MSD-Net is improved in various indicators compared to ResNest50, Acc, Pre,
Rec, F1 Score and Spe increase by 3.64%, 7.01%, 7.3%, 7.55% and 2.43%. MSD-Net is improved in
various indicators compared to ConvNeXt, Acc, Pre, Rec, F1 Score and Spe increase by 6.44%, 12.8%,
12.91%, 12.91% and 4.29%. For Transformer, MSD-Net is improved in various indicators compared
to Vision Transformer, Acc, Pre, Rec, F1 Score and Spe increase by 3.92%, 7.63%, 7.85%, 7.85% and
2.61%. MSD-Net is improved in various indicators compared to Swin Transformer, Acc, Pre, Rec, F1
Score and Spe increase by 2.8%, 5.34%, 5.62%, 5.61% and 1.87%. MSD-Net is improved in various
indicators compared to MobileViT, Acc, Pre, Rec, F1 Score and Spe increase by 1.02%, 2.06%, 2.04%,
2.05% and 0.68%. MSD-Net is improved in various indicators compared to SMT, Acc, Pre, Rec, F1
Score and Spe increase by 1.68%, 3.12%, 3.35%, 3.39% and 1.12%.

From the comparison, it can be seen that the MSD-Net is superior to other networks and its
classification performance is better than the other 11 network models. At the same time, in order
to compare various classification networks more intuitively, the comparison experiment results are
visualized by drawing radar maps. As shown in Fig. 9, MSD-Net is shown as a red polyline in the
diagram and located at the outermost edge. Therefore, the classification effect of this model is better
than other models.

At the same time, this paper uses confusion matrix to visualize the results of each model in the
comparsion experiment. The visualized result is shown in Fig. 10. From the comparison results, the
same number of true labels and predicted labels for MSD-Net is the highest, it can be seen that the
recognition effect of MSD-Net is the best and significantly better than the other models.

To highlight the validity of the model in this paper, a new four-classification dataset is used [34].
On this dataset, the proposed model is compared with the basic network model, as shown in Table 5.
The Acc of the model in this paper is 97.78%, the Pre is 95.22%, the Rec is 96.49%, the F1 Score is
95.58% and the Spe is 98.11%. MSD-Net is improved in various indicators compared to ResNet50,
Acc, Pre, Rec, F1 Score, and Spe increase by 2.71%, 2.28%, 3.66%, 3.29%, and 1.96%. MSD-Net is
improved in various indicators compared to ResNeXt50, Acc, Pre, Rec, F1 Score, and Spe increase
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by 1.29%, 4.95%, 3.51%, 4.82%, and 1.08%. MSD-Net is improved in various indicators compared
to ResNest50, Acc, Pre, Rec, F1 Score, and Spe increase by 2.71%, 5.52%, 5.94%, 5.47%, and 2.53%.
MSD-Net is improved in various indicators compared to ConvNeXt, Acc, Pre, Rec, F1 Score, and Spe
increase by 7.25%, 18.11%, 16.26%, 18.22%, and 5.69%. MSD-Net is improved in various indicators
compared to Swin Transformer, Acc, Pre, Rec, F1 Score, and Spe increase by 2.84%, 2.99%, 4.91%,
4.69%, and 2.94%. MSD-Net is improved in various indicators compared to SMT, Acc, Pre, Rec, F1
Score, and Spe increase by 1.87%, 2.28%, 3.4%, 3.14%, and 1.91%. It can be seen that the generalization
ability of the model is still good despite the different datasets.

Figure 9: Radar chart of pneumonia classification results of different models

Figure 10: Confusion matrix of classification results of pneumonia X-ray images of each model
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Table 5: Classification results of pneumonia X-ray images for each model

Model Acc Pre Rec F1 Score Spe

ResNet50 0.9507 0.9294 0.9283 0.9229 0.9615
ResNeXt50 0.9649 0.9027 0.9298 0.9076 0.9703
ResNest50 0.9507 0.8970 0.9055 0.9011 0.9558
ConvNeXt 0.9053 0.7711 0.8023 0.7736 0.9242
Swin transformer 0.9494 0.9223 0.9158 0.9089 0.9517
SMT 0.9591 0.9294 0.9309 0.9244 0.9620
Ours 0.9778

(↑2.71%)
0.9522
(↑2.28%)

0.9649
(↑3.66%)

0.9558
(↑3.29%)

0.9811
(↑1.96%)

5 Conclusion

There is a problem that lesion size features and direction features are extracted insufficiently in
lung X-ray images. To solve it, a multi-scale directional feature enhanced pneumonia classification
model MSD-Net is proposed. In this model, three different methods are used to enhance the ability
to extract lesion size features and lesion direction features. Firstly, in the ablation experiment, the
Acc, Pre, Rec, F1 Score and Spe of MRFEM are 96.08%, 92.37%, 92.16%, 92.16%, and 97.39%,
respectively, it is proved that MRFEM can effectively extract multi-scale features. The Acc, Pre, Rec,
F1 Score and Spe of MDFPM are 96.64%, 93.59%, 93.28%, 93.31%, and 97.76%, respectively, it is
proved that MDFPM can enhance the detailed and direction features. The Acc, Pre, Rec, F1 Score and
Spe of ACFM are 96.18%, 92.76%, 92.33%, 92.32%, and 97.45%, respectively, it is proved that ACFM
can capture the direction features of the lesion and fully extract the global features. Then, through
comparative experiments with different datasets, in the COVID-19 RADIOGRAPHY DATABASE,
the Acc, Pre, Rec, F1 Score and Spe of MSD-Net are 97.76%, 95.57%,95.52%, 95.52%, and 98.51%,
respectively. In the chest X-ray dataset, the Acc, Pre, Rec, F1 Score, and Spe of MSD-Net are 97.78%,
95.22%, 96.49%, 95.58%, and 98.11%, respectively. The growth of each evaluation index shows that
the feature enhancement method proposed in this paper can improve the model’s perception ability of
feature size and direction. Finally, the MSD-Net can improve the precision of lung X-ray diagnosis
and has positive significance for pneumonia Computer-Aided Diagnosis.
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